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RESUMO
Este trabalho tem como objetivo estudar o Teorema do Ponto Fixo de Brouwer, destacando suas prin-
cipais propriedades e algumas de suas generalizações em diferentes contextos do espaço euclidiano.
Inicialmente, apresenta-se uma breve visão histórica do matemático que provou esse resultado e dos
matemáticos que posteriormente o relacionaram ao jogo Hex. Em seguida, discutem-se as demons-
trações do Teorema do Ponto Fixo de Brouwer, começando com o caso da reta real e progredindo
para subconjuntos compactos e convexos do espaço Euclidiano. Posteriormente, introduzem-se o
jogo Hex e o Teorema de Hex, explorando a relação entre a impossibilidade de o jogo terminar em
empate e o Teorema do Ponto Fixo de Brouwer, e demonstrando a equivalência entre esses dois
resultados. Finalmente, discute-se o uso de jogos como recurso didático no ensino da matemática,
enfatizando o potencial do jogo Hex como ferramenta pedagógica para a compreensão de conceitos
matemáticos abstratos.

Palavras-chave: Teorema do Ponto Fixo de Brouwer; Teorema de Hex; jogo Hex; Ensino de Ma-
temática; Jogos Matemáticos.



ABSTRACT
This work aims to study Brouwer’s Fixed Point Theorem, highlighting its main properties and some
of its generalizations in different contexts of Euclidean space. Initially, a brief historical overview
of the mathematician who proved this result and the mathematicians who later related it to the game
Hex is presented. Next, the proofs of Brouwer’s Fixed Point Theorem are discussed, beginning with
the case of the real line and progressing to compact and convex subsets of Euclidean space. Sub-
sequently, the game Hex and the Hex Theorem are introduced, exploring the relationship between
the impossibility of this game ending in a draw and Brouwer’s Fixed Point Theorem, and demon-
strating the equivalence between these two results. Finally, the use of games as a didactic resource
in mathematics teaching is discussed, emphasizing the potential of the game Hex as a pedagogical
tool for understanding abstract mathematical concepts.

Keywords: Brouwer Fixed Point Theorem; Hex Theorem;Hex game; TeachingMathematics;Math-
ematical Games.
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INTRODUÇÃO
A noção de ponto fixo ocupa um lugar central em diversas áreas da matemática, desempe-

nhando papel fundamental tanto em resultados teóricos quanto em aplicações em campos como a
análise, a topologia, a economia e a teoria dos jogos. Entre os resultados mais conhecidos nessa
temática destaca-se o Teorema do Ponto Fixo de Brouwer, que garante a existência de pontos fi-
xos para funções contínuas definidas em subconjuntos compactos e convexos do espaço euclidiano.
Apesar de sua formulação aparentemente simples, esse teorema possui demonstrações profundas e
conexões inesperadas com diferentes ramos da matemática.

O presente trabalho tem como objetivo principal estudar o Teorema do Ponto Fixo deBrouwer
e algumas de suas generalizações, bem como explorar sua relação com o Teorema de Hex, um re-
sultado proveniente da teoria dos jogos combinatórios. Em particular, busca-se evidenciar a equi-
valência entre esses dois teoremas, mostrando como um problema de natureza topológica pode ser
compreendido a partir de um jogo de regras simples, e vice-versa. Essa abordagem permite destacar
o caráter interdisciplinar da matemática e revelar conexões entre áreas que, à primeira vista, pare-
cem distantes. Além disso, este trabalho aborda o potencial dos jogos para a criação de um ambiente
de investigação matemática em sala de aula, sendo estes uma ferramenta que vai além do caráter
motivacional, capaz de promover o desenvolvimento do pensamento matemático abstrato.

No Capítulo 1, apresenta-se um panorama histórico envolvendo matemáticos que contribu-
íram de maneira significativa para o desenvolvimento das ideias discutidas ao longo do trabalho, a
saber, Luitzen Egbertus Jan Brouwer, John Forbes Nash Jr. e Piet Hein.

Já no Capítulo 2, o Teorema do Ponto Fixo de Brouwer é estudado de forma progressiva:
primeiramente no contexto da reta real, depois na bola unitária fechada doℝ𝑛 e, por fim, em conjun-
tos convexos e compactos do espaço euclidiano. As demonstrações são construídas com o intuito
de tornar explícitos os argumentos geométricos e topológicos envolvidos.

Posteriormente, no Capítulo 3, será introduzido o jogo Hex, suas regras e propriedades fun-
damentais, culminando na apresentação do Teorema de Hex e na prova de sua equivalência com o
Teorema do Ponto Fixo de Brouwer. Essa relação evidencia como conceitos matemáticos abstratos
podem emergir, até mesmo, de situações lúdicas.

Por fim, no Capítulo 4, discutiremos o papel dos jogos no ensino e na aprendizagem da
matemática, destacando o potencial do jogo Hex como ferramenta pedagógica. Essa reflexão busca
aproximar a matemática formal do contexto educacional, ressaltando a importância da investigação,
da experimentação e da ludicidade no processo de construção do conhecimento matemático.
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Vale ressaltar que ferramentas de inteligência artificial foram utilizadas como apoio à re-
visão linguística, à melhoria da clareza textual e geração de algumas imagens, sem interferir no
conteúdo discutido no trabalho.
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CAPÍTULO 1

UM POUCO DE HISTÓRIA
Nesta seção iremos apresentar um pouco da história de alguns dos matemáticos que deram

grandes contribuições para a matemática através dos teoremas de ponto fixo. As principais referên-
cias utilizadas neste capítulo foram (St Andrews, 2000) e (Wikipédia, 2026).

1.1 Luitzen Egbertus Jan Brouwer

Luitzen Egbertus Jan Brouwer nasceu em 27 de fevereiro de 1881, em Overschie, Países
Baixos. Foi uma das figuras centrais do desenvolvimento da matemática no século XX, especial-
mente no campo da topologia e da filosofia da matemática. Sua trajetória acadêmica teve início
na Universidade de Amsterdã, onde ingressou aos 18 anos e obteve seu doutorado em 1907 com
uma tese intitulada Over de Grondslagen der Wiskunde, na qual começou a desenvolver as ideias
que mais tarde fundamentariam o intuicionismo, uma corrente filosófica que ele mesmo criaria e
defenderia ao longo da vida.

Brouwer acreditava que a matemática era uma construção mental livre, independente da lin-
guagem formal e da lógica clássica. Essa concepção o levou a rejeitar certos princípios tradicionais,
como o terceiro excluído, propondo uma abordagem na qual a validade das proposições matemáti-
cas dependia de sua efetiva construção. Tal visão estabeleceu as bases do intuicionismo, corrente
que teve grande influência na filosofia da matemática, bem como na fundamentação da teoria da
prova.

