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RESUMO
Neste trabalho estudamos a equação de Laplace Δ𝑢 = 0, no disco. A equação de Laplace possui inúmeras
aplicações na física, engenharia e matemática. Neste trabalho, utilizamos cálculo, teoria de equações
diferenciais e técnicas para determinar a função de Green no disco. Encontramos uma solução para a
equação de Laplace e provamos que esta solução é única por meio do princípio do máximo.

Palavras chaves: Equação de Laplace; Função de Green; Princípio do Máximo.



ABSTRACT
In this work we study Laplace’s equation Δ𝑢 = 0, in the disk. Laplace’s equation has numerous applica-
tions in physics, engineering and mathematics. In this work, we use calculus, differential equation theory
and techniques to determine the Green’s function in the disk. We find a solution for Laplace’s equation
and we prove that this solution is unique by means of the maximum principle.

keywords: Laplace Equation; Green Function; Maximum Principle.
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INTRODUÇÃO

Seja 𝑢 = 𝑢(𝑥1, 𝑥2) uma função real de duas variáveis, que possua derivadas parciais de segunda
ordem. O operador laplaciano é um operador diferencial parcial de segunda ordem, definido por

Δ𝑢 = 𝜕2𝑢
𝜕𝑥2

1
+ 𝜕2𝑢

𝜕𝑥2
2

.

Este operador aparece em várias equações presentes na física, na engenharia e na matemática. Dentre
elas, podemos destacar algumas equações importantes. Por exemplo, a equação de Laplace

Δ𝑢 = 0, (1)

a equação de Poisson
Δ𝑢 = 𝑓 ,

a equação do calor
𝑢𝑡 − Δ𝑢 = 0 (2)

e a equação da onda
𝑢𝑡𝑡 − Δ𝑢 = 0.

A equação de Laplace foi estudada pela primeira vez no final do século XVIII, pelo francês Pierre
Simon Laplace, enquanto ele trabalhava em problemas de mecânica celeste e teoria da probabilidade. Esta
equação possui inúmeras aplicações em física, pois aparece naturalmente em problemas de potenciais
elétricos, magnéticos, gravitacionais, hidrodinâmica, temperaturas de estado estacionário, entre outros. A
seguir, descrevemos algumas aplicações da equação de Laplace. Para mais exemplos de aplicações da
equação de Laplace, ver (LEIGHTON et al., 1964)

Na ausência de cargas se movendo, as equações de Maxwell da eletrostática, tomam a forma

𝑑𝑖𝑣 ⃗𝐸 = 0 e 𝑟𝑜𝑡 ⃗𝐸 = 0,

em que 𝑑𝑖𝑣 ⃗𝐸 e 𝑟𝑜𝑡 ⃗𝐸 denotam o divergente e o rotacional do campo elétrico ⃗𝐸, definido no curso de cálculo
III. Da segunda equação de Maxwell, obtemos que o campo elétrico ⃗𝐸 é conservativo. Isto significa que
existe uma função 𝜙 real, chamada de potencial elétrico, tal que ⃗𝐸 = −∇𝜙. Ao substituir a expressão do
campo elétrico na primeira equação de Maxwell, obtemos a equação de Laplace

𝑑𝑖𝑣(−∇𝜙) = −Δ𝜙 = 0.

Uma vez obtido o potencial elétrico, podemos facilmente encontrar o campo elétrico ⃗𝐸.
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Outra situação em que a equação de Laplace aparece é em problemas de temperaturas em estado
estacionário. Esta é uma situação em que não há perda ou ganho de calor para o ambiente, dessa forma,
temos que 𝑢𝑡 = 0, em que 𝑢 é a função temperatura. Neste caso, a equação do calor (2) toma a forma

Δ𝑢 = 0.

Isto significa que a função temperatura 𝑢 satisfaz a equação de Laplace.

Vamos descrever melhor o que ocorre em um problema de temperatura em estado estacionário,
mas antes daremos algumas definições. Seja 𝑅 > 0 e 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2. Definimos o disco de centro na
origem e raio 𝑅, por

𝐵𝑅(0) = {𝑥 ∈ ℝ2; |𝑥| < 𝑅} ,

em que |𝑥| = √𝑥2
1 + 𝑥2

2. Definimos também o fecho e a fronteira do disco 𝐵𝑅(0), respectivamente, por

𝐵𝑅(0) = {𝑥 ∈ ℝ2; |𝑥| ≤ 𝑅} ,

𝜕𝐵𝑅(0) = {𝑥 ∈ ℝ2; |𝑥| = 𝑅} .

Suponha que tenhamos um disco 𝐵𝑅(0), de um certo material, em que este disco é aquecido em
sua fronteira 𝜕𝐵𝑅(0), de acordo com a função temperatura 𝑔. Veja a FIG. 1.
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Figura 1 – Condição de fronteira no disco.

Fonte: Os autores.

O fluxo de calor ⃗𝐹 é dado pela Lei da condução de calor de Fourier

⃗𝐹 = −𝑘∇𝑢

onde 𝑘 é a constante de condutividade térmica do material e 𝑢(𝑥) = 𝑢(𝑥1, 𝑥2) representa a função tempera-
tura em cada ponto do disco. Quando consideramos que não há perda de calor para o ambiente, existe um
momento em que o disco entra em equilíbrio térmico. Este estado estacionário de temperatura, significa
que

𝑑𝑖𝑣 ⃗𝐹 = 0.
Para o campo ⃗𝐹 dado pela Lei da condução de calor de Fourier, temos que

𝑑𝑖𝑣 ⃗𝐹 = 𝑑𝑖𝑣(−𝑘∇𝑢) = −𝑘Δ𝑢 = 0

e portanto a função temperatura 𝑢 deve satisfazer à equação de Laplace (1). Nesta situação, a função
temperatura 𝑢 satisfaz às equações

⎧{
⎨{⎩

Δ𝑢 = 0, em 𝐵𝑅(0),
𝑢 = 𝑔, sobre 𝜕𝐵𝑅(0),

(3)

chamado problema de Dirichlet para a equação de Laplace no disco, onde 𝑔 é uma função contínua dada
na fronteira do disco.
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Seja Ω ⊂ ℝ2 um domínio (aberto conexo) limitado. Dizemos que uma função 𝑢 ∈ 𝐶0(Ω), ou é
de classe 𝐶0(Ω), se 𝑢 for contínua em Ω. Uma função 𝑢 ∈ 𝐶𝑘(Ω), ou é de classe 𝐶𝑘(Ω), se 𝑢 possuir
todas as derivadas parciais até a ordem 𝑘, contínuas em Ω.

Dizemos que uma função 𝑢 é solução do problema de Dirichlet para a equação de Laplace no
disco, se 𝑢 ∈ 𝐶2(𝐵𝑅(0)) ∩ 𝐶0(𝐵𝑅(0)) e satisfaz às equações (3). Usando a teoria de cálculo diferencial
e integral, equações diferenciais e as técnicas para determinar a função de Green no disco, apresentamos
o resultado principal deste trabalho.

Teorema 0.0.1. O problema de Dirichlet para a equação de Laplace no disco, possui uma única solução.

Ao considerar o amplo campo de aplicações do operador laplaciano em fenômenos físicos (como
potenciais elétricos, distribuição de temperatura, campos gravitacionais e comportamento de ondas) torna-
se possível estabelecer conexões com conteúdos presentes na Educação Básica, ainda que em versões
simplificadas. Conceitos como fluxo, variação, equilíbrio térmico e propagação de energia permitem ao
professor introduzir, de modo acessível, a compreensão de que certas leis físicas podem ser descritas
por equações diferenciais, ainda que os estudantes não resolvam tais equações formalmente. Esse tipo
de abordagem possibilita ao aluno compreender que a matemática, especialmente em sua formulação
avançada, é uma linguagem essencial para a interpretação de fenômenos naturais.

Nesse contexto, a relação entre Matemática e Física torna-se essencial, pois permite ao estudante
perceber como modelos matemáticos (incluindo aqueles formulados a partir do operador laplaciano) são
empregados para descrever e compreender fenômenos como potenciais elétricos e distribuição de tem-
peraturas. Ao explorar essas conexões de forma qualitativa na Educação Básica, mesmo sem recorrer ao
formalismo das equações diferenciais, é possível introduzir aos estudantes a compreensão de que muitos
comportamentos físicos observados em situações cotidianas são resultado de modelos matemáticos subja-
centes, ainda que trabalhados de maneira simplificada. Essa perspectiva dialoga diretamente com a Base
Nacional Comum Curricular, especialmente com a Competência Específica 4, que orienta a compreender
e utilizar, com flexibilidade e fluidez, diferentes registros de representação matemática (algébrico, geomé-
trico, estatístico, computacional, entre outros) na resolução e comunicação de resultados de problemas,
favorecendo a construção e o desenvolvimento do raciocínio matemático.

