UNIVERSIDADE FEDERAL DE OURO PRETO
INSTITUTO DE CIENCIAS EXATAS E BIOLOGICAS
DEPARTAMENTO DE MATEMATICA DEPARTAMENTO DE

MATEMATICA

UNIVERSIDADE FEDERAL DE CURC PRETO

Universidade Federal
de Ouro Preto

Fernanda Aparecida de Jesus Silva

Existéncia e unicidade de solucio para a equacao de

Laplace no disco

Ouro Preto - MG, Brasil
Novembro 2025



Fernanda Aparecida de Jesus Silva

Existéncia e unicidade de solucao para a equacao de Laplace no

disco

Monografia de graduacdo apresentada como requi-
sito parcial para a obtencdo do titulo de Licenciado
em Matematica, através do curso de Licenciatura em
Matemadtica da Universidade Federal de Ouro Preto.

Orientador: Prof. Dr. Leandro Correa Paes Leme

Ouro Preto - MG, Brasil
Novembro 2025



MINISTERIO DA EDUCACAO
UNIVERSIDADE FEDERAL DE OURO PRETO
REITORIA
INSTITUTO DE CIENCIAS EXATAS E BIOLOGICAS
COLEGIADO DO CURSO DE LICENCIATURA EM
MATEMATICA

FOLHA DE APROVACAO

Fernanda Aparecida de Jesus Silva

Existéncia e unicidade de solugdo para a equagao de Laplace no disco

Monografia apresentada ao Curso de Licenciatura em Matematica da Universidade Federal
de Ouro Preto como requisito parcial para obtengdo do titulo de Licenciada em Matematica

Aprovada em 28 de janeiro de 2026

Membros da banca

Dr. Leandro Correa Paes Leme - Orientador - Universidade Federal de Ouro Preto
Dr. Bruno Mendes Rodrigues - Universidade Federal de Ouro Preto

Leandro Correa Paes Leme, orientador do trabalho, aprovou a versao final e autorizou seu depésito na Biblioteca Digital de Trabalhos de
Conclusdo de Curso da UFOP em 02/02/2026.

il
SEIE o
assinatura
eletrénica

Documento assinado eletronicamente por Leandro Correa Paes Leme, PROFESSOR DE MAGISTERIO SUPERIOR, em 02/02/2026,
as 10:26, conforme horario oficial de Brasilia, com fundamento no art. 62, § 12, do Decreto n2 8.539, de 8 de outubro de 2015.

Referéncia: Caso responda este documento, indicar expressamente o Processo n2 23109.000045/2026-19 SEI n2 1037915

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35402-163
Telefone: (31)3559-1700 - www.ufop.br


http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

AGRADECIMENTOS

Agradeco a Deus, por ser minha fonte inesgotdvel de forca e esperanca. Agradeco pela sabedoria
concedida em cada etapa deste caminho, pela serenidade nos momentos de divida e pela graca que me
sustentou quando pensei em desistir. Sem sua presenca iluminando meus passos, eu ndo teria chegado até

aqui.

Agradeco a minha mée, por todo amor, sacrificio e dedicacdo ao longo da minha vida. Obrigada
por ser exemplo de forca, coragem e generosidade. Foi o seu apoio, muitas vezes silencioso, que me
sustentou nos dias dificeis e foi o seu amor que me deu motivos para continuar. Tudo o que conquisto

carrega um pouco de vocg, e este trabalho é também um reflexo do seu esfor¢o e da sua fé em mim.

Agradeco ao meu orientador, Leandro, expresso minha sincera gratidao pela orientacao cuidadosa
e comprometida ao longo de todo este trabalho. Agradeco pela atencdo dedicada, pelas contribui¢coes
sempre pertinentes e pela paciéncia em cada etapa do processo. Seu apoio foi muito importante para a

realizacdo deste estudo e para o meu desenvolvimento académico.

Agradeco ao meu namorado, Paulo, pelo amor, paciéncia e apoio constante. Obrigada por acre-
ditar em mim até quando eu mesma duvidei e por celebrar cada pequena conquista ao meu lado. Seu
carinho e sua presenca me deram forgas para seguir em frente e concluir esta etapa com o cora¢do mais

leve.

Agradeco aos colegas e amigos do curso, pelo apoio, pela troca de experiéncias e pela companhia
nos momentos desafiadores. Cada conversa, cada estudo em grupo e cada palavra de incentivo fizeram
diferenca e tornaram este processo mais possivel e significativo. A presenca de cada um de vocés tornou

essa etapa mais humana e realizavel.

Agradeco aos professores do curso, que compartilharam conhecimento e experiéncias que fizeram

diferenca na minha formag¢do académica e pessoal.

A todos que, direta ou indiretamente, contribuiram para a realizacdo deste trabalho, deixo aqui o

meu sincero agradecimento.



“A educagdo é o ponto em que decidimos se amamos o mundo o bastante para assumirmos a
responsabilidade por ele.”
(Hannah Arendt)



RESUMO

Neste trabalho estudamos a equacgdo de Laplace Au = 0, no disco. A equacao de Laplace possui inlimeras
aplicacdes na fisica, engenharia e matemadtica. Neste trabalho, utilizamos cdlculo, teoria de equagdes
diferenciais e técnicas para determinar a fun¢do de Green no disco. Encontramos uma solug¢io para a

equacgdo de Laplace e provamos que esta solucao € tinica por meio do principio do méximo.

Palavras chaves: Equacgdo de Laplace; Fun¢do de Green; Principio do Maximo.



ABSTRACT

In this work we study Laplace’s equation Au = 0, in the disk. Laplace’s equation has numerous applica-
tions in physics, engineering and mathematics. In this work, we use calculus, differential equation theory
and techniques to determine the Green’s function in the disk. We find a solution for Laplace’s equation

and we prove that this solution is unique by means of the maximum principle.

keywords: Laplace Equation; Green Function; Maximum Principle.
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INTRODUCAO

Seja u = u(xy,x,) uma funcdo real de duas varidveis, que possua derivadas parciais de segunda

ordem. O operador laplaciano é um operador diferencial parcial de segunda ordem, definido por

B 0%u  9%u

Au=—+—.
2 2
0xy 0x5

Este operador aparece em vdrias equagdes presentes na fisica, na engenharia e na matemadtica. Dentre

elas, podemos destacar algumas equagdes importantes. Por exemplo, a equacao de Laplace

Au =0, ey
a equacao de Poisson
Au =f,
a equacao do calor
u,— Au=0 (2)
e a equacdo da onda
u;; — Au = 0.