Paralelamente às suas contribuições filosóficas, Brouwer também desempenhou papel fun-
damental na consolidação da topologia, área que então estava em ascensão. Seus trabalhos iniciais
estabeleceram resultados centrais, como o Teorema do Ponto Fixo de Brouwer, publicado em 1912,
que afirma que toda função contínua de uma bola fechada em um espaço euclidiano em si mesma
possui ao menos um ponto fixo. Esse resultado, além de sua relevância teórica, tem aplicações
importantes em topologia, economia, teoria dos jogos e análise funcional.

A carreira acadêmica de Brouwer foi marcada tanto pelo prestígio quanto pela controvérsia.
Em 1912, foi nomeado professor da Universidade de Amsterdã, onde permaneceu até sua aposenta-
doria. Foi também editor da prestigiosa revista Mathematische Annalen, mas envolveu-se em uma
disputa editorial com David Hilbert, motivada por divergências filosóficas quanto aos fundamentos
da matemática, o que resultou em sua exclusão do comitê editorial.

L. E. J. Brouwer faleceu em 2 de dezembro de 1966, deixando um legado significativo
tanto nos campos técnicos da matemática quanto nas discussões epistemológicas sobre sua natureza
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e fundamentos. Seu trabalho permanece relevante até os dias atuais, sendo amplamente citado e
discutido.

Figura 1 – Luitzen Egbertus Jan Brouwer.
Fonte: Imagem obtida em (St Andrews, 2000).

1.2 John Forbes Nash Jr

John Forbes Nash Jr. foi um matemático norte-americano nascido em 13 de junho de 1928,
em Bluefield, West Virginia. Desde a infância, destacou-se por sua capacidade de raciocínio lógico
e pelo interesse por problemas matemáticos, embora sua personalidade fosse marcada por certo
isolamento e introversão.

Inicialmente, Nash iniciou seus estudos em engenharia química na Carnegie Institute of Te-
chnology (atual Carnegie Mellon University), mas rapidamente migrou para o curso deMatemática,
onde obteve grande destaque. Em 1948, ingressou no programa de doutorado em Princeton, institui-
ção na qual desenvolveu trabalhos que se tornariam fundamentais para a teoria dos jogos. Em 1950,
defendeu sua tese intitulada Non-Cooperative Games, na qual introduziu o conceito de Equilíbrio
de Nash, uma solução matemática para jogos de estratégia em que nenhum jogador tem incentivo
para mudar sua estratégia individualmente. Esse conceito revolucionou a economia e a teoria dos
jogos, tornando-se uma das contribuições mais influentes do século XX.

Após o doutorado, Nash trabalhou no Massachusetts Institute of Technology (MIT), onde
continuou suas pesquisas em diversas áreas da matemática, como geometria diferencial, teoria dos
jogos e equações diferenciais parciais. No final da década de 1950, começaram a surgir sinais de es-
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quizofrenia paranoide, o que afetou profundamente sua vida pessoal e profissional. Por muitos anos,
sua carreira acadêmica foi interrompida, e Nash enfrentou períodos de hospitalização e afastamento
do meio científico.

A partir da década de 1980, ele passou por um processo gradual de recuperação e retomada
de suas atividades intelectuais, voltando a interagir com a comunidade acadêmica. Em reconhe-
cimento às suas contribuições, recebeu importantes distinções, destacando-se o Prêmio Nobel de
Ciências Econômicas em 1994, compartilhado com John Harsanyi e Reinhard Selten, pela análise
pioneira de equilíbrio em jogos não cooperativos. Em 2015, foi agraciado com o Prêmio Abel, uma
das maiores honrarias da matemática, pela profundidade de suas contribuições em equações dife-
renciais parciais e análise geométrica.

Figura 2 – John Forbes Nash Jr.
Fonte: Imagem obtida em (St Andrews, 2000).

Poucos dias após receber o Prêmio Abel, Nash faleceu em 23 de maio de 2015, em um
acidente de carro em Nova Jersey. Sua trajetória é frequentemente lembrada como um exemplo de
superação e de impacto duradouro na matemática, na economia e em diversas áreas científicas.

1.3 Piet Hein

Piet Hein foi um matemático, inventor, designer, filósofo, autor e poeta dinamarquês, nas-
cido em 16 de dezembro de 1905, em Copenhague, Dinamarca. Hein desenvolveu uma educação
diversa, estudando no Instituto de Física Teórica da Universidade de Copenhague (posteriormente
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Instituto Niels Bohr) e na Universidade Técnica da Dinamarca. Durante sua vida, ele também ex-
plorou áreas como filosofia, artes e design, refletindo um espírito de unificação entre ciência e
criatividade.

Figura 3 – Piet Hein
Fonte: Imagem obtida em (Wikipédia, 2026).

Uma de suas contribuições mais conhecidas é a criação dos “grooks” (gruks em dinamar-
quês), que são pequenos poemas filosóficos com tom irônico e profundo. Esses poemas começaram
a ser publicados no jornal Politiken durante a ocupação alemã da Dinamarca na Segunda Guerra
Mundial, assinados sob o pseudônimo Kumbel Kumbell, que significa “lápide”.

Hein também se destacou por suas invenções e criações matemáticas. Entre elas, o jogo Hex
e o cubo Soma, que se tornaram clássicos em jogos matemáticos e quebra-cabeças. Além disso, ele
introduziu a superelipse, uma forma geométrica que unifica características de elipses e retângulos,
aplicada em arquitetura e design urbano, especialmente no projeto da praça Sergels Torg, em Esto-
colmo, e em peças de mobiliário.

Ao longo de sua carreira, Piet Hein recebeu diversos prêmios e reconhecimentos internacio-
nais, incluindo uma doutor honoris causa pela Universidade de Yale em 1972 e múltiplas honrarias
por seu trabalho criativo em arte e design. Ele faleceu em 17 de abril de 1996, deixando um legado
duradouro tanto na matemática quanto na cultura e na arte.
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CAPÍTULO 2

O TEOREMA DE PONTO FIXO DE
BROUWER

Neste capítulo, iremos apresentar o Teorema de Ponto Fixo deBrouwer. Iniciaremos provando-
o para funções definidas em intervalos fechados da reta real e para isto, teremos como principal
referência (Lima, Elon Lages, 2018). Depois provaremos o teorema para a bola unitária e fechada
centrada na origem deℝ𝑛, cuja principal referência usada é (Guillemin; Pollack, 1974). Em seguida
iremos definir o que é um homeomorfismo e generalizar tal resultado para bolas fechadas quaisquer
do ℝ𝑛 e também para subconjuntos convexos e compactos de ℝ𝑛.

2.1 O Teorema de Ponto Fixo de Brouwer em ℝ
Para provar o Teorema Ponto Fixo de Brouwer em ℝ utilizaremos o Teorema do Valor

Intermediário, cuja demonstração pode ser encontrada em (Lima, Elon Lages, 2018). Vale ressaltar
que esses dois teoremas são equivalentes, como pode ser visto em (Santos, 2025).