Mais especificamente, voltemos à situação do problema de temperatura de estado estacionário.
Podemos considerar uma situação mais simples do problema, em que temos uma barra de comprimento
𝐿 ao invés do disco. Suponha que esta barra é aquecida em suas extremidades (fronteira da barra) de
acordo com a função temperatura 𝑔, digamos 𝑔(0) = 𝑔0 e 𝑔(𝐿) = 𝑔𝐿. Veja a FIG. 2.

A mesma argumentação que foi feita para o disco, vale também para a barra. Dessa forma, a
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Figura 2 – Solução da equação de Laplace em uma barra de comprimento 𝐿.

Fonte: Os autores.

função temperatura 𝑢(𝑥), em que 𝑥 ∈ ℝ, deve satisfazer às equações do problema de Dirichlet na barra:

⎧{
⎨{⎩

𝑢″(𝑥) = 0 em (0, 𝐿),
𝑢(0) = 𝑔0, 𝑢(𝐿) = 𝑔𝐿.

Usando as técnicas do cálculo diferencial e integral, integrando duas vezes 𝑢″(𝑥) e substituindo as condi-
ções iniciais, obtemos a solução

𝑢(𝑥) = (𝑔𝐿 − 𝑔0
𝐿 ) 𝑥 + 𝑔0.

Observe que a solução da equação de Laplace na barra é um segmento de reta, que se inicia no ponto
(0, 𝑔0) e termina no ponto (𝐿, 𝑔𝐿). Portanto, no ensino médio, podemos apresentar a solução do problema
de temperatura de estado estacionário na barra, utilizando o simples conceito de função linear, cujo
gráfico é o segmento de reta que une os pontos (0, 𝑔0) e (𝐿, 𝑔𝐿) no plano.

No capítulo 1 utilizamos uma propriedade importante do operador laplaciano para transformar a
equação de Laplace em uma equação diferencial ordinária (E.D.O.). Resolvemos esta E.D.O. e obtemos
a solução fundamental para a equação de Laplace.

No capítulo 2 utilizamos alguns resultados importantes para obter uma fórmula de representação
da solução. Esta fórmula de representação dependerá de uma função 𝐺(𝑥, 𝑦) chamada função de Green.
O objetivo deste capítulo é determinar a função de Green no disco.
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No capítulo 3 utilizaremos a fórmula de representação obtida no capítulo anterior, para mostrar
que o problema de Dirichlet (3) possui solução. Mostraremos também que esta solução é única, utilizando
um resultado muito importante, chamado o princípio do máximo. Nosso texto é baseado nas notas de
aula do Rodney Josué Biezuner (BIEZUNER, 2010. Acesso em: 26 jan. 2026) e no livro do Lawrence C.
Evans (EVANS, 1998).
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Capítulo 1

SOLUÇÃO FUNDAMENTAL

Neste capítulo, vamos utilizar as propriedades do operador laplaciano para procurar por uma
solução da equação de Laplace. Ao longo do texto, utilizaremos as notações 𝑥 = (𝑥1, 𝑥2) e 𝑦 = (𝑦1, 𝑦2)
para denotar pontos (ou vetores) do ℝ2. Vamos começar enunciando um fato importante sobre o operador
laplaciano.

Lema 1.0.1. O operador laplaciano é invariante por rotações.

Demonstração. Veja o Lema A.0.1 no Apêndice A.

Dizer que o operador laplaciano é invariante por rotações significa que rotacionar o sistema de
coordenadas não altera o valor do laplaciano (Δ𝑢). Tendo em vista o resultado anterior, é natural procu-
rarmos por funções que são invariantes por rotações. Um tipo de função que possui esta característica é a
função radial.

Definição 1.0.1. Dizemos que uma função 𝑢 ∶ Ω ⊂ ℝ2 → ℝ é radial ou radialmente simétrica, se

𝑢(𝑥) = 𝑢(|𝑥|) = 𝑢(𝑟).

O próximo resultado mostra como escrever o operador laplaciano na variável radial 𝑟 = |𝑥|.

Teorema 1.0.1. Seja 𝑢 ∶ Ω ⊂ ℝ2 → ℝ uma função radial. Então o operador laplaciano é dado por

Δ𝑢(𝑥) = 𝑢″(𝑟) + 𝑢′(𝑟) (1
𝑟 )

em que 𝑢′(𝑟) e 𝑢″(𝑟) denotam as derivadas de 𝑢(𝑟) com relação à variável real 𝑟.

Demonstração. De fato, como
𝑟 = |𝑥| = √𝑥2

1 + 𝑥2
2,

temos
𝜕𝑟
𝜕𝑥1

= 1
2 (𝑥2

1 + 𝑥2
2)− 1

2 2𝑥1 = 𝑥1
√𝑥2

1 + 𝑥2
2

= 𝑥1
𝑟 .

Daí, pela regra da cadeia, obtemos

𝜕𝑢
𝜕𝑥1

= 𝜕𝑢
𝜕𝑟

𝜕𝑟
𝜕𝑥1

= 𝜕𝑢
𝜕𝑟

𝑥1
𝑟 = 𝑢′(𝑟)𝑥1

𝑟 .
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Calculando a derivada segunda de 𝑢 com relação a 𝑥1, temos

𝜕2𝑢
𝜕𝑥2

1
= 𝜕𝑢

𝜕𝑥1
(𝑢′(𝑟)𝑥1

𝑟 ) = 𝜕𝑢′(𝑟)
𝜕𝑥1

𝑥1
𝑟 + 𝑢′(𝑟) 𝜕

𝜕𝑥1
(𝑥1

𝑟 )

= 𝑢″(𝑟)𝑥2
1

𝑟2 + 𝑢′(𝑟) (1
𝑟 − 𝑥2

1
𝑟3 ) . (1.1)

De maneira análoga, podemos calcular a derivada segunda de 𝑢, com relação a 𝑥2:

𝜕2𝑢
𝜕𝑥2

2
= 𝑢″(𝑟)𝑥2

2
𝑟2 + 𝑢′(𝑟) (1

𝑟 − 𝑥2
2

𝑟3 ) . (1.2)

Somando as equações (1.1) e (1.2), obtemos

Δ𝑢 (𝑥) = 𝜕2𝑢
𝜕𝑥2

1
+ 𝜕2𝑢

𝜕𝑥2
2

= 𝑢″(𝑟)𝑥2
1

𝑟2 + 𝑢′(𝑟) (1
𝑟 − 𝑥2

1
𝑟3 ) + 𝑢″(𝑟)𝑥2

2
𝑟2 + 𝑢′(𝑟) (1

𝑟 − 𝑥2
2

𝑟3 )

= 𝑢″(𝑟) (𝑥2
1 + 𝑥2

2
𝑟2 ) + 𝑢′(𝑟) (2

𝑟 − 𝑥2
1 + 𝑥2

2
𝑟3 )

= 𝑢″(𝑟) + 𝑢′(𝑟) (1
𝑟 ) .

Para uma função radial, o Teorema 1.0.1 afirma que a solução da equação de Laplace deve satis-
fazer à equação diferencial ordinária (E.D.O.) de segunda ordem

𝑢″(𝑟) + 𝑢′(𝑟) (1
𝑟 ) = 0

Δ𝑢(𝑥) = 0.

O próximo resultado mostra que esta E.D.O. possui solução.

Teorema 1.0.2. A E.D.O. de segunda ordem

𝑢″(𝑟) + 𝑢′(𝑟) (1
𝑟 ) = 0

possui uma solução 𝑢 ∶ ℝ+∗ → ℝ dada por 𝑢(𝑟) = ln 𝑟.

Demonstração. Podemos reduzir a ordem desta equação substituindo 𝑣(𝑟) = 𝑢′(𝑟). Então 𝑣(𝑟) satisfaz

𝑣′(𝑟) + 𝑣(𝑟) (1
𝑟 ) = 0
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donde obtemos
𝑣′(𝑟)
𝑣(𝑟) = −1

𝑟

∫ 𝑣′(𝑟)
𝑣(𝑟) 𝑑𝑟 = − ∫ 1

𝑟 𝑑𝑟 + 𝑐1

ln 𝑣(𝑟) = − ln 𝑟 + 𝑐1

ln(𝑟 ⋅ 𝑣(𝑟)) = 𝑐1

𝑟 ⋅ 𝑣(𝑟) = 𝑒𝑙𝑛𝑒𝑐1 = 𝑐1

𝑣(𝑟) = 𝑐1
𝑟

Como

𝑢′(𝑟) = 𝑣(𝑟) ⇒ 𝑢(𝑟) = ∫ 𝑣(𝑟)𝑑𝑟 + 𝑐2 = ∫ 𝑐1
𝑟 𝑑𝑟 + 𝑐2 = 𝑐1 ln 𝑟 + 𝑐2

Portanto a solução geral da EDO é

𝑢(𝑟) = 𝑐1 ln 𝑟 + 𝑐2.

Onde 𝑐1 e 𝑐2 são constantes. Podemos considerar como solução

𝑢(𝑟) = ln 𝑟

pois

Δ(𝑢𝑟) = 0 ⇒ Δ(𝑐1 ln 𝑟 + 𝑐2) = 0 ⇔ 𝑐1Δ(ln 𝑟) = 0 ⇒ Δ(ln 𝑟) = 0

Definição 1.0.2. Uma função 𝑢 ∈ 𝐶2(Ω) que satisfaz a equação de Laplace Δ𝑢 = 0, é chamada função

harmônica em Ω.