A equacdo de Laplace foi estudada pela primeira vez no final do século X VIII, pelo francés Pierre
Simon Laplace, enquanto ele trabalhava em problemas de mecanica celeste e teoria da probabilidade. Esta
equagdo possui inimeras aplicacdes em fisica, pois aparece naturalmente em problemas de potenciais
elétricos, magnéticos, gravitacionais, hidrodinamica, temperaturas de estado estaciondrio, entre outros. A
seguir, descrevemos algumas aplicagdes da equacdo de Laplace. Para mais exemplos de aplicacdes da
equacdo de Laplace, ver (LEIGHTON et al., 1964)

Na auséncia de cargas se movendo, as equacdes de Maxwell da eletrostatica, tomam a forma
divE =0 e rotE = 0,

em que divE e rotE denotam o divergente e o rotacional do campo elétrico E, definido no curso de calculo
III. Da segunda equacio de Maxwell, obtemos que o campo elétrico E é conservativo. Isto significa que
existe uma fungio ¢ real, chamada de potencial elétrico, tal que E = —V ¢. Ao substituir a expressio do

campo elétrico na primeira equagao de Maxwell, obtemos a equagao de Laplace
div(=V¢) =-A¢ =0.

Uma vez obtido o potencial elétrico, podemos facilmente encontrar o campo elétrico E.
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Outra situacdo em que a equagdo de Laplace aparece € em problemas de temperaturas em estado
estaciondrio. Esta € uma situacdo em que nao hé perda ou ganho de calor para o ambiente, dessa forma,

temos que u, = 0, em que u € a funcdo temperatura. Neste caso, a equagdo do calor (2) toma a forma
Au = 0.

Isto significa que a funcdo temperatura u satisfaz a equagao de Laplace.

Vamos descrever melhor o que ocorre em um problema de temperatura em estado estaciondrio,
mas antes daremos algumas definicdes. Seja R > 0 e x = (x,x,) € R2. Definimos o disco de centro na

origem e raio R, por
Br(0) = {x € R?; x| <R},

em que |x| = ﬂx% + x%. Definimos também o fecho e a fronteira do disco Bg(0), respectivamente, por
Br(0) = {x € R%; x| <R},
dBr(0) = {x € R?; x| = R}.

Suponha que tenhamos um disco Bg(0), de um certo material, em que este disco € aquecido em

sua fronteira dBg (0), de acordo com a fun¢do temperatura g. Veja a FIG. 1.
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z !

Figura 1 — Condicao de fronteira no disco.

Fonte: Os autores.

O fluxo de calor F ¢ dado pela Lei da conducdo de calor de Fourier
F=—kVu

onde k € a constante de condutividade térmica do material e u(x) = u(x;, x,) representa a fungdo tempera-
tura em cada ponto do disco. Quando consideramos que nao hé perda de calor para o ambiente, existe um
momento em que o disco entra em equilibrio térmico. Este estado estaciondrio de temperatura, significa
que

divF =0,
Para o campo F dado pela Lei da condugio de calor de Fourier, temos que

divF = div(-kVu) = —kAu =0

e portanto a funcdo temperatura u deve satisfazer a equacdo de Laplace (1). Nesta situagdo, a funcio

temperatura u satisfaz as equacgdes

{ Au=0, em Bg(0), 3)

u=g, sobre dBgr(0),

chamado problema de Dirichlet para a equacao de Laplace no disco, onde g € uma fun¢do continua dada

na fronteira do disco.
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Seja Q ¢ R? um dominio (aberto conexo) limitado. Dizemos que uma funcio u € C%(Q), ou é
de classe CO(Q), se u for continua em Q. Uma funcdo u € Ck(Q), ou é de classe C¥(Q), se u possuir

todas as derivadas parciais até a ordem k, continuas em €.

Dizemos que uma fung¢do u € solucdo do problema de Dirichlet para a equacdo de Laplace no
disco, se u € C? (BRr(0)) n CO (ER(O)) e satisfaz as equacdes (3). Usando a teoria de cdlculo diferencial
e integral, equacdes diferenciais e as técnicas para determinar a funcio de Green no disco, apresentamos

o resultado principal deste trabalho.

Teorema 0.0.1. O problema de Dirichlet para a equagdo de Laplace no disco, possui uma tinica solugdo.

Ao considerar o amplo campo de aplicacdes do operador laplaciano em fendmenos fisicos (como
potenciais elétricos, distribui¢ao de temperatura, campos gravitacionais e comportamento de ondas) torna-
se possivel estabelecer conexdes com contetidos presentes na Educacdo Bésica, ainda que em versdes
simplificadas. Conceitos como fluxo, variacdo, equilibrio térmico e propagacdo de energia permitem ao
professor introduzir, de modo acessivel, a compreensdo de que certas leis fisicas podem ser descritas
por equacdes diferenciais, ainda que os estudantes ndo resolvam tais equacdes formalmente. Esse tipo
de abordagem possibilita ao aluno compreender que a matematica, especialmente em sua formulacdo

avancada, € uma linguagem essencial para a interpretacdo de fendmenos naturais.

Nesse contexto, a relacao entre Matemadtica e Fisica torna-se essencial, pois permite ao estudante
perceber como modelos matemdticos (incluindo aqueles formulados a partir do operador laplaciano) sdo
empregados para descrever e compreender fendmenos como potenciais elétricos e distribuicdo de tem-
peraturas. Ao explorar essas conexdes de forma qualitativa na Educacdo Bésica, mesmo sem recorrer ao
formalismo das equacdes diferenciais, € possivel introduzir aos estudantes a compreensao de que muitos
comportamentos fisicos observados em situacdes cotidianas sdo resultado de modelos matemadticos subja-
centes, ainda que trabalhados de maneira simplificada. Essa perspectiva dialoga diretamente com a Base
Nacional Comum Curricular, especialmente com a Competéncia Especifica 4, que orienta a compreender
e utilizar, com flexibilidade e fluidez, diferentes registros de representacdo matematica (algébrico, geomé-
trico, estatistico, computacional, entre outros) na resolu¢do e comunicagdo de resultados de problemas,

favorecendo a construgdo e o desenvolvimento do raciocinio matematico.