Teorema 2.1 (Teorema do Valor Intermediário). Seja 𝑓 ∶ [𝑎,𝑏] ⟶ ℝ contínua. Se 𝑓 (𝑎) < 𝑑 < 𝑓 (𝑏),
então existe 𝑐 ∈ (𝑎,𝑏) tal que 𝑓 (𝑐) = 𝑑.

Exemplo 2.1. Considere a função 𝑓 ∶ [0,4] ⟶ ℝ dada por 𝑓 (𝑥) = 𝑥3

8 − 𝑥
2 +2. Desta forma, temos

que para qualquer 𝑑 ∈ ℝ tal que 𝑓 (0) = 2 < 𝑑 < 8 = 𝑓 (4), existe 𝑐 ∈ (0,4), tal que 𝑓 (𝑐) = 𝑑.

Figura 4 – Função 𝑓 ∶ [0,4] ⟶ ℝ dada por 𝑓 (𝑥) = 𝑥3

8 − 𝑥
2 +2.

Fonte: O autor
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Definição 2.1. Seja 𝑓 ∶ 𝑋 ⟶ 𝑋, com𝑋 ⊂ ℝ. Dizemos que 𝑝 ∈ 𝑋 é um ponto fixo de 𝑓 quando 𝑓 (𝑝) = 𝑝.

Teorema 2.2 (Teorema do Ponto Fixo de Brouwer emℝ). Seja 𝑓 ∶ [𝑎,𝑏] ⟶ ℝ uma função contínua
satisfazendo 𝑎 ≤ 𝑓 (𝑎) e 𝑓 (𝑏) ≤ 𝑏. Então existe 𝑝 ∈ [𝑎,𝑏] tal que 𝑓 (𝑝) = 𝑝.

Demonstração. Com efeito, se 𝑓 (𝑎) = 𝑎 ou 𝑓 (𝑏) = 𝑏, não há nada a fazer, pois, em cada caso, basta
tomar 𝑝 = 𝑎 ou 𝑝 = 𝑏, respectivamente.

Considere então 𝑎 < 𝑓 (𝑎) e 𝑓 (𝑏) < 𝑏. Defina a função 𝛾 ∶ [𝑎,𝑏] ⟶ ℝ por 𝛾(𝑥) = 𝑥 − 𝑓 (𝑥).
Daí

𝛾(𝑎) = 𝑎 − 𝑓 (𝑎) < 0 e 𝛾(𝑏) = 𝑏− 𝑓 (𝑏) > 0.

Assim temos 𝛾(𝑎) < 0 < 𝛾(𝑏). Segue-se do Teorema 2.1 que existe 𝑝 ∈ (𝑎,𝑏) tal que 𝛾(𝑝) = 0.
Desta forma, existe 𝑝 ∈ [𝑎,𝑏] tal que 𝑓 (𝑝) = 𝑝.

Exemplo 2.2. Considere a função 𝑓 ∶ [0,3] ⟶ ℝ dada por

𝑓 (𝑥) = −11𝑥3

6 + 17𝑥2

3 − 26𝑥
3 +1.

Tal função é contínua e satisfaz

0 ≤ 1 = 𝑓 (0) e 𝑓 (3) = 2 ≤ 3.

Segue-se do Teorema 2.2 que 𝑓 possui um ponto fixo.

Figura 5 – Função 𝑓 ∶ [0,3] ⟶ ℝ dada por 𝑓 (𝑥) = −11𝑥3

6 + 17𝑥2

3 − 26𝑥
3 +1.

Fonte: O autor

Podemos ainda enunciar a seguinte versão o do Teorema do Ponto Fixo de Brouwer, que é
uma consequência imediata do Teorema 2.2.
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Corolário 2.1 (Teorema do Ponto Fixo de Brouwer em ℝ). Seja 𝑓 ∶ [𝑎,𝑏] ⟶ [𝑎,𝑏] contínua. Então
𝑓 possui ponto fixo em [𝑎,𝑏].

Exemplo 2.3. Considere a função contínua 𝑓 ∶ [−1,3] ⟶ [−1,3] dada por

𝑓 (𝑥) = −𝑥4

4 + 5𝑥3

6 − 𝑥2

12 − 𝑥
4 + 1

2.

Segue-se do Corolário 2.1 que 𝑓 possui um ponto fixo em [−1,3].

Figura 6 – Função 𝑓 ∶ [−1,3] ⟶ [−1,3] dada por 𝑓 (𝑥) = −𝑥4

4 + 5𝑥3

6 − 𝑥2

12 − 𝑥
4 + 1

2 .
Fonte: O autor

Note que o Teorema 2.2 não pede que a imagem da função esteja inteiramente contida em
seu domínio como no Corolário 2.1, pede apenas que a imagem dos extremos esteja contida em seu
domínio. Em outras palavras, o Teorema 2.2 exige menos condições sobre a função.

Observe novamente as Figuras 5 e 6. Note que os pontos fixos das funções correspondem
aos pontos em que os gráficos das funções interceptam o gráfico da função identidade. E isto vale
para qualquer função real. Geometricamente temos que a reta identidade divide o plano em dois
semiplanos. O Teorema de Ponto Fixo de Brouwer pede condições suficientes para garantir que
os pontos (𝑎, 𝑓 (𝑎)) e (𝑏, 𝑓 (𝑏)) pertençam a semiplanos distintos determinados pela reta identidade
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(exceto claro, quando os extremos já são pontos fixos). E como 𝑓 é contínua, o gráfico de 𝑓 irá inter-
ceptar o da reta identidade em algum ponto do intervalo [𝑎,𝑏], para “atravessar” de um semiplano
para o outro, assim como ocorre nas Figuras 5 e 6. Tal ponto de interseção é um ponto fixo. Outra
observação importante é que este é um teorema de existência, mas ele não garante a unicidade do
ponto fixo, como pode ser visto na Figura 6, em que a função do Exemplo 2.3 possui três pontos
fixos.

2.2 O Teorema de Ponto Fixo de Brouwer na Bola Unitária Fechada
de ℝ𝑛

A definição a seguir é uma generalização da Definição 2.1, pois vale para qualquer espaço
métrico, enquanto a apresentada na seção anterior se restringe a subconjuntos dos reais.

Definição 2.2. Seja 𝑀 um espaço métrico e uma função 𝑓 ∶ 𝑀 ⟶ 𝑀. Dizemos que 𝑝 ∈ 𝑀 é ponto
fixo de 𝑓 quando 𝑓 (𝑝) = 𝑝.

Na sequência desta seção assumiremos que 𝐵𝑛 é a bola unitária deℝ𝑛 e 𝑆𝑛 é a esfera unitária
de ℝ𝑛, a menos que se diga o contrário.

Para provar o Teorema de Ponto Fixo de Brouwer para bola unitária e fechada do ℝ𝑛 assu-
miremos o Teorema da Retração, cuja demostração pode ser obtida em (Guillemin; Pollack, 1974).