Observe que a função 𝑢 ∶ ℝ2 ∖ {0} → ℝ definida por 𝑢(𝑥) = ln |𝑥| satisfaz a equação de Laplace
Δ𝑢 = 0. Consequentemente, esta função é harmônica em ℝ2∖{0}. Mas observe que a função 𝑢(𝑥) = ln |𝑥|
não está definida na origem e portanto, não é harmônica em 𝐵𝑅(0).

Definição 1.0.3. A função Γ ∶ ℝ2 ∖ {0} → ℝ definida por

Γ(𝑥) = − 1
2𝜋 ln |𝑥|

é chamada solução fundamental para a equação de Laplace.

A constante multiplicativa − 1
2𝜋 é introduzida na definição da solução fundamental justamente

para que ela não apareça na fórmula de representação de Green (Teorema 2.1.1 apresentado no próximo
capítulo).



24

Lema 1.0.2. O operador laplaciano é invariante por translações.

Demonstração. Veja o Lema A.0.2 no Apêndice A.

Observe que a função Γ(𝑥) não está definida na origem. Vamos retirar esta singularidade da
origem, passando para uma singularidade em um ponto 𝑦 ∈ Ω. Isso pode ser feito considerando a função
Γ(𝑥 − 𝑦). O Lema 1.0.2 garante que Γ(𝑥 − 𝑦) é harmônica em ℝ2 ∖ {𝑦}.
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Capítulo 2

FUNÇÃO DE GREEN

2.1 Fórmulas de representação

Dada uma função 𝑢 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω), pretendemos obter uma fórmula de representação inte-
gral para 𝑢(𝑦) a partir da solução fundamental Γ(𝑥 − 𝑦), onde 𝑦 ∈ Ω é um ponto arbitrário. Para isto,
gostaríamos de usar a segunda identidade de Green, enunciada pelo lema seguinte.

Lema 2.1.1 (Segunda Identidade de Green). Seja Ω ⊂ ℝ2 um aberto com fronteira suave. Se 𝑢, 𝑣 ∈
𝐶2(Ω) ∩ 𝐶1(Ω) então vale a identidade

∫Ω(𝑢Δ𝑣 − 𝑣Δ𝑢)𝑑𝐴 = ∫𝜕Ω (𝑢 𝜕𝑣
𝜕𝜈 − 𝑣 𝜕𝑢

𝜕𝜈) 𝑑𝑆.

Demonstração. Veja o Lema A.0.3 no Apêndice A.

À primeira vista, poderíamos considerar a substituição direta de Γ(𝑥−𝑦) pela função 𝑣, no entanto,
isso não é possível devido à singularidade de Γ(𝑥 − 𝑦) no ponto 𝑦. Para contornar essa dificuldade,
aplicamos a segunda identidade de Green na região Ω ∖ 𝐵𝜀(𝑦) e tomamos o limite quando 𝜀 → 0. Antes
de enunciar o próximo resultado, apresentamos uma propriedade importante que será utilizada em sua
demonstração.

Lema 2.1.2 (Propriedade da Média). Se 𝑢 ∈ 𝐶0(Ω) e 𝐵𝜀(𝑥) ⊂ Ω, então 𝑢 satisfaz a propriedade

𝑢(𝑥) = lim
𝜀→0

1
|𝜕𝐵𝜀(𝑥)| ∫𝜕𝐵𝜀(𝑥) 𝑢𝑑𝑆.

Demonstração. Veja o Lema A.0.4 no Apêndice A.

Agora estamos prontos para provar a fórmula de representação de Green. Observe que qualquer
função com uma certa regularidade, possui uma representação integral dada pelo próximo resultado. Va-
mos utilizar o subíndice 𝑥 ou 𝑦, para denotar a variável de integração ou derivação.

Teorema 2.1.1 (Fórmula de Representação de Green). Seja Ω ⊂ ℝ2 um aberto limitado e 𝑢 ∈ 𝐶2(Ω) ∩
𝐶1(Ω). Então, para todo 𝑦 ∈ Ω, temos

𝑢(𝑦) = − ∫𝜕Ω (𝑢𝜕Γ
𝜕𝜈 (𝑥 − 𝑦) − 𝜕𝑢

𝜕𝜈Γ(𝑥 − 𝑦)) 𝑑𝑆𝑥 − ∫Ω Δ𝑢Γ(𝑥 − 𝑦)𝑑𝐴𝑥.
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Demonstração. Seja 𝜀 > 0 suficientemente pequeno, para que tenhamos 𝐵𝜀(𝑦) ⊂ Ω. Então Γ(𝑥 − 𝑦)
é de classe 𝐶1 em que Ω ∖ 𝐵𝜀(𝑦) e podemos aplicar a segunda identidade de Green a esta região para
obtermos

∫𝜕[Ω∖𝐵𝜀(𝑦)] ( 𝜕𝑢
𝜕𝜈Γ(𝑥 − 𝑦) − 𝑢𝜕Γ

𝜕𝜈 (𝑥 − 𝑦)) 𝑑𝑆𝑥 = ∫Ω∖𝐵𝜀(𝑦) Δ𝑢Γ(𝑥 − 𝑦)𝑑𝐴𝑥

− ∫Ω∖𝐵𝜀(𝑦) 𝑢ΔΓ(𝑥 − 𝑦)𝑑𝐴𝑥

= ∫Ω∖𝐵𝜀(𝑦) Δ𝑢Γ(𝑥 − 𝑦)𝑑𝐴𝑥

pois Γ(𝑥 − 𝑦) é harmônica em Ω ∖ 𝐵𝜀(𝑦). Note que podemos escrever 𝜕[Ω ∖ 𝐵𝜀(𝑦)] = 𝜕Ω ∪ 𝜕𝐵𝜀(𝑦).
Dessa forma, podemos separar a integral de fronteira na identidade anterior, para obter

∫𝜕Ω ( 𝜕𝑢
𝜕𝜈Γ(𝑥 − 𝑦) − 𝑢𝜕Γ

𝜕𝜈 (𝑥 − 𝑦)) 𝑑𝑆𝑥 + ∫𝜕𝐵𝜀(𝑦) ( 𝜕𝑢
𝜕𝜈Γ(𝑥 − 𝑦) − 𝑢𝜕Γ

𝜕𝜈 (𝑥 − 𝑦)) 𝑑𝑆𝑥

= ∫Ω∖𝐵𝜀(𝑦) Δ𝑢Γ(𝑥 − 𝑦)𝑑𝐴𝑥. (2.1)

Observe que na segunda integral de fronteira, o vetor normal unitário 𝜈 aponta para dentro do disco 𝐵𝜀(𝑦).
Veja a FIG. 3.

Figura 3 – Vetor normal exterior à fronteira de Ω ∖ 𝐵𝜀(𝑦).

Fonte: Os autores.
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Seja 𝐶 = sup
Ω

|∇𝑢|. Dessa forma, temos

∣∫𝜕𝐵𝜀(𝑦)
𝜕𝑢
𝜕𝜈Γ(𝑥 − 𝑦)𝑑𝑆𝑥∣ = ∣∫𝜕𝐵𝜀(𝑦) ∇𝑢 ⋅ 𝜈Γ(𝑥 − 𝑦)𝑑𝑆𝑥∣ ≤ ∫𝜕𝐵𝜀

|∇𝑢||𝜈||Γ(𝑥 − 𝑦)|𝑑𝑆𝑥

≤ 𝐶 ∫𝜕𝐵𝜀
|Γ(𝑥 − 𝑦)|𝑑𝑆𝑥 = 𝐶

2𝜋 ∫𝜕𝐵𝜀(𝑦) ln |𝑥 − 𝑦|𝑑𝑆𝑥

= 𝐶
2𝜋 ln(𝜀) ∫𝜕𝐵𝜀(𝑦) 1𝑑𝑆𝑥 = 𝐶𝜀 ln 𝜀.

Tomando o limite quando 𝜀 → 0, obtemos

lim
𝜀→0+ 𝜀 ln 𝜀 = lim

𝜀→0+
ln 𝜀

1
𝜀

= lim
𝜀→0+

1
𝜀

− 1
𝜀2

= lim
𝜀→0+ −𝜀 = 0.

Consequentemente
∫𝜕𝐵𝜀(𝑦)

𝜕𝑢
𝜕𝜈 Γ(𝑥 − 𝑦)𝑑𝑆𝑥 → 0 (2.2)

quando 𝜀 → 0.