Mais especificamente, voltemos a situacdo do problema de temperatura de estado estaciondrio.
Podemos considerar uma situagdo mais simples do problema, em que temos uma barra de comprimento
L ao invés do disco. Suponha que esta barra é aquecida em suas extremidades (fronteira da barra) de

acordo com a func¢do temperatura g, digamos g(0) = go e g(L) = g;. Veja a FIG. 2.

A mesma argumentacio que foi feita para o disco, vale também para a barra. Dessa forma, a
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Figura 2 — Solu¢do da equacdo de Laplace em uma barra de comprimento L.

Fonte: Os autores.

funcdo temperatura u(x), em que x € R, deve satisfazer as equag¢des do problema de Dirichlet na barra:

{ W’ (x) =0 em (0,L),
u0) =gg, u(l)=gy.
Usando as técnicas do calculo diferencial e integral, integrando duas vezes u” (x) e substituindo as condi-

¢oOes iniciais, obtemos a solugao

u(x) = (@)x + go-

Observe que a solugdo da equacdo de Laplace na barra € um segmento de reta, que se inicia no ponto
(0, go) e termina no ponto (L, g; ). Portanto, no ensino médio, podemos apresentar a solu¢do do problema
de temperatura de estado estaciondrio na barra, utilizando o simples conceito de func¢do linear, cujo

gréfico é o segmento de reta que une os pontos (0, gg) € (L, g7 ) no plano.

No capitulo 1 utilizamos uma propriedade importante do operador laplaciano para transformar a
equacgdo de Laplace em uma equacao diferencial ordindria (E.D.O.). Resolvemos esta E.D.O. e obtemos

a solucdo fundamental para a equacdo de Laplace.

No capitulo 2 utilizamos alguns resultados importantes para obter uma férmula de representacao
da solucdo. Esta férmula de representacdo dependerd de uma fun¢do G (x,y) chamada fun¢do de Green.

O objetivo deste capitulo € determinar a funcido de Green no disco.
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No capitulo 3 utilizaremos a férmula de representacdo obtida no capitulo anterior, para mostrar
que o problema de Dirichlet (3) possui solu¢ao. Mostraremos também que esta solucio € tinica, utilizando
um resultado muito importante, chamado o principio do maximo. Nosso texto € baseado nas notas de
aula do Rodney Josué Biezuner (BIEZUNER, 2010. Acesso em: 26 jan. 2026) e no livro do Lawrence C.

Evans (EVANS, 1998).
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Capitulo 1

SOLUCAO FUNDAMENTAL

Neste capitulo, vamos utilizar as propriedades do operador laplaciano para procurar por uma
solucdo da equagdo de Laplace. Ao longo do texto, utilizaremos as notagcdes x = (xy,X5) €y = (¥1,V2)
para denotar pontos (ou vetores) do RZ. Vamos comecar enunciando um fato importante sobre o operador

laplaciano.

Lema 1.0.1. O operador laplaciano é invariante por rotagaoes.
Demonstracdo. Veja o Lema A.0.1 no Apéndice A. [

Dizer que o operador laplaciano € invariante por rotacdes significa que rotacionar o sistema de
coordenadas ndo altera o valor do laplaciano (Au). Tendo em vista o resultado anterior, € natural procu-
rarmos por funcdes que sao invariantes por rotacdes. Um tipo de funcio que possui esta caracteristica € a

fungao radial.

Definicdo 1.0.1. Dizemos que uma funcdo u : Q ¢ R? - R ¢é radial ou radialmente simétrica, se

u(x) = ulxl) = u(r).

O préximo resultado mostra como escrever o operador laplaciano na variavel radial r = |x|.

Teorema 1.0.1. Seja u: Q ¢ R? = R uma fungdo radial. Entdo o operador laplaciano é dado por

Au(x) =u”(r) +u' (r) (1)

-
em que u’ (r) e u” (r) denotam as derivadas de u(r) com relagcdo a varidvel real r.

Demonstragdo. De fato, como

r=lxl= ﬂx% +x§,

temos . ]
ar -5 X X
WZE(X%‘sz) 22)(1:—1:71.
2,,2
1 X7+ X5
Dai, pela regra da cadeia, obtemos
du  Jdu Jdr du x; ;X
— =——a—=——=u(r)—.
dx; drdxy Orr r
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Calculando a derivada segunda de # com relacdo a x;, temos

U 51) 2 DT D ()

0_x% - ax, r dx; r dx,

V4 x2 7 1 x2
=u (r)r—;+u (r)(;—r—;). (1.1)

2 2 2
a_;‘ :u”(r)&+u'(1’) 1 x5 ) (1.2)
0x5 r r

Somando as equacdes (1.1) e (1.2), obtemos

2 2
Au(x) = a—g + O—Z
oxy  0x3

2 2 2
. S T B SR (5
=u (r)r2+u(r)(r r3)+u (r)r2+u(r)(r r3)
2442 2 4 42
r r

=u"(r)+u'(r) (%) :

O

Para uma func¢do radial, o Teorema 1.0.1 afirma que a solug@o da equacao de Laplace deve satis-

fazer a equacgdo diferencial ordinaria (E.D.O.) de segunda ordem
V4 / 1
u (r) +u (r)(;) =0
Au(x) =0.

O préximo resultado mostra que esta E.D.O. possui solucao.

Teorema 1.0.2. A E.D.O. de segunda ordem

possui uma solucdo u : RY - R dada por u(r) = Inr.

Demonstracdo. Podemos reduzir a ordem desta equacdo substituindo v(r) = u’(r). Entdo v(r) satisfaz

V(r) +v(r) (%) =0
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donde obtemos

vViir)y 1
v(r) — r
V(1) 1
f ) dr = —f;dr+cl
Inv(r) =-Inr+ ¢

In(r-v(r)) =c

rov(r) = et = ¢,

Como
u'(r) =v(r) = u(r) = fv(r)dr +cH = f CTldr +cy=cilnr+c,

Portanto a solucao geral da EDO ¢

u(ry =cylnr+c,.
Onde ¢, e ¢, s@o constantes. Podemos considerar como solugdo
u(r)y =Inr
pois
Alu,) =0= A(ciylnr+c¢;) =0 c;A(lnr) =0= A(lnr) =0
]

Definicao 1.0.2. Uma funcdo u € C*(Q) que satisfaz a equagdo de Laplace Au = 0, é chamada fungdo

harmonica em Q.