Definição 2.3. Seja 𝑀 um espaço topológico1 e 𝑋 ⊂ 𝑀. Chamamos de retração de 𝑀 em 𝑋, uma
função 𝑓 ∶ 𝑀 ⟶ 𝑋 que é contínua e satisfaz 𝑓 (𝑥) = 𝑥,∀𝑥 ∈ 𝑋.

Teorema 2.3 (Teorema da Retração). Seja𝑋 uma variedade2 compacta com bordo. Então não existe
retração de 𝑋 em 𝜕𝑋.

Em particular 𝐵𝑛 é uma variedade compacta com bordo, sendo 𝜕𝐵𝑛 = 𝑆𝑛. Assim, segue-se
do Teorema 2.3 que não existe retração de 𝐵𝑛 em 𝑆𝑛.

Teorema 2.4 (Teorema do Ponto Fixo de Brouwer na Bola Unitária e Fechadas de ℝ𝑛). Seja 𝑓 ∶
𝐵𝑛 ⟶ 𝐵𝑛 uma função contínua. Então existe 𝑝 ∈ 𝐵𝑛 tal que 𝑓 (𝑝) = 𝑝.

Demonstração. Suponha que 𝑓 (𝑥) ≠ 𝑥,∀𝑥 ∈ 𝐵𝑛. Defina a função 𝑔 ∶ 𝐵𝑛 ⟶ 𝑆𝑛 da seguinte forma:
para cada 𝑥 ∈ 𝐵𝑛, tome 𝑔(𝑥) sendo a interseção da semirreta 𝑟, de origem em 𝑓 (𝑥) e que passa por
1 Todo espaço métrico é um espaço topológico.
2 Espaços nos quais o ambiente de cada ponto é “igual” a um pequeno pedaço do espaço euclidiano, como por

exemplo a bola fechada de ℝ𝑛.
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𝑥, com 𝑆𝑛. Pela construção feita temos que 𝑔(𝑥) = 𝑥,∀𝑥 ∈ 𝑆𝑛. Desta forma, basta mostrar que 𝑔 é
contínua, para concluir que 𝑔 é uma retração de 𝐵𝑛 em 𝑆𝑛, o que é um absurdo pelo Teorema 2.3.

Figura 7 – Construção da função 𝑔 ∶ 𝐵𝑛 ⟶ 𝑆𝑛.
Fonte: O autor

Note então que 𝑔(𝑥)− 𝑓 (𝑥) é múltiplo de 𝑥 − 𝑓 (𝑥) por um escalar 𝑡 ∈ ℝ com 𝑡 ≥ 1, isto é,

𝑔(𝑥)− 𝑓 (𝑥) = 𝑡(𝑥 − 𝑓 (𝑥)), para algum 𝑡 ≥ 1.

Assim,
𝑔(𝑥) = 𝑡(𝑥 − 𝑓 (𝑥))+ 𝑓 (𝑥), para algum 𝑡 ≥ 1. (2.1)

Além disso, como 𝑔(𝑥) ∈ 𝑆𝑛, temos que ||𝑔(𝑥)|| = 1. Logo,

1 = ||𝑔(𝑥)||2 = ||𝑡(𝑥 − 𝑓 (𝑥))+ 𝑓 (𝑥)||2 = ⟨𝑡(𝑥 − 𝑓 (𝑥))+ 𝑓 (𝑥), 𝑡(𝑥 − 𝑓 (𝑥))+ 𝑓 (𝑥)⟩
= 𝑡2 ⟨𝑥 − 𝑓 (𝑥),𝑥 − 𝑓 (𝑥)⟩+2𝑡 ⟨𝑥 − 𝑓 (𝑥), 𝑓 (𝑥)⟩+ ⟨𝑓 (𝑥), 𝑓 (𝑥)⟩
= ||𝑥 − 𝑓 (𝑥)||2𝑡2 +2⟨𝑥 − 𝑓 (𝑥), 𝑓 (𝑥)⟩ 𝑡 + ||𝑓 (𝑥)||2.

(2.2)

Segue-se da Equação (2.2) que

||𝑥 − 𝑓 (𝑥)||2𝑡2 +2⟨𝑥 − 𝑓 (𝑥), 𝑓 (𝑥)⟩ 𝑡 + ||𝑓 (𝑥)||2 −1 = 0. (2.3)

Como para cada 𝑥 ∈ 𝐵𝑛 temos um único 𝑡 ≥ 1 que satisfaz a Equação (2.3), estamos interessados
em encontrar uma forma de escrever 𝑡 explicitamente em função apenas de 𝑥 ∈ 𝐵𝑛, isto é, escrever
𝑡 = 𝑡(𝑥).

Observe que, por hipótese, ||𝑥 − 𝑓 (𝑥)|| > 0. Assim, a Equação (2.3) é uma equação do tipo
𝑎𝑡2 +𝑏𝑡 +𝑐 = 0, em que 𝑎 = ||𝑥 − 𝑓 (𝑥)||2 > 0, 𝑏 = 2⟨𝑥 − 𝑓 (𝑥), 𝑓 (𝑥)⟩ e 𝑐 = ||𝑓 (𝑥)||2 −1 ≤ 0.

Afirmação: A equação quadrática dada em (2.3) possui exatamente uma raiz positiva maior
que ou igual à 1.
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De fato, calculando o discriminante obtemos

Δ = 𝑏2 −4𝑎𝑐 = 4⟨𝑥 − 𝑓 (𝑥), 𝑓 (𝑥)⟩2 −4||𝑥 − 𝑓 (𝑥)||2 (||𝑓 (𝑥)||2 −1).

Assim, podemos concluir que Δ ≥ 0, portanto a equação quadrática possui duas raízes reais (iguais
ou distintas).

Note ainda que,

0 < ||𝑥 − 𝑓 (𝑥)||2 = ||𝑥||2 −2⟨𝑥, 𝑓 (𝑥)⟩+ ||𝑓 (𝑥)||2 ≤ 2 −2⟨𝑥, 𝑓 (𝑥)⟩ , (2.4)

pois 𝑥 ∈ 𝐵𝑛 e 𝑓 (𝑥) ∈ 𝐵𝑛. Portanto,

0 < 1
2 −2⟨𝑥, 𝑓 (𝑥)⟩ ≤ 1

||𝑥 − 𝑓 (𝑥)||2 . (2.5)

Sejam 𝑡1 e 𝑡2 as raízes da equação quadrática dada em (2.3).

Se 𝑓 (𝑥) ∈ 𝑆𝑛, então ||𝑓 (𝑥)|| = 1 e assim 𝑐 = 0. Desta forma,

||𝑥 − 𝑓 (𝑥)||2𝑡2 +2⟨𝑥 − 𝑓 (𝑥), 𝑓 (𝑥)⟩ 𝑡 = 0 ⟹ 𝑡1 = 0 e 𝑡2 = −2⟨𝑥 − 𝑓 (𝑥), 𝑓 (𝑥)⟩
||𝑥 − 𝑓 (𝑥)||2 .