Por outro lado,

∫𝜕𝐵𝜀(𝑦) 𝑢𝜕Γ
𝜕𝜈 (𝑥 − 𝑦)𝑑𝑆𝑥 = ∫𝜕𝐵𝜀(𝑦) 𝑢∇𝑥Γ(𝑥 − 𝑦) ⋅ 𝜈𝑑𝑆𝑥

= −1
2𝜋 ∫𝜕𝐵𝜀(𝑦) 𝑢∇𝑥 ln |𝑥 − 𝑦| ⋅ [−(𝑥 − 𝑦)

|𝑥 − 𝑦| ] 𝑑𝑆𝑥

= 1
2𝜋 ∫𝜕𝐵𝜀(𝑦)

𝑢
|𝑥 − 𝑦|𝑑𝑆𝑥 = 1

2𝜋𝜀 ∫𝜕𝐵𝜀(𝑦) 𝑢𝑑𝑆𝑥

= 1
|𝜕𝐵𝜀(𝑦)| ∫𝜕𝐵𝜀(𝑦) 𝑢𝑑𝑆𝑥

pois ∇𝑥 ln |𝑥 − 𝑦| = 𝑥−𝑦
|𝑥−𝑦|2 calculado na variável de integração 𝑥. Segue da propriedade da média, Lema

2.1.2, que

∫𝜕𝐵𝜀(𝑦) 𝑢𝜕Γ
𝜕𝜈 (𝑥 − 𝑦)𝑑𝑆𝑥 → 𝑢(𝑦) (2.3)

quando 𝜀 → 0.

Como a função ln |𝑥| é integrável numa vizinhança da origem, obtemos também que

∫Ω∖𝐵𝜀(𝑦) Δ𝑢Γ(𝑥 − 𝑦)𝑑𝐴𝑥 → ∫Ω Δ𝑢Γ(𝑥 − 𝑦)𝑑𝐴𝑥 (2.4)

quando 𝜀 → 0.

Fazendo 𝜀 → 0 em (2.1), concluímos por (2.2), (2.3) e (2.4), que

𝑢(𝑦) = − ∫𝜕Ω (𝑢𝜕Γ
𝜕𝜈 (𝑥 − 𝑦) − 𝜕𝑢

𝜕𝜈Γ(𝑥 − 𝑦)) 𝑑𝑆𝑥 − ∫Ω Δ𝑢Γ(𝑥 − 𝑦)𝑑𝐴𝑥.
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Como consequência do resultado anterior, quando temos uma função harmônica, a fórmula de
representação de Green, Teorema 2.1.1, assume a forma seguinte.

Corolário 2.1.1 (Fórmula de Representação para Funções Harmônicas). Seja Ω um aberto limitado e

𝑢 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω) uma função harmônica. Então, para todo 𝑦 ∈ Ω, temos

𝑢(𝑦) = − ∫𝜕Ω (𝑢𝜕Γ
𝜕𝜈 (𝑥 − 𝑦) − 𝜕𝑢

𝜕𝜈Γ(𝑥 − 𝑦)) 𝑑𝑆𝑥.

Consequentemente, toda função harmônica é de classe 𝐶∞ em Ω. Além disso, qualquer derivada parcial
𝜕𝛼𝑢
𝜕𝑦𝛼

𝑖
de 𝑢 também é uma função harmônica.

Demonstração. De fato, como 𝑦 ∉ 𝜕Ω, o integrando nesta fórmula de representação é infinitamente
diferenciável com respeito a 𝑦. Dessa forma, podemos derivar sob o sinal de integral e mudar a ordem de
derivação, para concluirmos que

Δ [𝜕𝛼𝑢
𝜕𝑦𝛼

𝑖
] (𝑦) = 𝜕𝛼

𝜕𝑦𝛼
𝑖

[Δ𝑢] (𝑦) = 0.

2.2 Função de Green

No final da seção anterior, veja o Corolário 2.1.1, obtemos uma fórmula de representação para
funções harmônicas. Se 𝑢 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω) for uma função harmônica, então, para todo 𝑦 ∈ Ω, temos

𝑢(𝑦) = − ∫𝜕Ω (𝑢𝜕Γ
𝜕𝜈 (𝑥 − 𝑦) − 𝜕𝑢

𝜕𝜈Γ(𝑥 − 𝑦)) 𝑑𝑆𝑥.

Observe que esta expressão depende da derivada normal de 𝑢 na fronteira de Ω, um dado desconhecido no
problema de Dirichlet. Nesta seção vamos escrever esta fórmula de representação substituindo a derivada
normal de 𝑢 pela derivada normal de outra função.

Para cada 𝑦 ∈ Ω, suponha que ℎ𝑦 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω) resolve o problema de Dirichlet

⎧{
⎨{⎩

Δℎ𝑦 = 0 em Ω
ℎ𝑦(𝑥) = Γ(𝑥 − 𝑦) sobre 𝜕Ω.

Pela segunda identidade de Green, Lema 2.1.1, temos

∫𝜕Ω ( 𝜕𝑢
𝜕𝜈Γ(𝑥 − 𝑦) − 𝑢

𝜕ℎ𝑦
𝜕𝜈 ) 𝑑𝑆𝑥 = ∫Ω ℎ𝑦Δ𝑢𝑑𝐴𝑥.

Subtraindo esta identidade da fórmula de representação de Green, Teorema 2.1.1, obtemos
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𝑢(𝑦) = − ∫𝜕Ω (𝑢𝜕Γ
𝜕𝜈 (𝑥 − 𝑦) − 𝜕𝑢

𝜕𝜈Γ(𝑥 − 𝑦)) 𝑑𝑆𝑥 − ∫Ω Δ𝑢Γ(𝑥 − 𝑦)𝑑𝐴𝑥

− ∫𝜕Ω ( 𝜕𝑢
𝜕𝜈Γ(𝑥 − 𝑦) − 𝑢

𝜕ℎ𝑦
𝜕𝜈 ) 𝑑𝑆𝑥 + ∫Ω ℎ𝑦Δ𝑢𝑑𝐴𝑥

= − ∫𝜕Ω 𝑢 [𝜕Γ
𝜕𝜈 (𝑥 − 𝑦) −

𝜕ℎ𝑦
𝜕𝜈 (𝑥)] 𝑑𝑆𝑥 − ∫Ω Δ𝑢[Γ(𝑥 − 𝑦) − ℎ𝑦(𝑥)]𝑑𝐴𝑥. (2.5)

Definição 2.2.1. A função 𝐺 ∶ Ω × Ω ∖ {𝑥 = 𝑦} → ℝ definida por

𝐺(𝑥, 𝑦) = Γ(𝑥 − 𝑦) − ℎ𝑦(𝑥)

é chamada função de Green para o laplaciano na região Ω.

Segue da equação (2.5), que 𝑢(𝑦) possui a seguinte fórmula de representação

𝑢(𝑦) = − ∫𝜕Ω 𝑢(𝑥)𝜕𝐺
𝜕𝜈 (𝑥, 𝑦)𝑑𝑆𝑥 − ∫Ω Δ𝑢(𝑥)𝐺(𝑥, 𝑦)𝑑𝐴𝑥.

Consequentemente, a solução do problema de Dirichlet para a equação de Laplace, possui a
formula de representação dada pela proposição seguinte.

Proposição 2.2.1. Seja Ω um aberto limitado. Então toda solução

𝑢 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω) do problema de Dirichlet

⎧{
⎨{⎩

Δ𝑢 = 0 em Ω,
𝑢 = 𝑔 sobre 𝜕Ω,

satisfaz

𝑢(𝑦) = − ∫𝜕Ω 𝑔(𝑥)𝜕𝐺
𝜕𝜈 (𝑥, 𝑦)𝑑𝑆𝑥.

Assim, temos uma fórmula para construir a solução de qualquer problema de Dirichlet para o
laplaciano em um domínio limitado Ω, desde que conheçamos a função de Green para Ω. A dificuldade
é obter a função de Green para um dado domínio Ω.

O próximo resultado demonstra propriedades importantes sobre a função de Green.

Lema 2.2.1 (Propriedades da Função de Green). A função de Green possui as propriedades seguintes.

i) A função de Green é simétrica, isto é, 𝐺(𝑥, 𝑦) = 𝐺(𝑦, 𝑥).
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ii) A função de Green 𝐺(𝑥, 𝑦) e sua derivada normal 𝜕𝐺
𝜕𝜈 (𝑥, 𝑦), são harmônicas nas duas variáveis em

𝑥 ≠ 𝑦.

Demonstração. Veja a Proposição 5.18 e o Corolário 5.19 de (BIEZUNER, 2010. Acesso em: 26 jan.
2026).

2.3 Função de Green no disco

Vimos na seção anterior, Proposição 2.2.1, que a solução do problema de Dirichlet para a equação
de Laplace em Ω, deve satisfazer à fórmula de representação dada por

𝑢(𝑦) = − ∫𝜕Ω 𝑢(𝑥)𝜕𝐺
𝜕𝜈 (𝑥, 𝑦)𝑑𝑆𝑥. (2.6)

Nesta seção, vamos determinar a função de Green no disco 𝐵𝑅(0) e calcular sua derivada normal 𝜕𝐺
𝜕𝜈 (𝑥, 𝑦).

Para determinar a função de Green no disco 𝐵𝑅(0), utilizaremos uma transformação, a chamada
inversão através do círculo. Considere a transformação 𝑇 ∶ ℝ2\ {0} → ℝ2\{0}, definida por

𝑇(𝑦) = 𝑦 = 𝑅2𝑦
|𝑦|2 .