Observe que a fungdo u : R% \ {0} » R definida por u(x) = In|x| satisfaz a equacdo de Laplace
Au = 0. Consequentemente, esta funcao € harmonica em R 2\ {0}. Mas observe que a funcao u(x) = In |x|

nao estd definida na origem e portanto, ndo € harmoénica em By (0).
Definicfio 1.0.3. A funcdo T : R? \ {0} » R definida por

1
I'x) = —Eln|x|

é chamada solucdo fundamental para a equagdo de Laplace.
A constante multiplicativa —% ¢ introduzida na defini¢do da solu¢do fundamental justamente

para que ela ndo apareca na férmula de representacdao de Green (Teorema 2.1.1 apresentado no préximo

capitulo).
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Lema 1.0.2. O operador laplaciano é invariante por translagoes.
Demonstracdo. Veja o Lema A.0.2 no Apéndice A. [

Observe que a funcdo I'(x) ndo estd definida na origem. Vamos retirar esta singularidade da
origem, passando para uma singularidade em um ponto y € €. Isso pode ser feito considerando a fung¢éo
I'(x —y). O Lema 1.0.2 garante que I' (x — y) € harmOnica em R2\ {y}.



25

Capitulo 2

FUNCAO DE GREEN

2.1 Formulas de representacao

Dada uma funcdo u € C2(Q) nCl(Q), pretendemos obter uma férmula de representacio inte-
gral para u(y) a partir da solu¢do fundamental I'(x — y), onde y € Q € um ponto arbitrdrio. Para isto,

gostariamos de usar a segunda identidade de Green, enunciada pelo lema seguinte.

Lema 2.1.1 (Segunda Identidade de Green). Seja Q < R? um aberto com fronteira suave. Se u,v €
C2(Q) N CY(Q) entdo vale a identidade

f (uAv — vAu)dA = f (u— —v—)dS.
Q aQ
Demonstracdo. Veja o Lema A.0.3 no Apéndice A. [

A primeira vista, poderiamos considerar a substitui¢io direta de ' (x—y) pela funcdo v, no entanto,
isso ndo € possivel devido a singularidade de I'(x — y) no ponto y. Para contornar essa dificuldade,
aplicamos a segunda identidade de Green na regido Q \ B, (y) e tomamos o limite quando & — 0. Antes
de enunciar o préximo resultado, apresentamos uma propriedade importante que serd utilizada em sua

demonstracao.

Lema 2.1.2 (Propriedade da Média). Seu € C 0(Q) e Eg (x) € Q, entdo u satisfaz a propriedade

) 1
u(x) = l‘li% m deg(x) uds.

Demonstragdo. Veja o Lema A.0.4 no Apéndice A. 0

Agora estamos prontos para provar a férmula de representacdo de Green. Observe que qualquer
fun¢do com uma certa regularidade, possui uma representacao integral dada pelo préximo resultado. Va-

mos utilizar o subindice x ou y, para denotar a varidvel de integracao ou derivagao.

Teorema 2.1.1 (Férmula de Representagio de Green). Seja Q ¢ R? um aberto limitado e u € C*(Q) N
C! (5). Entdo, para todo y € Q, temos

ar du
uly) = — fﬁg (MW(X -y) — %F(x - y)) ds, — fQ Aul (x —y)dA,.
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Demonstracdo. Seja ¢ > 0 suficientemente pequeno, para que tenhamos B, (y) ¢ Q. Entdo I'(x — y)
é de classe C! em que Q \ B, (y) e podemos aplicar a segunda identidade de Green a esta regido para

obtermos

du ar
fa[mgg(y)] (%F(x =) — U (x - y)) ds, = fQ\E . Aul (x — y)dA,

£

~Joz. o ulAT (x —y)dA,

= OB, ) Aul (x —y)dA,

pois I'(x — y) € harmdnica em Q \ Eg (v). Note que podemos escrever d[ € \ Eg ()] = 0Q U dB_(y).

Dessa forma, podemos separar a integral de fronteira na identidade anterior, para obter

du or ou ar
faQ (%F(x -y) — u%(x - y)) ds, + 3B, (5) (%F(x -y) - MW(X - y)) s,
= OB, Aul (x — y)dA,. 2.1

Observe que na segunda integral de fronteira, o vetor normal unitario v aponta para dentro do disco B, (y).
Veja a FIG. 3.

Figura 3 — Vetor normal exterior i fronteira de Q \ B, (y).

Fonte: Os autores.
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Seja C = sup |Vul. Dessa forma, temos

Q
[ ou = U Vi v (x=y)dS,| < [ IVullvIT(x = y)ldS,
0B (y) 0V dB.(y)
C
<C [, IC@=yldS = 5= [ Il —ylds,
C
= 5= In(g) J.aBg(y) 1dS, = Celne.
Tomando o limite quando ¢ — 0, obtemos
Ing é
lim ¢lng = hm — = lim —5-= lim -¢=0.
£-0% -0t = -0t _ L -0t
£ 82
Consequentemente
ou
£MA)——ru y)dS, - 0 (2.2)

quando ¢ — 0.

Por outro lado,
or
faBg(y) uﬂ(x -y)dS, = faBg(y) uV, I'(x —y) - vdS,

-1 —(x—y)
T 27 faBg(y) UV Ine = yl- [ Ix — | ]de

1 u 1
T 27 JI@BE(y) Ix —y|de T 2r7e f@Bg(y) udsSy

= —|5B O fﬁB udsS,

pois V. Inlx —y| = calculado na varidvel de integracdo x. Segue da propriedade da média, Lema

yl
2.1.2, que

or
faBg(y) MW(X —-y)dS, = u(y) 2.3)
quando ¢ — 0.

Como a fungdo In |x| € integrdvel numa vizinhanga da origem, obtemos também que

J.Q\Eg ) Aul (x — y)dA, - fg Aul’ (x —y)dA, (2.4)
quando ¢ — 0.