Assim,

𝑡2 = −2⟨𝑥, 𝑓 (𝑥)⟩−2||𝑓 (𝑥)||2
||𝑥 − 𝑓 (𝑥)||2 = 2 −2⟨𝑥, 𝑓 (𝑥)⟩

||𝑥 − 𝑓 (𝑥)||2 ≥ 1, pela Equação (2.5).

Por outro lado, se 𝑓 (𝑥) ∉ 𝑆𝑛, então ||𝑓 (𝑥)|| < 1, daí 𝑐 < 0, desta forma 𝑡1 ⋅ 𝑡2 = 𝑐
𝑎 < 0. Isto

significa que as raízes 𝑡1 e 𝑡2 possuem sinais opostos, isto é, uma é positiva e a outra negativa.
Digamos, sem perda de generalidade, que 𝑡1 < 0 < 𝑡2. Desta forma, temos que

𝑡2 = −𝑏+√Δ
2𝑎 .

Além disso, como nesse caso a Equação (2.3) possui duas raízes distintas, logo Δ > 0.

Suponha que 𝑡2 < 1. Então

−𝑏+√Δ
2𝑎 < 1 ⟹ −𝑏+√Δ < 2𝑎 ⟹ 0 < √Δ < 2𝑎 +𝑏 ⟹

0 < Δ < 4𝑎2 +4𝑎𝑏+𝑏2 ⟹ 0 < 𝑏2 −4𝑎𝑐 < 𝑏2 +4𝑎𝑏+4𝑎2 ⟹
0 < 4𝑎2 +4𝑎𝑏+4𝑎𝑐 ⟹ 0 < 𝑎 +𝑏+𝑐.

(2.6)
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Note ainda que

𝑎 +𝑏+𝑐 = ||𝑥 − 𝑓 (𝑥)||2 +2⟨𝑥 − 𝑓 (𝑥), 𝑓 (𝑥)⟩+ ||𝑓 (𝑥)||2 −1
= ||𝑥||2 −2⟨𝑥, 𝑓 (𝑥)⟩+ ||𝑓 (𝑥)||2 +2⟨𝑥, 𝑓 (𝑥)⟩−2||𝑓 (𝑥)||2 + ||𝑓 (𝑥)||2 −1
= ||𝑥||2 −1.

(2.7)

Pelas Equações (2.6) e (2.7), segue-se que 0 < ||𝑥||2 − 1, isto é, 1 < ||𝑥||2. Uma contradição,
pois 𝑥 ∈ 𝐵𝑛. Portanto, 𝑡2 ≥ 1.

Em todo caso, a equação quadrática dada em (2.3) possui duas raízes reais distintas, com
exatamente uma delas maior ou igual a 1, sendo ela dada por

𝑡 = −𝑏+√Δ
2𝑎 =

−2⟨𝑥 − 𝑓 (𝑥), 𝑓 (𝑥)⟩+√4⟨𝑥 − 𝑓 (𝑥), 𝑓 (𝑥)⟩2 −4||𝑥 − 𝑓 (𝑥)||2 (||𝑓 (𝑥)||2 −1)
2||𝑥 − 𝑓 (𝑥)||2 .

Defina então, a função 𝑡 ∶ 𝐵𝑛 ⟶ ℝ por

𝑡(𝑥) =
−2⟨𝑥 − 𝑓 (𝑥), 𝑓 (𝑥)⟩+√4⟨𝑥 − 𝑓 (𝑥), 𝑓 (𝑥)⟩2 −4||𝑥 − 𝑓 (𝑥)||2 (||𝑓 (𝑥)||2 −1)

2||𝑥 − 𝑓 (𝑥)||2 .

Como a norma e o produto interno são funções contínuas, é imediato que a função 𝑡 é con-
tínua. Note que a função 𝑡 foi construída de forma que para cada 𝑥 ∈ 𝐵𝑛, 𝑡(𝑥) ≥ 1, com 𝑡(𝑥) satisfa-
zendo a Equação (2.3).

Então, substituindo 𝑡 por 𝑡(𝑥) em (2.1) podemos escrever a função 𝑔 da seguinte maneira,

𝑔(𝑥) = 𝛼(𝑥)𝑥 +(1− 𝑡(𝑥))𝑓 (𝑥).

Isto significa que 𝑔 é uma função contínua. Assim 𝑔 é uma retração de 𝐵𝑛 em 𝑆𝑛, o que contradiz o
Teorema da Retração. Portanto, 𝑓 (𝑝) = 𝑝, para algum 𝑝 ∈ 𝐵𝑛.

Definição 2.4. Seja 𝑀 e 𝑁 espaços métricos e 𝑓 ∶ 𝑀 ⟶ 𝑁 uma função. Dizemos que 𝑓 é um home-
omorfismo quando:

• 𝑓 é uma bijeção;

• 𝑓 e sua inversa 𝑓 −1 são contínuas.

Dizemos que 𝑀 e 𝑁 são homeomorfos, quando existe um homeomorfismos entre esses espaços.

Exemplo 2.4. Seja 𝑎 ∈ ℝ𝑛 e 𝑟 > 0. A bola 𝐵 = 𝐵[𝑎,𝑟] é homeomorfa à bola 𝐵𝑛.
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De fato, defina a função 𝑇 ∶ 𝐵 ⟶ 𝐵𝑛 por 𝑇(𝑥) = 1
𝑟 (𝑥 − 𝑎). Note que 𝑇 está bem definida,

pois
||𝑇(𝑥)|| = ∥1

𝑟 (𝑥 −𝑎)∥ = 1
𝑟 ||𝑥 −𝑎|| ≤ 𝑟

𝑟 = 1.

Sua inversa é 𝑇−1 ∶ 𝐵𝑛 ⟶ 𝐵 dada por 𝑇−1(𝑥) = 𝑟𝑥 +𝑎.

0

𝐵𝑛

𝑎

𝐵

Figura 8 – A função 𝑇 ∶ 𝐵 ⟶ 𝐵𝑛 definida por 𝑇(𝑥) = 1
𝑟 (𝑥 −𝑎).

Fonte: O autor

Afirmação: 𝑇 é contínua. De fato, dados 𝜀 > 0 e 𝑥0 ∈ 𝐵, tome 𝛿 = 𝜀𝑟 > 0. Daí, se 𝑥 ∈ 𝐵 e
satisfaz ||𝑥 −𝑥0|| < 𝛿, temos que

∥𝑇(𝑥)−𝑇(𝑥0)∥ = ∥1
𝑟 (𝑥 −𝑎)− 1

𝑟 (𝑥0 −𝑎)∥ = ∥1
𝑟 (𝑥 −𝑥0)∥ = 1

𝑟 ||𝑥 −𝑥0|| < 𝑟𝜀
𝑟 = 𝜀.