A inversão através do círculo, transforma o disco 𝐵𝑅(0) em seu exterior ℝ2 ∖ 𝐵𝑅(0), mantendo fixado o
círculo 𝜕𝐵𝑅(0). A sua inversa é ela própria. Veja a FIG. 4.

Figura 4 – Inversão através do círculo.

Fonte: Os autores.

O próximo resultado enuncia um fato importante sobre a quação de Laplace.

Lema 2.3.1. A equação de Laplace é invariante por dilatações.
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Demonstração. Veja o Lema A.0.5, no Apêndice A.

Agora estamos prontos para determinar a função de Green no disco.

Teorema 2.3.1. A função de Green para o operador laplaciano no disco 𝐵𝑅(0) é dada por

𝐺(𝑥, 𝑦) =
⎧{
⎨{⎩

Γ(𝑥 − 𝑦) − Γ ( |𝑦|
𝑅 (𝑥 − 𝑦)) se 𝑦 ≠ 0,

Γ(𝑥) − Γ(𝑅) se 𝑦 = 0.

Demonstração. De fato, fixado 𝑦 ∈ 𝐵𝑅(0), precisamos encontrar uma função harmônica
ℎ𝑦 ∈ 𝐶2(𝐵𝑅(0)) ∩ 𝐶1(𝐵𝑅(0)) que seja solução para o problema de Dirichlet

⎧{
⎨{⎩

Δℎ𝑦 = 0 em 𝐵𝑅(0),
ℎ𝑦(𝑥) = Γ(𝑥 − 𝑦) sobre 𝜕𝐵𝑅(0).

(2.7)

Se 𝑦 = (0, 0), basta tomar ℎ𝑦 como sendo a função constante ℎ𝑦(𝑥) ≡ Γ(𝑅). Se 𝑦 ≠ (0, 0), a
situação é mais complicada. Em princípio, poderíamos pensar em tomar a própria função Γ(𝑥 − 𝑦), mas
esta função possui uma singularidade em 𝑦. Vamos usar a inversão através do círculo, para transformar a
singularidade 𝑦 em um ponto 𝑦, fora do disco. Observe que a função

ℎ𝑦(𝑥) = Γ (𝑥 − 𝑦) = Γ (𝑥 − 𝑅2𝑦
|𝑦|2 )

é harmônica em 𝐵𝑅(0), pois esta função deixa de ser harmônica apenas no ponto 𝑦, que está fora do disco.
Note que a função ℎ𝑦(𝑥) = Γ (𝑥 − 𝑦) é solução da equação

Δℎ𝑦 = 0 em 𝐵𝑅(0),

mas

ℎ𝑦(𝑥) = Γ(𝑥 − 𝑦) ≠ Γ(𝑥 − 𝑦) sobre 𝜕𝐵𝑅(0).

Dessa forma, precisamos fazer alguma operação na função ℎ𝑦(𝑥) de tal maneira que ela continue
sendo harmônica no disco 𝐵𝑅(0) e que ℎ𝑦(𝑥) = Γ(𝑥 − 𝑦) sobre o círculo 𝜕𝐵𝑅(0). O Lema 2.3.1 nos diz
que a equação de Laplace é invariante por dilatações. Note que a função Γ é radial, mas

|𝑥 − 𝑦| ≠ |𝑥 − 𝑦| sobre 𝜕𝐵𝑅(0).

Vamos fazer uma operação de dilatação para que possamos resolver este problema. Isto é, vamos mostrar
que existe 𝑘 ∈ ℝ, tal que

|𝑘(𝑥 − 𝑦)| = |𝑥 − 𝑦| sobre 𝜕𝐵𝑅(0).
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De fato, tome 𝑘 = |𝑦|
𝑅 . Então, para 𝑥 ∈ 𝜕𝐵𝑅(0), temos

∣ |𝑦|
𝑅 (𝑥 − 𝑦)∣ = ∣ |𝑦|

𝑅 (𝑥 − 𝑅2𝑦
|𝑦|2 )∣ = |𝑦|

𝑅 ∣𝑥 − 𝑅2𝑦
|𝑦|2 ∣

= ⎛⎜⎜
⎝

|𝑦|2
𝑅2 ∣𝑥 − 𝑅2𝑦

|𝑦|2 ∣
2
⎞⎟⎟
⎠

1
2

= [|𝑦|2
𝑅2 (|𝑥|2 − 2𝑅2

|𝑦|2 ⟨𝑥, 𝑦⟩ + 𝑅4

|𝑦|2 )]
1
2

= (|𝑦|2
𝑅2 |𝑥|2 − 2⟨𝑥, 𝑦⟩ + 𝑅2)

1
2

= (|𝑦|2 − 2⟨𝑥, 𝑦⟩ + |𝑥|2)
1
2

= (|𝑥 − 𝑦|2)
1
2 = |𝑥 − 𝑦|,

pois |𝑥| = 𝑅 e ⟨𝑥, 𝑦⟩ = 𝑥1𝑦1 +𝑥2𝑦2, denota o produto escalar em ℝ2. Concluímos que a função ℎ𝑦 definida
por

ℎ𝑦(𝑥) = Γ (|𝑦|
𝑅 (𝑥 − 𝑦))

é a solução procurada para o problema de Dirichlet (2.7), no caso 𝑦 ≠ 0. Portanto a função de Green no
disco 𝐵𝑅(0) é a função 𝐺(𝑥, 𝑦) = Γ(𝑥 − 𝑦) − ℎ𝑦(𝑥), dada por

𝐺(𝑥, 𝑦) =
⎧{
⎨{⎩

Γ(𝑥 − 𝑦) − Γ ( |𝑦|
𝑅 (𝑥 − 𝑦)) se 𝑦 ≠ (0, 0),

Γ(𝑥) − Γ(𝑅) se 𝑦 = (0, 0).

Para finalizar este capítulo, vamos calcular a derivada normal da função de Green 𝜕𝐺
𝜕𝜈 (𝑥, 𝑦). Como

o vetor normal unitário apontando para fora é 𝜈 = 𝑥
𝑅 , segue que

𝜕𝐺
𝜕𝜈 (𝑥, 𝑦) = ⟨∇𝑥𝐺(𝑥, 𝑦), 𝑥

𝑅⟩.

O vetor gradiente de 𝐺, calculado na variável 𝑥, é dado por

∇𝑥𝐺(𝑥, 𝑦) = ( 𝜕
𝜕𝑥1

[Γ(𝑥 − 𝑦) − Γ (|𝑦|
𝑅 (𝑥 − 𝑦)) ], 𝜕

𝜕𝑥2
[Γ(𝑥 − 𝑦) − Γ (|𝑦|

𝑅 (𝑥 − 𝑦)) ]).

Calculando as derivadas parciais da solução fundamental, temos

𝜕
𝜕𝑥1

Γ(𝑥 − 𝑦) = 𝜕
𝜕𝑥1

(− 1
2𝜋 ln |𝑥 − 𝑦|) = − 1

2𝜋
𝑥1 − 𝑦1
|𝑥 − 𝑦|2
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e
𝜕

𝜕𝑥2
Γ(𝑥 − 𝑦) = 𝜕

𝜕𝑥2
(− 1

2𝜋 ln |𝑥 − 𝑦|) = − 1
2𝜋

𝑥2 − 𝑦2
|𝑥 − 𝑦|2 .

Calculando as derivadas parciais da função Γ ( |𝑦|
𝑅 (𝑥 − 𝑦)), temos

𝜕
𝜕𝑥1

Γ (|𝑦|
𝑅 (𝑥 − 𝑦)) = 𝜕

𝜕𝑥1
(− 1

2𝜋 ln ∣ |𝑦|
𝑅 (𝑥1 − 𝑅2𝑦1

|𝑦|2 )∣) = − 1
2𝜋

|𝑦|2
𝑅2 𝑥1 − 𝑦1
|𝑥 − 𝑦|2

e
𝜕

𝜕𝑥2
Γ (|𝑦|

𝑅 (𝑥 − 𝑦)) = 𝜕
𝜕𝑥2

(− 1
2𝜋 ln ∣ |𝑦|

𝑅 (𝑥2 − 𝑅2𝑦2
|𝑦|2 )∣) = − 1

2𝜋
|𝑦|2
𝑅2 𝑥2 − 𝑦2
|𝑥 − 𝑦|2 .

Substituindo na expressão do gradiente da função de Green, obtemos

∇𝑥𝐺(𝑥, 𝑦) = ⎛⎜⎜
⎝

− 1
2𝜋

𝑥1 − 𝑦1
|𝑥 − 𝑦|2 + 1

2𝜋
|𝑦|2
𝑅2 𝑥1 − 𝑦1
|𝑥 − 𝑦|2 , − 1

2𝜋
𝑥2 − 𝑦2
|𝑥 − 𝑦|2 + 1

2𝜋
|𝑦|2
𝑅2 𝑥2 − 𝑦2
|𝑥 − 𝑦|2

⎞⎟⎟
⎠

.