Fazendo ¢ — 0 em (2.1), concluimos por (2.2), (2.3) e (2.4), que

w0 = = [ (0= = S50 =) ) dS, - [, AuT (x= A
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Como consequéncia do resultado anterior, quando temos uma fun¢dao harmonica, a férmula de

representacdo de Green, Teorema 2.1.1, assume a forma seguinte.

Corolario 2.1.1 (Férmula de Representagdo para Fungdes Harmonicas). Seja Q um aberto limitado e

u € C2(Q) n CYH(Q) uma fungdo harménica. Entdo, para todo y € Q, temos

or Ju
u(y)=-J,, (uﬂ(x -y) - %F(x —y)) ds..

Consequentemente, toda fungcdo harmonica é de classe C* em Q. Além disso, qualquer derivada parcial
J0%u
ay¥

1

de u também é uma fungdo harmoénica.

Demonstragdo. De fato, como y ¢ 0, o integrando nesta férmula de representacdo € infinitamente
diferencidvel com respeito a y. Dessa forma, podemos derivar sob o sinal de integral e mudar a ordem de

derivacdo, para concluirmos que

0%u a“
A[ay?]tw::ay?[Au]@>=(x

2.2 Funcao de Green

No final da se¢do anterior, veja o Corolario 2.1.1, obtemos uma férmula de representa¢do para

fungdes harmonicas. Se u € C2(Q) n C1(Q) for uma fun¢@o harmonica, entdo, para todo y € Q, temos

ar d
u(y) == o (uﬂ(x -y) - %F(X —y)) ds,.

Observe que esta expressao depende da derivada normal de u na fronteira de Q, um dado desconhecido no
problema de Dirichlet. Nesta secdo vamos escrever esta formula de representagdo substituindo a derivada

normal de u pela derivada normal de outra funcao.

Para cada y € Q, suponha que hy e C2(Q) n CL(Q) resolve o problema de Dirichlet

Ahy =0 em Q
hy(x) =I'(x—y) sobre dQ.

Pela segunda identidade de Green, Lema 2.1.1, temos

OU () Ohy ds. = [ h.AudA
oo |Gy Ty —ugr |dS, = [ hyAuda,.

Subtraindo esta identidade da férmula de representacao de Green, Teorema 2.1.1, obtemos
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ar
u(y) = - ( U (x = y) ——F(x y))dS — [, AuT (x - y)dA,
ou oy dSy + [ hyAuda,
—f 5y (x — y)—ua— + u
or dh
== qu| 7,0y —a—vy(x)]de—fQ AulT (x = y) = h,(x)]1dA,. (2.5)

Definicao 2.2.1. A funcdo G : Q x Q \ {x = y} > R definida por

Gx,y) =T(x—-y) —h,(x)

é chamada fungdo de Green para o laplaciano na regido €.

Segue da equacdo (2.5), que u(y) possui a seguinte férmula de representacao

u(y) = — 50 u(x) (x y)dsS, - fg Au(x)G(x,y)dA,.

Consequentemente, a solu¢do do problema de Dirichlet para a equacdo de Laplace, possui a

formula de representacdo dada pela proposicao seguinte.

Proposicao 2.2.1. Seja Q um aberto limitado. Entdo toda solu¢do
ue C*(Q)nct (ﬁ) do problema de Dirichlet

Au=0 em Q,
u=g sobre 09Q,

satisfaz

uy) =~ [ 809 (x.y)ds..

Assim, temos uma férmula para construir a solu¢do de qualquer problema de Dirichlet para o
laplaciano em um dominio limitado Q, desde que conhecamos a funcdo de Green para Q. A dificuldade

¢ obter a funcdo de Green para um dado dominio Q.

O préximo resultado demonstra propriedades importantes sobre a fungao de Green.

Lema 2.2.1 (Propriedades da Fun¢do de Green). A funcdo de Green possui as propriedades seguintes.

i) A funcdo de Green é simétrica, isto é, G(x,y) = G(y,x).



30

ii) A funcdo de Green G(x,y) e sua derivada normal % (x,y), sdo harménicas nas duas varidveis em

X F .

Demonstracdo. Veja a Proposicao 5.18 e o Coroldrio 5.19 de (BIEZUNER, 2010. Acesso em: 26 jan.
2026). [

2.3 Funcao de Green no disco

Vimos na se¢do anterior, Proposi¢do 2.2.1, que a solu¢do do problema de Dirichlet para a equacao

de Laplace em €2, deve satisfazer a férmula de representacao dada por

G
u(y) = — 50 u(x)W(x,y)de. (2.6)
Nesta secdo, vamos determinar a funcdo de Green no disco Bg (0) e calcular sua derivada normal % (x,y).

Para determinar a funcdo de Green no disco Bg(0), utilizaremos uma transformac¢ao, a chamada

inverso através do circulo. Considere a transformacdo T : R?\ {0} - R?\{0}, definida por

_ _R?
T(y) =y = —3.
Il

A inversdo através do circulo, transforma o disco Bz (0) em seu exterior R2Z\ Br(0), mantendo fixado o

circulo 0B (0). A sua inversa € ela propria. Veja a FIG. 4.

Figura 4 — Inversao através do circulo.

Fonte: Os autores.

O préximo resultado enuncia um fato importante sobre a quacao de Laplace.

Lema 2.3.1. A equacdo de Laplace é invariante por dilatagoes.
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Demonstracdo. Veja o Lema A.0.5, no Apéndice A. [

Agora estamos prontos para determinar a funcio de Green no disco.

Teorema 2.3.1. A funcdo de Green para o operador laplaciano no disco Bg(0) é dada por

Fx-y) ~T(g&=3) se y#0,

G(x, =
(x-y) { I'x)-T'(R) se y=0.

Demonstracdo. De fato, fixado y € Bg(0), precisamos encontrar uma fun¢do harmonica
hy S C2(BR(O)) NnC! (ER(O)) que seja solugdo para o problema de Dirichlet

Ahy = 0 cm BR(O)’

{ 2.7
hy(x) =I'(x —y) sobre dBg(0).