Afirmação: 𝑇−1 é contínua. Com efeito, dados 𝜀 > 0 e 𝑦0 ∈ 𝐵𝑛, tome 𝛿 = 𝜀
𝑟 > 0. Daí, se 𝑦 ∈ 𝐵𝑛 e

satisfaz ||𝑦 −𝑦0|| < 𝛿, temos que

∥𝑇−1(𝑦)−𝑇−1(𝑦0)∥ = ||(𝑟𝑦 +𝑎)−(𝑟𝑦0 +𝑎)|| = ||𝑟(𝑦 −𝑦0)|| = 𝑟||𝑦 −𝑦0|| < 𝑟 𝜀
𝑟 = 𝜀.

Portanto 𝑇 é um homeomorfismo.

A função definida no exemplo anterior realiza uma translação da bola 𝐵, posicionando seu
centro na origem, e depois realiza uma homotetia3, transformando-a numa bola unitária.

Proposição 2.1. Sejam 𝑋 ⊂ ℝ𝑛 homeomorfo à 𝐵𝑛 e 𝑓 ∶ 𝑋 ⟶ 𝑋 uma função contínua. Então existe
𝑝 ∈ 𝑋 tal que 𝑓 (𝑝) = 𝑝.
3 Dado um espaço vetorial normado 𝑉 , os conjuntos 𝑋,𝑌 ⊂ 𝑉 quaisquer e um número 𝛼 ∈ ℝ com 𝛼 ≠ 0, a função

ℎ𝛼 ∶ 𝑋 ⟶ 𝑌 dada por ℎ𝛼(𝑥) = 𝛼𝑥, é chamada homotetia. Ver (DOMINGUES, 1982).
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Demonstração. Como 𝑋 é homeomorfo à bola 𝐵𝑛, existe um homeomorfismo ℎ ∶ 𝑋 ⟶ 𝐵𝑛. Note
que a função

𝑔 = ℎ ∘ 𝑓 ∘ ℎ−1 ∶ 𝐵𝑛 ⟶ 𝐵𝑛

é composta de funções contínuas. Segue-se do Teorema 2.4 que existe 𝑎 ∈ 𝐵𝑛 tal que 𝑔(𝑎) = 𝑎.

𝐵𝑛 𝐵𝑛

𝑋 𝑋

𝑔

ℎ−1 ℎ

𝑓

Figura 9 – A função 𝑔 = ℎ ∘ 𝑓 ∘ ℎ−1.
Fonte: O autor

Como ℎ é homeomorfismo, existe 𝑝 ∈ 𝑋 tal que ℎ(𝑝) = 𝑎, e consequentemente ℎ−1(𝑎) = 𝑝.
Afirmamos que 𝑝 é ponto fixo de 𝑓 . Com efeito

𝑓 (𝑝) = (𝑓 ∘ ℎ−1)(𝑎) = [(ℎ−1 ∘ℎ) ∘ (𝑓 ∘ ℎ−1)](𝑎) = [(ℎ−1 ∘ (ℎ ∘ (𝑓 ∘ ℎ−1))](𝑎)
= (ℎ−1 ∘𝑔)(𝑎) = ℎ−1(𝑎) = 𝑝.

Corolário 2.2 (Teorema de Brouwer em uma Bola Fechada do ℝ𝑛). Seja 𝐵 uma bola fechada
qualquer de ℝ𝑛 e 𝑓 ∶ 𝐵 ⟶ 𝐵 contínua. Então existe 𝑝 ∈ 𝐵 tal que 𝑓 (𝑝) = 𝑝.

Sejam 𝑥0 ∈ ℝ𝑛 e 𝑟 > 0. Mostraremos agora que o Teorema de Brouwer em uma bola fechada
𝐵 = 𝐵[𝑥0, 𝑟] qualquer de ℝ𝑛 implica no Teorema da Retração em 𝐵.

Corolário 2.3. Seja 𝐵 = 𝐵[𝑥0, 𝑟] uma bola fechada de ℝ𝑛 e 𝑆 = 𝑆(𝑥0, 𝑟) o seu bordo. Não existe
retração de 𝐵 em 𝑆.

Demonstração. Suponha que exista 𝑔 ∶ 𝐵 ⟶ 𝑆 contínua e satisfazendo 𝑔(𝑥) = 𝑥,∀𝑥 ∈ 𝑆. Podemos
definir a função 𝑓 ∶ 𝐵 ⟶ 𝐵 por

𝑓 (𝑥) = 2𝑥0 −𝑔(𝑥).

Note que 𝑓 está bem definida, pois 𝑓 (𝐵) ⊂ 𝑆 ⊂ 𝐵. De fato,

||𝑓 (𝑥)−𝑥0|| = ||2𝑥0 −𝑔(𝑥)−𝑥0|| = ||𝑔(𝑥)−𝑥0|| = 𝑟, pois 𝑔(𝑥) ∈ 𝑆.
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Além disso, 𝑓 é contínua. Segue-se do 2.2 que existe 𝑝 ∈ 𝐵 tal que 𝑓 (𝑝) = 𝑝. E como vimos
acima, 𝑝 ∈ 𝑆, assim, 𝑔(𝑝) = 𝑝. Daí

𝑝 = 𝑓 (𝑝) = 2𝑥0 −𝑔(𝑝) = 2𝑥0 −𝑝 ⟹ 2𝑝 = 2𝑥0 ⟹ 𝑝 = 𝑥0 ⟹ ||𝑝−𝑥0|| = 0

o que contradiz o fato de que 𝑝 ∈ 𝑆. Portanto não pode existir retração de 𝐵 em 𝑆.

2.3 O Teorema do Ponto Fixo de Brouwer em Conjuntos Convexos
Compactos de ℝ𝑛

A seguir faremos uma generalização do Teorema do Ponto Fixo de de Brouwer para conjun-
tos convexos e compactos de ℝ𝑛. A principal referência utilizada nesta seção foi (Institute, 2025).

Teorema 2.5 (Teorema do Ponto Fixo de Brouwer em Conjuntos Convexos Compactos de ℝ𝑛).
Sejam 𝐾 um conjunto convexo e compacto de ℝ𝑛 e 𝑓 ∶ 𝐾 ⟶ 𝐾 uma função contínua. Então existe
𝑝 ∈ 𝐾 tal que 𝑓 (𝑝) = 𝑝.

Demonstração. Como 𝐾 é compacto, temos que 𝐾 é limitado. Portanto podemos tomar alguma
bola 𝐵 de ℝ𝑛 tal que 𝐾 ⊂ 𝐵. Fixe 𝑥 ∈ 𝐵. A partir da norma euclidiana, defina a função

𝑑𝑥 ∶ 𝐾 ⟶ ℝ+ por 𝑑𝑥(𝑧) = ||𝑥 − 𝑧||.