Agora podemos calcular a derivada normal da função de Green.

𝜕𝐺
𝜕𝜈 (𝑥, 𝑦) = ⟨∇𝑥𝐺(𝑥, 𝑦), 𝑥

𝑅⟩ = − 1
2𝜋𝑅[𝑥2

1 − 𝑥1𝑦1
|𝑥 − 𝑦|2 − ⎛⎜⎜

⎝

|𝑦|2
𝑅2 𝑥2

1 − 𝑥1𝑦1
|𝑥 − 𝑦|2

⎞⎟⎟
⎠

+ 𝑥2
2 − 𝑥2𝑦2
|𝑥 − 𝑦|2 − ⎛⎜⎜

⎝

|𝑦|2
𝑅2 𝑥2

2 − 𝑥2𝑦2
|𝑥 − 𝑦|2

⎞⎟⎟
⎠

]

= − 1
2𝜋𝑅|𝑥 − 𝑦|2 [𝑥2

1 − 𝑥1𝑦1 − (|𝑦|2
𝑅2 𝑥2

1 − 𝑥1𝑦1)

+ 𝑥2
2 − 𝑥2𝑦2 − (|𝑦|2

𝑅2 𝑥2
2 − 𝑥2𝑦2) ]

= − 1
2𝜋𝑅|𝑥 − 𝑦|2 [𝑅2 − |𝑦|2

𝑅2 𝑅2]

= − 1
2𝜋𝑅

𝑅2 − |𝑦|2
|𝑥 − 𝑦|2

pois |𝑥|2 = 𝑥2
1 + 𝑥2

2 = 𝑅2. Como a derivada normal de 𝐺 é simétrica com relação às variáveis 𝑥 e 𝑦, veja o
Lema 2.2.1(𝑖), podemos trocar as variáveis da derivada normal 𝜕𝐺

𝜕𝜈 e substituir em (2.6), para obtermos a
fórmula de representação

𝑢(𝑥) = 𝑅2 − |𝑥|2
2𝜋𝑅 ∫𝜕𝐵𝑅(0)

𝑢(𝑦)
|𝑥 − 𝑦|2 𝑑𝑆𝑦. (2.8)

Esta fórmula é chamada fórmula integral de Poisson. A função

𝐾(𝑥, 𝑦) = 1
2𝜋𝑅

𝑅2 − |𝑥|2
|𝑥 − 𝑦|2 , 𝑥 ∈ 𝐵𝑅(0), 𝑦 ∈ 𝜕𝐵𝑅(0),

é chamada núcleo de Poisson para o disco 𝐵𝑅(0).
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Lema 2.3.2. Para todo 𝑥 ∈ 𝐵𝑅(0) vale

∫𝜕𝐵𝑅(0) 𝐾(𝑥, 𝑦)𝑑𝑆𝑦 = 1.

Demonstração. Basta fazer 𝑢 = 1 na fórmula integral de Poisson, equação (2.8). Observe que 𝑅2−|𝑥|2
2𝜋𝑅 é

constante com relação a 𝑦, daí podemos passá-lo para dentro da integral.
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Capítulo 3

EXISTÊNCIA E UNICIDADE DE SOLUÇÃO

Vamos relembrar rapidamente o que se entende por solução do problema de Dirichlet para a
equação de Laplace no disco, descrito na Introdução. Uma função 𝑢 é solução do problema de Dirichlet
para a equação de Laplace no disco, se 𝑢 ∈ 𝐶2(𝐵𝑅(0)) ∩ 𝐶0(𝐵𝑅(0)) e satisfaz às equações (3):

⎧{
⎨{⎩

Δ𝑢 = 0 em 𝐵𝑅(0),
𝑢 = 𝑔 sobre 𝜕𝐵𝑅(0).

Neste capítulo vamos provar o nosso resultado principal, o Teorema 0.0.1. Este resultado afirma que o
problema de Dirichlet para a equação de Laplace no disco, possui uma única solução.

3.1 Existência de solução

Nesta seção vamos provar a existência de solução para o problema de Dirichlet para a equação de
Laplace no disco.

Teorema 3.1.1. Seja 𝑔 ∈ 𝐶0(𝜕𝐵𝑅(0)). Defina

𝑢(𝑥) = 𝑅2 − |𝑥|2
2𝜋𝑅 ∫𝜕𝐵𝑅(0)

𝑔(𝑦)
|𝑥 − 𝑦|2 𝑑𝑆𝑦.

Então 𝑢 ∈ 𝐶2(𝐵𝑅(0)) ∩ 𝐶0(𝐵𝑅(0)) e 𝑢 satisfaz às equações

⎧{
⎨{⎩

Δ𝑢 = 0 em 𝐵𝑅(0),
𝑢 = 𝑔 sobre 𝜕𝐵𝑅(0).

Demonstração. Observe que a função 𝑢(𝑥) definida acima é a fórmula integral de Poisson dada por (2.8).
Dessa forma, podemos escrever

𝑢(𝑥) = − ∫𝜕𝐵𝑅(0) 𝑢(𝑦)𝜕𝐺
𝜕𝜈 (𝑦, 𝑥)𝑑𝑆𝑦.

Pelo Lema 2.2.1(𝑖𝑖), a função
𝜕𝐺
𝜕𝜈 (𝑦, 𝑥) é harmônica com relação à segunda variável 𝑥. Logo, podemos

derivar dentro do sinal de integral para obter Δ𝑢(𝑥) = 0, para todo 𝑥 ∈ 𝐵𝑅(0). Pelo Corolário 2.1.1 a
função 𝑢 ∈ 𝐶∞(𝐵𝑅(0)).
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Resta estabelecer a continuidade até a fronteira, isto é, mostrar que 𝑢 ∈ 𝐶0(𝐵𝑅(0)). Dessa forma,
para cada 𝑥0 ∈ 𝜕𝐵𝑅(0), devemos obter

lim𝑥→𝑥0
𝑢(𝑥) = 𝑔(𝑥0).

Por definição de continuidade, veja (LIMA, 2008), precisamos mostrar que, para todo 𝜀 > 0, devemos
obter 𝛿 > 0 tal que

|𝑥 − 𝑥0| < 𝛿 ⟹ |𝑢(𝑥) − 𝑔(𝑥0)| < 𝜀.
De fato, como 𝑔 ∈ 𝐶0(𝜕𝐵𝑅), dado 𝜀 > 0, existe 𝛿1 > 0 tal que

|𝑦 − 𝑥0| < 𝛿1 ⇒ |𝑔(𝑦) − 𝑔(𝑥0)| < 𝜀
2

para 𝑦 ∈ 𝜕𝐵𝑅(0). Seja 𝑀 = max
𝜕𝐵𝑅(0)

|𝑔|. Pelo Lema 2.3.2, temos

𝑔(𝑥0) = ∫𝜕𝐵𝑅(0) 𝑔(𝑥0)𝐾(𝑥, 𝑦)𝑑𝑆𝑦.

Consequentemente,

|𝑢(𝑥) − 𝑔(𝑥0)| = ∣∫𝜕𝐵𝑅(0) 𝑔(𝑦)𝐾(𝑥, 𝑦)𝑑𝑆𝑦 − ∫𝜕𝐵𝑅(0) 𝑔(𝑥0)𝐾(𝑥, 𝑦)𝑑𝑆𝑦∣

= ∣∫𝜕𝐵𝑅(0) 𝐾(𝑥, 𝑦)(𝑔(𝑦) − 𝑔(𝑥0))𝑑𝑆𝑦∣

≤ ∫𝜕𝐵𝑅(0) |𝐾(𝑥, 𝑦)||𝑔(𝑦) − 𝑔(𝑥0)|𝑑𝑆𝑦

= ∫|𝑦−𝑥0|<𝛿1
𝐾(𝑥, 𝑦)|𝑔(𝑦) − 𝑔(𝑥0)|𝑑𝑆𝑦

+ ∫|𝑦−𝑥0|≥𝛿1
𝐾(𝑥, 𝑦)|𝑔(𝑦) − 𝑔(𝑥0)|𝑑𝑆𝑦

< 𝜀
2 ∫|𝑦−𝑥0|<𝛿1

𝐾(𝑥, 𝑦)𝑑𝑆𝑦

+ ∫|𝑦−𝑥0|≥𝛿1
𝐾(𝑥, 𝑦) (|𝑔(𝑦)| + |𝑔(𝑥0)|) 𝑑𝑆𝑦

< 𝜀
2 + 2𝑀 ∫|𝑦−𝑥0|≥𝛿1

𝐾(𝑥, 𝑦)𝑑𝑆𝑦

= 𝜀
2 + 2𝑀 𝑅2 − |𝑥|2

2𝜋𝑅 ∫|𝑦−𝑥0|≥𝛿1

1
|𝑥 − 𝑦|2 𝑑𝑆𝑦

≤ 𝜀
2 + 2𝑀(𝑅2 − |𝑥|2) ( 2

𝛿1
)

2
(3.1)

< 𝜀
2 + 𝜀

2 = 𝜀,

para |𝑥 − 𝑥0| < 𝛿 = min{𝛿1/2, 𝛿2}. Em que 𝛿2 > 0 vem da continuidade da função ℎ(𝑥) = 𝑅2 − |𝑥|2.
Note que ℎ(𝑥) é contínua, não negativa em 𝐵𝑅(0) e ℎ(𝑥0) = 0 (𝑥0 ∈ 𝜕𝐵𝑅(0)). Então dado 𝜀 > 0, existe
𝛿2 > 0 tal que

|𝑥 − 𝑥0| < 𝛿2 ⇒ |ℎ(𝑥) − ℎ(𝑥0)| = ℎ(𝑥) < 𝛿2
1𝜀

16𝑀
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para 𝑥 ∈ 𝐵𝑅(0). Portanto, para |𝑥 − 𝑥0| < 𝛿 = min{𝛿1/2, 𝛿2}, utilizamos a desigualdade acima em (3.1),
para concluir que

|𝑢(𝑥) − 𝑔(𝑥0)| < 𝜀.