Sey = (0,0), basta tomar hy como sendo a fung¢do constante hy(x) =I'(R).Sey # (0,0), a
situacdo € mais complicada. Em principio, poderiamos pensar em tomar a prépria fungio I' (x — y), mas
esta funcdo possui uma singularidade em y. Vamos usar a inversao através do circulo, para transformar a

singularidade y em um ponto y, fora do disco. Observe que a fun¢do

2
hy(x) =T (x =) :F(x—ﬁ—g)

€ harmonica em By (0), pois esta fun¢do deixa de ser harmodnica apenas no ponto y, que esté fora do disco.

Note que a fungdo Ay (x) = T (x —y) € solugdo da equagdo
Ahy =0 em Bg(0),

mas
hy(x) = T(x -%) # ['(x —y) sobre 3Bg(0).

Dessa forma, precisamos fazer alguma operagéo na fungéo A, (x) de tal maneira que ela continue
sendo harmonica no disco Br(0) e que hy (x) = T'(x — y) sobre o circulo dBr(0). O Lema 2.3.1 nos diz

que a equagdo de Laplace € invariante por dilatacdes. Note que a fun¢do I' € radial, mas
Ix =yl #|x —y| sobre dBg(0).

Vamos fazer uma operacdo de dilatagdo para que possamos resolver este problema. Isto é, vamos mostrar

que existe k € R, tal que

lk(x —y)| =I|x—yl sobre dBg(0).



32

| =

De fato, tome k = % Entdo, para x € dBg(0), temos
V)T R P
y_
R2
R2 4N\12
R
| = = (x,y) + —)]
[ ( | 2 yl?
1
_ P 2 2\’
= —2x| - 2(x,y)+ R

R? R?
B |y|2 )

1

2

= (y* - 2<x y) + 1x?)
= (Ix - ylz) = |x -y,
pois |x| = Re (x,y) = x;y; + X5, denota o produto escalar em RZ. Concluimos que a fun¢do hy, definida
Iyl
) =T (Re-9)

€ a solucdo procurada para o problema de Dirichlet (2.7), no caso y # 0. Portanto a funcdo de Green no

disco Bz (0) é a funcdo G(x,y) = T'(x —y) — hy(x), dada por

por

oy =] TE=9) - I (Ra=-9) se y#(0,0),
’ L'(x)-T(R) se y=(0,0).
]
Para finalizar este capitulo, vamos calcular a derivada normal da fun¢do de Green >= aG 7> (x,y). Como

x
o vetor normal unitdrio apontando para fora é v = 7> Segue que

G X
W(x’y) = <VxG(x’y)’ E)

O vetor gradiente de G, calculado na varidvel x, € dado por

VXG(x,y)=(0ixl[F(x—y)—r(m( _))]a [r-n -t (R "))

Calculando as derivadas parciais da solu¢do fundamental, temos

d J 1 _ 1 X1 =N
d_r(x y) = <—§1H|X_)’|>— §|x_y|2




33

(7 0 1 _ 1 Xz—yz
o, ¥V = (‘ﬁm'x‘ﬂ)— L P

Calculando as derivadas parciais da func¢ao I' (ly | (x — y)) temos
d [y] d 1 [y] RZy 1 ﬁ361 — 1
G o (R0 PR N I S P ) A0 U | I Y|
e (7o) axl( 2311“‘13(1 bz )D 27 k5P

Iyl
r(lyl( _)> o (_ 1 o[, R | X -
dx, \ R dx, \ 27 |R ly INE

T 21 )P
Substituindo na expressao do gradiente da funcao de Green, obtemos

2rlx—yP 27 x—yP 27—y 27 |x—yP

1 x - S TR TR 12—y
VG(xy):(— 1 =N R2 2 )’2+_R2 )

Agora podemos calcular a derivada normal da fun¢@o de Green.

b 2
aG x 1 [x3-x1y | %=XT — X
& V,G(x,y), 5) = — -
(x y) = (VG R> 2aR| |x—yP? x — y?
2
N X5 — X)) 3 %X% —*2)2 ]
e —yI2 e = yI?
1
= 277R|x y|2 — X1 - — X1
+ x2 —X2y2 — ( - xz)’z)
_ 1 [ R2 Iyl? Rz]
27Rlx - y|2
1 R-pP?
T 27R [x—y2

pois |x|* = x% + x2 = R?. Como a derivada normal de G é simétrica com relagdo as varidveis x e y, veja 0

Lema 2.2.1(i), podemos trocar as varidveis da derivada normal e substituir em (2.6), para obtermos a

férmula de representacdo

R u(y)
u(x) = M—R faBR(O) mdSy (2.8)

Esta formula € chamada férmula integral de Poisson. A fun¢ao

1 R?—|x]?

M_RW’ X € BR(O),y S OBR(O),

K(x,y) =

€ chamada nucleo de Poisson para o disco Bg(0).
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Lema 2.3.2. Para todo x € Bg(0) vale

faBR(O) K(x,y)dsS, = 1.

. . - 2 _1v2
Demonstracdo. Basta fazer u = 1 na férmula integral de Poisson, equagdo (2.8). Observe que Rzﬂlgl

constante com relacdo a y, dai podemos passéd-lo para dentro da integral. [

(@
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Capitulo 3

EXISTENCIA E UNICIDADE DE SOLUCAO

Vamos relembrar rapidamente o que se entende por solu¢do do problema de Dirichlet para a
equagdo de Laplace no disco, descrito na Introdu¢do. Uma funcao u € solugdo do problema de Dirichlet
para a equagdo de Laplace no disco, se u € Cc? (Br(0)) n CO(ER(O)) e satisfaz as equacoes (3):

Au=0 em Bg(0),
u=g sobre dBg(0).

Neste capitulo vamos provar o nosso resultado principal, o Teorema 0.0.1. Este resultado afirma que o

problema de Dirichlet para a equagao de Laplace no disco, possui uma tnica solucao.

3.1 Existéncia de solucao

Nesta se¢ao vamos provar a existéncia de solugdo para o problema de Dirichlet para a equacao de

Laplace no disco.

Teorema 3.1.1. Seja g € C°(3Bg(0)). Defina

R* — xf? g0y
40 = =k Jano o —yp S

Entdo u € CZ(BR(O)) nCo (ER(O)) e u satisfaz as equacgoes

Au=90 em Bg(0),
u=g sobre 9dBR(0).

Demonstragdo. Observe que a funcdo u(x) definida acima € a férmula integral de Poisson dada por (2.8).