Como 𝑑𝑥 é contínua e 𝐾 é compacto, temos que 𝑑𝑥 assume valor mínimo em algum 𝑦𝑥 ∈ 𝐾 , isto é,
||𝑥 −𝑦𝑥|| ≤ ||𝑥 − 𝑧||,∀𝑧 ∈ 𝐾.

Figura 10 – O ponto 𝑦𝑥 ∈ 𝐾 fornece a menor distância entre o ponto 𝑥 ∈ 𝐵 e o conjunto 𝐾 .
Fonte: O autor
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Afirmação: Este 𝑦𝑥 é único. De fato, sejam 𝑦1, 𝑦2 ∈ 𝐾 tais que

||𝑥 −𝑦1|| = ||𝑥 −𝑦2|| = 𝑑 ≤ ||𝑥 − 𝑧||,∀𝑧 ∈ 𝐾.

Como 𝐾 é convexo, 𝑢 = 1
2 (𝑦1 +𝑦2) ∈ 𝐾. Daí, aplicando-se a regra do paralelogramo4 temos

𝑑2 ≤ ||𝑥 −𝑢||2 = ∥𝑥 − 1
2 (𝑦1 +𝑦2)∥

2
= 1

4 ∥2𝑥 −(𝑦1 +𝑦2)∥2

= 1
4 ∥(𝑥 −𝑦1)+(𝑥 −𝑦2)∥2

= 1
2 ∥𝑥 −𝑦1∥2 + 1

2 ∥𝑥 −𝑦2∥2 − 1
4 ∥(𝑥 −𝑦1)−(𝑥 −𝑦2)∥2

= 1
2 ∥𝑥 −𝑦1∥2 + 1

2 ∥𝑥 −𝑦2∥2 − 1
4 ∥𝑦1 −𝑦2∥2 = 𝑑2 − 1

4||𝑦1 −𝑦2||2 ≤ 𝑑2.

(2.8)

Pela Equação (2.8) temos que

𝑑2 ≤ 𝑑2 − 1
4||𝑦1 −𝑦2||2 ≤ 𝑑2.

Portanto ||𝑦1 −𝑦2|| = 0, e assim 𝑦1 = 𝑦2. Em outras palavras, para cada 𝑥 ∈ 𝐵 existe único 𝑦𝑥 ∈ 𝐾 tal
que

||𝑥 −𝑦𝑥|| = min
𝑧∈𝐾

{||𝑥 − 𝑧||} .

Podemos então definir a função

𝑔 ∶ 𝐵 ⟶ 𝐾 por 𝑔(𝑥) = 𝑦𝑥,∀𝑥 ∈ 𝐵.

Note que, 𝑔(𝑥) = 𝑥,∀𝑥 ∈ 𝐾.

Afirmação: A função 𝑔 é contínua. Com efeito, seja 𝑥0 ∈ 𝐵 e (𝑥𝑛) ⊂ 𝐵 com lim𝑛→∞𝑥𝑛 = 𝑥0.
Suponha que (𝑔(𝑥𝑛)) ⊂ 𝐾 não convirja para 𝑔(𝑥0) ∈ 𝐾 . Então existe 𝜀 > 0 e uma subsequência
(𝑔(𝑥𝑛𝑗)) tais que

||𝑔(𝑥𝑛𝑗)−𝑔(𝑥0)|| ≥ 𝜀, para todo 𝑗 ∈ ℕ.

Como 𝐾 é compacto, existe uma subsequência (𝑔(𝑥𝑛𝑗𝑖
)) de (𝑔(𝑥𝑛𝑗)), que converge para algum

ponto 𝑦∗ ∈ 𝐾 .

Desta forma, para todo 𝑖 ∈ ℕ temos que

∥𝑥𝑛𝑗𝑖
−𝑔(𝑥𝑛𝑗𝑖

)∥ ≤ ∥𝑥𝑛𝑗𝑖
−𝑧∥ ,∀𝑧 ∈ 𝐾,

em particular
∥𝑥𝑛𝑗𝑖

−𝑔(𝑥𝑛𝑗𝑖
)∥ ≤ ∥𝑥𝑛𝑗𝑖

−𝑔(𝑥0)∥ ,
4 Usamos que dados 𝑢,𝑣 ∈ ℝ𝑛 vale que ||𝑢+𝑣||2 + ||𝑢−𝑣||2 = 2||𝑢||2 +2||𝑣||2.
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e passando o limite obtemos que

||𝑥0 −𝑦∗|| ≤ ||𝑥0 −𝑔(𝑥0)||.

Segue-se da minimalidade de ||𝑥0 −𝑔(𝑥0)|| que 𝑦∗ = 𝑔(𝑥0).

Daí lim𝑖→∞𝑔(𝑥𝑛𝑗𝑖
) = 𝑔(𝑥0), o que contradiz o fato de ||𝑔(𝑥𝑛𝑗) − 𝑔(𝑥)|| ≥ 𝜀, para todo 𝑗 ∈ ℕ.

Portanto, (𝑔(𝑥𝑛)) converge para 𝑔(𝑥0). Portanto 𝑔 é contínua.

Defina a função ℎ ∶ 𝐵 ⟶ 𝐵 pondo

ℎ(𝑥) = (𝑓 ∘ 𝑔)(𝑥),∀𝑥 ∈ 𝐵.

𝐾 𝐾 ⊆ 𝐵

𝐵

𝑔 ℎ

𝑓

Figura 11 – A função ℎ = 𝑓 ∘𝑔.
Fonte: O autor

Como 𝑓 e g são contínuas, segue-se que ℎ é contínua. Pelo Corolário 2.2, temos que existe
𝑝 ∈ 𝐵 tal que ℎ(𝑝) = 𝑝. Como ℎ(𝐵) = 𝑓 (𝑔(𝐵)) ⊂ 𝐾 , temos que 𝑝 ∈ 𝐾. Assim, 𝑔(𝑝) = 𝑝. Portanto,

𝑓 (𝑝) = 𝑓 (𝑔(𝑝)) = ℎ(𝑝) = 𝑝,

e 𝑝 é um ponto fixo de 𝑓 .
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CAPÍTULO 3

O JOGO HEX
Neste capítulo vamos discutir a equivalência entre o Teorema de Hex e o Teorema do Ponto

Fixo de Brouwer. O Jogo Hex1 é um jogo não cooperativo, isto é, cada participante age de forma
independentemente, sem colaboração ou comunicação com nenhum outro jogador, como visto em
(Salvanés, 2021), e além disso possui regras bem simples. O Teorema de Hex afirma, basicamente,
que o jogo Hex nunca termina empatado. Por fim, provaremos que o Teorema do Ponto Fixo de
Brouwer e o Teorema de Hex são equivalentes. As principais referências utilizadas neste capítulo
foram (Salvanés, 2021) e (Gale, 1979).