3.2 Unicidade de solução

Para mostrar a unicidade da solução apresentada no Teorema 3.1.1, vamos enunciar o princípio
do máximo. Este importante resultado afirma que o máximo e o mínimo de uma função harmônica, não
pode estar no interior do domínio.

Teorema 3.2.1 (Princípio do Máximo). Suponha que 𝑢 ∈ 𝐶2(Ω) ∩ 𝐶0(Ω) satisfaça Δ𝑢 = 0. Se Ω é

limitado, temos

max
Ω

𝑢 = max
𝜕Ω

𝑢,

min
Ω

𝑢 = min
𝜕Ω

𝑢.

Demonstração. Veja o Teorema 6.1 de (BIEZUNER, 2010. Acesso em: 26 jan. 2026).

Agora estamos prontos para provar o nosso principal resultado, o Teorema 0.0.1.

Demonstração. Seja 𝑔 ∈ 𝐶0(𝐵𝑅(0)). Pelo Teorema 3.1.1, a função dada por

𝑢(𝑥) = 𝑅2 − |𝑥|2
2𝜋𝑅 ∫𝜕𝐵𝑅(0)

𝑔(𝑦)
|𝑥 − 𝑦|2 𝑑𝑆𝑦

é uma solução do problema de Dirichlet para a equação de Laplace no disco.

Para provar a unicidade, suponha que existam duas soluções, 𝑢1 e 𝑢2, do problema de Dirichlet
para a equação de Laplace no disco. Então defina 𝑢 = 𝑢1 − 𝑢2. Note que 𝑢 ∈ 𝐶2(𝐵𝑅(0)) ∩ 𝐶0(𝐵𝑅(0)) e
pela linearidade do operador laplaciano, 𝑢 é solução do problema

⎧{
⎨{⎩

Δ𝑢 = 0 em 𝐵𝑅(0),
𝑢 = 0 sobre 𝜕𝐵𝑅(0).

Segue do princípio do máximo, Teorema 3.2.1, que

max
𝜕𝐵𝑅(0)

𝑢 = min
𝜕𝐵𝑅(0)

𝑢 = 0.

Logo 𝑢 = 0 e portanto 𝑢1 = 𝑢2.
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CONCLUSÃO

O problema de temperatura de estado estacionário, descrito na introdução, nos motivou a procu-
rar por soluções para a equação de Laplace no disco. Usamos teoria de cálculo diferencial e integral e
equações diferenciais para determinar a função de Green no disco. Todo este conhecimento foi aplicado
para que fosse possível obter uma fórmula de representação da solução. Utilizamos técnicas de analise
para concluirmos que a solução do problema de Dirichlet, para a equação de Laplace no disco, existe e é
única.
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APÊNDICE A

Lema A.0.1. O operador laplaciano é invariante por rotações.

Demonstração. Sejam Ω ⊂ ℝ2 um domínio limitado e 𝑢 ∶ Ω → ℝ de classe 𝐶2(Ω). Considere a
seguinte mudança de coordenadas 𝑦 = 𝑅𝜃𝑥, em que 𝑅𝜃 é a matriz de rotação em ℝ2 ∶

𝑅𝜃 = ⎡⎢
⎣
𝑐𝑜𝑠 𝜃 −𝑠𝑒𝑛 𝜃
𝑠𝑒𝑛 𝜃 𝑐𝑜𝑠 𝜃

⎤⎥
⎦

.

Defina 𝑣 ∶ Ω ⊂ ℝ2 → ℝ por 𝑣(𝑦) = 𝑢(𝑅−1
𝜃 (𝑦)). Note que 𝑢(𝑥) = 𝑣(𝑅𝜃𝑥) e pela regra da cadeia, temos

𝜕𝑢
𝜕𝑥1

= 𝜕𝑣
𝜕𝑦1

𝜕𝑦1
𝜕𝑥1

+ 𝜕𝑣
𝜕𝑦2

𝜕𝑦2
𝜕𝑥1

. (A.1)

Como 𝑦 = 𝑅𝜃𝑥, temos que

𝑦 = (𝑦1, 𝑦2) = (𝑐𝑜𝑠 𝜃𝑥1 − 𝑠𝑒𝑛 𝜃𝑥2, 𝑠𝑒𝑛 𝜃𝑥1 + 𝑐𝑜𝑠 𝜃𝑥2).

Dessa forma, calculamos as derivadas parciais de 𝑦1 e 𝑦2 com relação a 𝑥1:

𝜕𝑦1
𝜕𝑥1

= 𝑐𝑜𝑠 𝜃 e 𝜕𝑦2
𝜕𝑥1

= 𝑠𝑒𝑛 𝜃. (A.2)

Substituindo em (A.1), obtemos
𝜕𝑢
𝜕𝑥1

= 𝜕𝑣
𝜕𝑦1

𝑐𝑜𝑠 𝜃 + 𝜕𝑣
𝜕𝑦2

𝑠𝑒𝑛 𝜃.

Derivando a identidade acima com relação a 𝑥1, temos

𝜕2𝑢
𝜕𝑥2

1
= 𝜕2𝑣

𝜕𝑦2
1

𝜕𝑦1
𝜕𝑥1

𝑐𝑜𝑠 𝜃 + 𝜕2𝑣
𝜕𝑦2𝜕𝑦1

𝜕𝑦2
𝜕𝑥1

𝑐𝑜𝑠 𝜃 + 𝜕2𝑣
𝜕𝑦1𝜕𝑦2

𝜕𝑦1
𝜕𝑥1

𝑠𝑒𝑛 𝜃 + 𝜕2𝑣
𝜕𝑦2

2

𝜕𝑦2
𝜕𝑥1

𝑠𝑒𝑛 𝜃.

Segue de (A.2) que

𝜕2𝑢
𝜕𝑥2

1
= 𝜕2𝑣

𝜕𝑦2
1

𝑐𝑜𝑠2 𝜃 + 𝜕2𝑣
𝜕𝑦2𝜕𝑦1

𝑠𝑒𝑛 𝜃𝑐𝑜𝑠 𝜃 + 𝜕2𝑣
𝜕𝑦1𝜕𝑦2

𝑠𝑒𝑛 𝜃𝑐𝑜𝑠 𝜃 + 𝜕2𝑣
𝜕𝑦2

2
𝑠𝑒𝑛2 𝜃. (A.3)

Agora, vamos calcular a derivada de 𝑢 com relação a 𝑥2:

𝜕𝑢
𝜕𝑥2

= 𝜕𝑣
𝜕𝑦1

𝜕𝑦1
𝜕𝑥2

+ 𝜕𝑣
𝜕𝑦2

𝜕𝑦2
𝜕𝑥2

. (A.4)

As derivadas parciais de 𝑦1 e 𝑦2 com relação a 𝑥2, são

𝜕𝑦1
𝜕𝑥2

= −𝑠𝑒𝑛 𝜃 e 𝜕𝑦2
𝜕𝑥2

= 𝑐𝑜𝑠 𝜃. (A.5)
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Substituindo em (A.4), obtemos

𝜕𝑢
𝜕𝑥2

= − 𝜕𝑣
𝜕𝑦1

𝑠𝑒𝑛 𝜃 + 𝜕𝑣
𝜕𝑦2

𝑐𝑜𝑠 𝜃.

Derivando a identidade acima com relação a 𝑥2, temos

𝜕2𝑢
𝜕𝑥2

2
= −𝜕2𝑣

𝜕𝑦2
1

𝜕𝑦1
𝜕𝑥2

𝑠𝑒𝑛 𝜃 − 𝜕2𝑣
𝜕𝑦2𝜕𝑦1

𝜕𝑦2
𝜕𝑥2

𝑠𝑒𝑛 𝜃 + 𝜕2𝑣
𝜕𝑦1𝜕𝑦2

𝜕𝑦1
𝜕𝑥2

𝑐𝑜𝑠𝜃 + 𝜕2𝑣
𝜕𝑦2

2

𝜕𝑦2
𝜕𝑥2

𝑐𝑜𝑠 𝜃.