Dessa forma, podemos escrever

G

ulx) = - 9B (0) u(y) o (v, x)ds,.

Pelo Lema 2.2.1(ii), a funcdo % (v,x) € harmodnica com relacdo a segunda varidvel x. Logo, podemos

derivar dentro do sinal de integral para obter Au(x) = 0, para todo x € Bg(0). Pelo Corolério 2.1.1 a
funcdo u € C*(Br(0)).
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Resta estabelecer a continuidade até a fronteira, isto &, mostrar que u € C° (I_BR (0)). Dessa forma,
para cada xy € dBg(0), devemos obter

}LI}}O”(X) = g(xp)-

Por definicao de continuidade, veja (LIMA, 2008), precisamos mostrar que, para todo & > 0, devemos
obter § > 0 tal que
x—xol <8 = |u(x) — g(xp)l < &.
De fato, como g € Co(ﬁBR), dado ¢ > 0, existe §; > O tal que
£

ly = xol < 81 = 1g(y) —glxp)l < )

paray € dBR(0). SejaM = arga(%) lg|. Pelo Lema 2.3.2, temos
R

8(xg) = f

0y 80K (5.7)dS,.

Consequentemente,

) = glo)l = |f,, o SWKAS, = [, glxo)K (xS,

f@BR(O) K(.X,y) (g(y) - g(XO))dSy

= Jag,0) KX = g(Xo)ldS,y
= Jygcs, K280 — 8(x0)ldSy
T Jyxgzs, KE2)18(y) = 8(x0)ldS,

&
<3 Jyies, K02y

+f s, KO0 (801 + 18 (x0)) S,
< 2 +2M K(x,y)dS
2 [y—xol=81 xy y
£ R? — |x|? 1
B 5 +2M 2R Ly—x0|261 |x — y|2dSy
£ 7 \2
i 2 2y (2
< 2+ 2M(R? — )(51) 3.0
JELE
2727 %

para |x — xo| < § = min{&;/2,8,}. Em que 6, > 0 vem da continuidade da funcdo h(x) = R? — |x]2.
Note que /(x) é continua, ndo negativa em I_BR(O) e h(xg) = 0 (xg € dBR(0)). Entdo dado &£ > 0, existe

8, > 0 tal que
5%8

Ix —xgl < 8, = |h(x) — h(xg)l = h(x) < T6M
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parax € By (0). Portanto, para [x — x| < § = min{&,/2, §,}, utilizamos a desigualdade acima em (3.1),
para concluir que

lu(x) — glxg)l < &.

3.2 Unicidade de solucao

Para mostrar a unicidade da solu¢do apresentada no Teorema 3.1.1, vamos enunciar o principio
do maximo. Este importante resultado afirma que o maximo e o minimo de uma funcao harmdnica, nao

pode estar no interior do dominio.

Teorema 3.2.1 (Principio do Médximo). Suponha que u € C2(Q) n C°(Q) satisfaca Au = 0. Se Q é
limitado, temos

maxu = maxu,
Q aQ

min # = min u.
Q aQ
Demonstragdo. Veja o Teorema 6.1 de (BIEZUNER, 2010. Acesso em: 26 jan. 2026). 0

Agora estamos prontos para provar o nosso principal resultado, o Teorema 0.0.1.

Demonstracdo. Seja g € C°(Bg(0)). Pelo Teorema 3.1.1, a fungio dada por

R? — |x|? g(y)
u(x) = 2R faBR(O) |x —y|2dSy

€ uma solucdo do problema de Dirichlet para a equacao de Laplace no disco.

Para provar a unicidade, suponha que existam duas solugdes, u; e u,, do problema de Dirichlet
para a equacdo de Laplace no disco. Entdo defina u = u; — u,. Note que u € CZ(BR(O)) n CO (ER(O)) e

pela linearidade do operador laplaciano, u € solu¢ao do problema

Au=0 em Bg(0),
u=0 sobre dBg(0).

Segue do principio do maximo, Teorema 3.2.1, que

max u = min u = 0.
9BR(0) 8Br(0)

Logo u = 0 e portanto u; = u,. [
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CONCLUSAO

O problema de temperatura de estado estaciondrio, descrito na introdu¢do, nos motivou a procu-
rar por solucdes para a equacdo de Laplace no disco. Usamos teoria de cédlculo diferencial e integral e
equagdes diferenciais para determinar a fun¢do de Green no disco. Todo este conhecimento foi aplicado
para que fosse possivel obter uma férmula de representacdo da solucdo. Utilizamos técnicas de analise

para concluirmos que a soluc¢do do problema de Dirichlet, para a equacdo de Laplace no disco, existe e é

dnica.



41

Referéencias

BIEZUNER, R. J. Notas de aula de EDP I/Il. Minas Gerais - Brasil: Disponivel em:
https://doceru.com/doc/v8nSe55, 2010. Acesso em: 26 jan. 2026. Citado 3 vezes nas paginas
20, 30 e 37.

EVANS, L. C. Partial Differential Equations. 1¢. ed. Providence - United States: American Mathematical
Society, 1998. (Graduate Studies in Mathematics). Citado na pagina 20.

LEIGHTON, R. B. et al. The Feynman Lectures on Physics, vol. 2. 2¢. ed. Boston - United States:
Addison-Wesley, 1964. Citado na pagina 15.

LIMA, E. L. Curso de Andlise, vol. 2. 104. ed. Rio de Janeiro - Brasil: Projeto Euclides, 2008. Citado
na pagina 36.


https://doceru.com/doc/v8n5e55

43

APENDICE A

Lema A.0.1. O operador laplaciano é invariante por rotagées.