Segue de (A.5) que

𝜕2𝑢
𝜕𝑥2

2
= 𝜕2𝑣

𝜕𝑦2
1

𝑠𝑒𝑛2 𝜃 − 𝜕2𝑣
𝜕𝑦2𝜕𝑦1

𝑠𝑒𝑛 𝜃𝑐𝑜𝑠 𝜃 − 𝜕2𝑣
𝜕𝑦1𝜕𝑦2

𝑠𝑒𝑛 𝜃𝑐𝑜𝑠 𝜃 + 𝜕2𝑣
𝜕𝑦2

2
𝑐𝑜𝑠2 𝜃. (A.6)

Somando as equações (A.3) e (A.6), concluímos que Δ𝑢(𝑥) = Δ𝑣(𝑦).

Lema A.0.2. O operador laplaciano é invariante por translações.

Demonstração. Seja 𝑢 ∶ Ω ⊂ ℝ2 → ℝ de classe 𝐶2(Ω) e considere a seguinte mudança de coordenadas
𝑦 = 𝑥 + 𝑎. Defina 𝑣 ∶ Ω + 𝑎 ⊂ ℝ2 → ℝ por 𝑣(𝑦) = 𝑢(𝑦 − 𝑎), em que 𝑎 = (𝑎1, 𝑎2) é um ponto qualquer
de ℝ2.

Note que 𝑢(𝑥) = 𝑣(𝑥 + 𝑎) e pela regra da cadeia, temos

𝜕𝑢
𝜕𝑥1

= 𝜕𝑣
𝜕𝑦1

𝜕𝑦1
𝜕𝑥1

+ 𝜕𝑣
𝜕𝑦2

𝜕𝑦2
𝜕𝑥1

. (A.7)

Como 𝑦 = 𝑥 + 𝑎, temos que
𝑦 = (𝑦1, 𝑦2) = (𝑥1 + 𝑎1, 𝑥2 + 𝑎2).

Dessa forma, calculamos as derivadas parciais de 𝑦1 e 𝑦2 com relação a 𝑥1:

𝜕𝑦1
𝜕𝑥1

= 1 e 𝜕𝑦2
𝜕𝑥1

= 0. (A.8)

Substituindo em (A.7), obtemos
𝜕𝑢
𝜕𝑥1

= 𝜕𝑣
𝜕𝑦1

.

Derivando a identidade acima com relação a 𝑥1 e por (A.8), obtemos

𝜕2𝑢
𝜕𝑥2

1
= 𝜕2𝑣

𝜕𝑦2
1

𝜕𝑦1
𝜕𝑥1

+ 𝜕2𝑣
𝜕𝑦2𝜕𝑦1

𝜕𝑦2
𝜕𝑥1

= 𝜕2𝑣
𝜕𝑦2

1
. (A.9)

Agora, vamos calcular a derivada de 𝑢 com relação a 𝑥2:

𝜕𝑢
𝜕𝑥2

= 𝜕𝑣
𝜕𝑦1

𝜕𝑦1
𝜕𝑥2

+ 𝜕𝑣
𝜕𝑦2

𝜕𝑦2
𝜕𝑥2

. (A.10)
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As derivadas de 𝑦1 e 𝑦2 com relação a 𝑥2, são

𝜕𝑦1
𝜕𝑥2

= 0 e 𝜕𝑦2
𝜕𝑥2

= 1. (A.11)

Substituindo em (A.10), temos
𝜕𝑢
𝜕𝑥2

= 𝜕𝑣
𝜕𝑦2

.

Derivando a identidade acima com relação a 𝑥2 e por (A.11), obtemos

𝜕2𝑢
𝜕𝑥2

2
= 𝜕2𝑣

𝜕𝑦1𝜕𝑦2

𝜕𝑦1
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

2

𝜕𝑦2
𝜕𝑥2

= 𝜕2𝑣
𝜕𝑦2

2
. (A.12)

Somando as identidades (A.9) e (A.12), concluímos que Δ𝑢(𝑥) = Δ𝑣(𝑦).

Teorema A.0.1 (Divergência). Seja Ω um aberto limitado de ℝ2. Se a fronteira 𝜕Ω for uma curva, cuja

parametrização é de classe 𝐶1, temos

∫Ω 𝑑𝑖𝑣 ⃗𝐹𝑑𝐴 = ∫𝜕Ω
⃗𝐹 ⋅ 𝜈𝑑𝑆

em que " ⋅ " denota o produto escalar em ℝ2 e ⃗𝐹 é um campo vetorial em Ω de classe 𝐶1.

Lema A.0.3 (Segunda Identidade de Green). Seja Ω ⊂ ℝ2 um aberto com fronteira suave. Se 𝑢, 𝑣 ∈
𝐶2(Ω) ∩ 𝐶1(Ω) então vale a identidade

∫Ω(𝑢Δ𝑣 − 𝑣Δ𝑢)𝑑𝐴 = ∫𝜕Ω (𝑢 𝜕𝑣
𝜕𝜈 − 𝑣 𝜕𝑢

𝜕𝜈) 𝑑𝑆.

Demonstração. Consideremos o campo ⃗𝐹 = 𝑢∇𝑣. Pelo teorema da divergência, Teorema A.0.1, obtemos
a primeira identidade de Green

∫Ω ∇𝑢 ⋅ ∇𝑣𝑑𝐴 = ∫𝜕Ω 𝑢 𝜕𝑣
𝜕𝜈𝑑𝑆 − ∫Ω 𝑢Δ𝑣𝑑𝐴. (A.13)

Permutando 𝑢 e 𝑣 na identidade acima, obtemos

∫Ω ∇𝑣 ⋅ ∇𝑢𝑑𝐴 = ∫𝜕Ω 𝑣 𝜕𝑢
𝜕𝜈𝑑𝑆 − ∫Ω 𝑣Δ𝑢𝑑𝐴. (A.14)

Como ∇𝑣 ⋅ ∇𝑢 = ∇𝑢 ⋅ ∇𝑣, podemos subtrair as identidades (A.13) e (A.14) para concluir que

∫Ω(𝑢Δ𝑣 − 𝑣Δ𝑢)𝑑𝐴 = ∫𝜕Ω (𝑢 𝜕𝑣
𝜕𝜈 − 𝑣 𝜕𝑢

𝜕𝜈) 𝑑𝑆.

Lema A.0.4 (Propriedade da Média). Se 𝑢 ∈ 𝐶0(Ω) e 𝐵𝜀(𝑥) ⊂ Ω, então 𝑢 satisfaz a propriedade

𝑢(𝑥) = lim
𝜀→0

1
|𝜕𝐵𝜀(𝑥)| ∫𝜕𝐵𝜀(𝑥) 𝑢𝑑𝑆.
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Demonstração. Suponha que 𝑢 ∈ 𝐶0(Ω) e 𝐵𝜀(𝑥) ⊂ Ω. Para todo 𝜀 > 0 dado, 𝑢 é contínua sobre o
círculo 𝜕𝐵𝜀(𝑥), que é um conjunto compacto. Dessa forma, a função 𝑢 assume um mínimo e um máximo
em 𝜕𝐵𝜀(𝑥), digamos

𝑢(𝑥1𝜀) = 𝑚𝜀 e 𝑢(𝑥2𝜀) = 𝑀𝜀, respectivamente.

Logo
𝑚𝜀|𝜕𝐵𝜀(𝑥)| ≤ ∫𝜕𝐵𝜀(𝑥) 𝑢𝑑𝑆 ≤ 𝑀𝜀|𝜕𝐵𝜀(𝑥)|. (A.15)

em que |𝜕𝐵𝜀(𝑥)| denota o comprimento do círculo 𝜕𝐵𝜀(𝑥). Observe que, as sequências {𝑥1𝜀}, {𝑥2𝜀} conver-
gem para 𝑥, quando 𝜀 → 0. Como 𝑢 ∈ 𝐶0(Ω), temos que

𝑚𝜀 = 𝑢(𝑥1𝜀) → 𝑢(𝑥) e 𝑀𝜀 = 𝑢(𝑥2𝜀) → 𝑢(𝑥)

quando 𝜀 → 0. Portanto, fazendo 𝜀 → 0 em (A.15) e usando as convergências acima, obtemos o resultado.

Lema A.0.5. A equação de Laplace é invariante por dilatações.

Demonstração. Considere a mudança de coordenadas 𝑦 = 𝑘𝑥, 𝑘 ∈ ℝ não nulo e defina 𝑣(𝑦) = 𝑢(𝑘−1(𝑦)).
Note que 𝑢(𝑥) = 𝑣(𝑘𝑥) e pela regra da cadeia, temos

𝜕𝑢
𝜕𝑥1

= 𝜕𝑣
𝜕𝑦1

𝑘

e
𝜕2𝑢
𝜕𝑥2

1
= 𝜕2𝑣

𝜕𝑦2
1

𝑘2.

De maneira análoga, obtemos também que

𝜕2𝑢
𝜕𝑥2

2
= 𝜕2𝑣

𝜕𝑦2
2

𝑘2.

Portanto, concluímos que
Δ𝑢(𝑥) = 𝑘2Δ𝑣(𝑦) = 0.
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