Demonstragdo. Sejam Q@ ¢ RZ um dominio limitado e u : @ — R de classe C?(Q). Considere a

seguinte mudanca de coordenadas y = Ryx, em que R, é a matriz de rotacdo em R? :

cos —senf
RH = .
sen@ cos0

Definav: Q c R2 > R porv(y) = u(R;1 (v)). Note que u(x) = v(Ryx) e pela regra da cadeia, temos
ou _ 0dv dy N av dy,

@xl - ayl dxl 0_)72 @xl ' (Al)
Como y = Ryx, temos que
Y= (31,Y2) = (cos 0x; — sen 0x,, sen Ox + cos 0x,).
Dessa forma, calculamos as derivadas parciais de y; e y, com relagdo a x;:
oy _ dyr _
ax, cost e ax, - sen 6. (A.2)
Substituindo em (A.1), obtemos
ou _ ﬂcos@ + ﬂsen@
ox; 0y, ay, '
Derivando a identidade acima com relagdo a x, temos
2 2 2 2 2
07u = 07v Oy —0 Y %cos —0 Y %sen0+2%sen0.
oxy  dy3 0x; dy,0yy 0x, dy1 0y 0x, dy3 0x
Segue de (A.2) que
u 92 32 2 a2
—Z = —;cos2 0 + Y sen fcos 0 + 4 sen Ocos 0 + —;sen2 0. (A.3)
ox?  dy? dy0y, dy, 0y, ay3

Agora, vamos calcular a derivada de u com relagdo a x,:

ou _ dv dy; av dy,
axz - ayl 0X2 * Byz dxz' (A4)

As derivadas parciais de y; e y, com relacdo a x,, sdao

92
0)(,'2

ayy

— = —gsenf e
éxz

=cos 6. (A.5)
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Substituindo em (A.4), obtemos

ﬂ = —ﬂsenﬁ + ﬂcosH
0x; ay; dy, '

Derivando a identidade acima com relagdo a x,, temos

2 2,09 2y 9 2y 4 2va
0;’:_012) L sen 0y ﬁsen0+—av D cos 0; 2
ax3 dy% 0xy 0y, 0y, 0x; 0y 0y, 0x3 dys 0%

Segue de (A.5) que

d’u 02 82 a2 a2
—Z = —;sen2 0 — 4 sen Ocos 0 — Y sen fOcos 0 + —‘z)cos2 0. (A.6)
ix3  ay? dy20y, dyy 0y ay3

Somando as equacdes (A.3) e (A.6), concluimos que Au(x) = Av(y).

Lema A.0.2. O operador laplaciano é invariante por translagoes.

Demonstracdo. Sejau: Q ¢ R? = R de classe C2(Q) e considere a seguinte mudanca de coordenadas
y=x+a. Definav: Q+ac R? - Rporv(y) = u(y - a), em que a = (a,,a,) é um ponto qualquer
de R?.

Note que u(x) = v(x + a) e pela regra da cadeia, temos

ou _ dv dy; ~ dv dy,
8x1 B (3y1 (?xl * (3y2 8x1 ' (A7)

Como y = x + a, temos que
y= 1Y) = (xp +ap,x +aj).

Dessa forma, calculamos as derivadas parciais de y; e y, com relagdo a x;:

dy1 _ 0y, _
ax, - 1 e ax, 0. (A.8)
Substituindo em (A.7), obtemos
u_ av
dxy — dy;’

Derivando a identidade acima com relacdo a x; e por (A.8), obtemos

9%u B 3%v dy, N %v dy, a%v

= = . (A.9)
0x12 ay% ﬁxl ﬁyzayl ﬁxl 0})%
Agora, vamos calcular a derivada de u com relagdo a x,:
ou _ dv dy, av dy, (A.10)

axz - (3y1 ﬁxz ayz axz'
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As derivadas de y; e y, com relagdo a x,, sdo

w2

0xy dx, (A1D)
Substituindo em (A.10), temos
ou _ v
dxy 3y’
Derivando a identidade acima com relacdo a x, e por (A.11), obtemos
2 2, 9 2,4 2
Pu_ O o, Froyy (a12)
0x5 Y10y2 0x3  dy5 0X2  dy3
Somando as identidades (A.9) e (A.12), concluimos que Au(x) = Av(y). L]

Teorema A.0.1 (Divergéncia). Seja Q um aberto limitado de R?. Se a fronteira dQ for uma curva, cuja

parametrizagdo é de classe C', temos
[ divFdA = [ F-vds
Q aQ
em que " - " denota o produto escalar em R? e F é um campo vetorial em Q de classe C'.

Lema A.0.3 (Segunda Identidade de Green). Seja Q < R?Z um aberto com fronteira suave. Se u,v €

C2(Q) n CY(Q) entdo vale a identidade
f (uAv — vAu)dA = (uﬂ —v%)dS.
Q %

Demonstracdo. Consideremos o campo F = uVv. Pelo teorema da divergéncia, Teorema A.0.1, obtemos

a primeira identidade de Green
ov
Jo Vu-Vvaa= [ uz—ds - J, uAvdA. (A.13)
Permutando u e v na identidade acima, obtemos
ou
Jo V- Vuaa = [ vo—dS - J, vAudA. (A.14)
Como Vv - Vu = Vu - Vv, podemos subtrair as identidades (A.13) e (A.14) para concluir que

fQ(uAv —vAu)dA = fag (u—v —Vv—

Lema A.0.4 (Propriedade da Média). Se u € CO(Q) e B, (x) C Q, entdo u satisfaz a propriedade

, 1
ux) = oy 551 Jos, w 45
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Demonstragdo. Suponha que u € C%(Q) e B,(x) ¢ Q. Para todo ¢ > 0 dado, u é continua sobre o
circulo dB, (x), que € um conjunto compacto. Dessa forma, a fun¢do u assume um minimo € um maximo
em dB, (x), digamos

uxl)y=m, e u(x2)=M,, respectivamente.

Logo
mAngxHS.EB(mudSSIWAOBSQH. (A.15)

£

em que |dB, (x)| denota o comprimento do circulo dB, (x). Observe que, as sequéncias {x}g H {x%} conver-

gem para x, quando & — 0. Como u € C%(Q), temos que
m, =uxl) > ux) e M, =u(x2) - ux)

quando ¢ — 0. Portanto, fazendo ¢ — 0 em (A.15) e usando as convergéncias acima, obtemos o resultado.
]

Lema A.0.5. A equacdo de Laplace é invariante por dilatacoes.

Demonstracdo. Considere a mudanga de coordenadas y = kx, k € R ndo nulo e defina v(y) = u(k™! ().

Note que u(x) = v(kx) e pela regra da cadeia, temos

ou_ ov,
ax; Iy

e
Pu_ %,
0x% ﬁy%

De maneira anédloga, obtemos também que
GPu_ 9o
(?x% dy%
Portanto, concluimos que
Au(x) = szv(y) =0.
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