3.1 O Jogo Hex

O jogo Hex é um jogo de estratégia criado por Piet Hein, em 1942, e reinventado por John
Nash, em 1948. O tabuleiro de Hex é composto por células hexagonais regulares dispostas de modo
a formar um losango. Esse tabuleiro é normalmente identificado como sendo de tamanho 𝑘 ×𝑘, indi-
cando que há 𝑘 hexágonos em cada lado. As bordas opostas do tabuleiro são distinguidas por duas
cores diferentes, geralmente vermelho e azul, cada uma correspondendo a um dos dois jogadores.
A Figura 12 apresenta um tabuleiro de Hex 12 ×12. As regras do jogo são:

• A cada jogador é atribuída uma cor;

• Os jogadores jogam alternadamente;

• A jogada consiste em colorir uma casa vazia do tabuleiro com a sua cor;

• Vence o jogo o primeiro jogador a conseguir obter um caminho formado por hexágonos adja-
centes, todos da sua cor, ligando os lados opostos do tabuleiro da cor do jogador.

• O jogo termina quando um dos jogadores vencer.

Assim, observando a Figura 12, o jogador vermelho deve construir um caminho de hexágo-
nos vermelhos adjacentes que ligue as bordas vermelhas (superior e inferior), enquanto o jogador
azul busca conectar as bordas azuis (esquerda e direita) com um caminho formado por hexágonos
azuis adjacentes.

1 Existem aplicativos gratuitos que podem ser baixados, para se jogar o jogo tanto a versão para computadores
quanto para celulares. Pode-se baixar a versão para computadores no seguinte link: https://hex-boardgame.
en.softonic.com/

https://hex-boardgame.en.softonic.com/
https://hex-boardgame.en.softonic.com/
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Figura 12 – Tabuleiro de Hex 12 ×12.
Fonte: O autor.

A Figura 13 ilustra um tabuleiro de Hex no qual as células vermelhas e azuis representam
as jogadas dos dois participantes. As bordas vermelhas correspondem às extremidades superior e
inferior, e as bordas azuis às laterais esquerda e direita.

Figura 13 – Tabuleiro de Hex 12 ×12, ao fim do jogo.
Fonte: O autor.
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3.2 O Teorema de Hex

Nesta seção mostraremos que o jogo Hex nunca termina empatado, isto é, sempre um dos
dois jogadores irá vencer.

Intuitivamente, para que houvesse um empate, seria necessário que ambos os jogadores
estivessem “presos”, isto é, que nenhum deles conseguisse estabelecer um caminho formado por
hexágonos adjacentes entre as suas respectivas bordas. No entanto, tal situação é impossível no jogo
Hex. De fato, suponha que o jogador azul tenha formado um conjunto de peças que impede o avanço
do jogador vermelho. Isso significa que o azul criou uma espécie de barreira fechada, delimitando
uma região onde o vermelho não pode mais conectar suas bordas. Contudo, essa mesma barreira
azul, ao se fechar sobre o vermelho, forçosamente cria um caminho contínuo de peças azuis que
liga as bordas azuis do tabuleiro, garantindo assim a vitória do azul.

De modo análogo, se o vermelho tentar impedir completamente o azul, a fronteira que ele
formar acabará conectando suas próprias bordas, resultando na vitória vermelha. Portanto, é impos-
sível que ambos fiquem presos simultaneamente, pois o ato de “prender” o adversário já constitui
uma conexão vencedora.

Teorema 3.1 (Teorema de Hex, Gale 1979). Se todos os hexágonos do tabuleiro 𝑘 ×𝑘 do jogo Hex
estão coloridos por alguma cor, seja vermelho ou azul, então existirá um caminho de hexágonos
adjacentes que une ou os lados vermelhos, ou os lados azuis.

Demonstração. Inicialmente observe que se o jogo se encerrar antes de o tabuleiro estar comple-
tamente preenchido, então um dos jogadores terá vencido, isto é, construído um caminho ligando
as bordas da sua cor por um caminho de hexágonos dessa mesma cor, e o resultado estará provado.
Consideraremos então uma partida em que todas as casas do tabuleiro foram preenchidas e mostra-
remos que um dos jogadores venceu. Para demonstrar esse resultado, construiremos um algoritmo
que, para qualquer tabuleiro 𝑘 ×𝑘 completo após uma partida do jogo Hex, como a Figura 13, sempre
encontre um caminho de hexágonos adjacentes unindo dois lados opostos do tabuleiro, da mesma
cor do caminho. Nomearemos de 𝑢,𝑣,𝑢′ e 𝑣′ os vértices do tabuleiro.

Para construir o algoritmo criaremos um grafo. Em Teoria de Grafos, o que chamamos de
nós serão os vértices dos hexágonos e os vértices do tabuleiro; as arestas do grafo serão os lados
dos hexágonos e os segmentos ligando os vértices 𝑢,𝑣,𝑢′ e 𝑣′ ao bloco de hexágonos do tabuleiro,
conforme a Figura 14. Chamaremos de casas azuis os hexágonos azuis e os lados azuis do tabuleiro.
Analogamente, chamaremos de casas vermelhas os hexágonos vermelhos e os lados vermelhos do
tabuleiro.
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Figura 14 – Tabuleiro de Hex 12 ×12 com seus nós e arestas.
Fonte: O autor.

A regra de construção do grafo é que ele sempre avance por uma aresta que tenha uma casa
azul de um lado e uma casa vermelha de outro. É fácil ver que as arestas que partem de quaisquer
dos vértices 𝑢,𝑣,𝑢′ e 𝑣′ satisfazem essa propriedade.

Sem perda de generalidade, consideremos o grafo sendo percorrido a partir do vértice 𝑢. À
medida que seguimos as arestas do grafo, imaginemos que caminhamos sobre elas, avançando de
um vértice ao próximo conforme a orientação definida pelo percurso. Dessa forma, convencionamos
chamar de lado direito do grafo aquele que corresponde à direção voltada para a nossa mão direita,
e de lado esquerdo aquele voltado para a nossa mão esquerda.

Nessa perspectiva, ao iniciarmos o trajeto, temos uma casa vermelha localizada à direita do
grafo e uma casa azul à esquerda. Ou seja, é como se “caminhássemos” sobre a primeira aresta, indo
do vértice 𝑢 ao próximo, tendo à nossa direita uma casa vermelhas e à nossa esquerda uma casa azul.
Ao continuarmos a caminhada, isto é, ao avançarmos de vértice em vértice seguindo a construção
do grafo, essa relação entre as cores se mantém: a cada novo passo, encontramos sempre uma casa
vermelha à direita e uma azul à esquerda, conforme ilustrado na Figura 15.

Para que essa disposição se invertesse, seria necessário que o trajeto passasse por uma aresta
que ligasse duas casas da mesma cor em ambos os lados, o que violaria a forma como o grafo foi
construído. Portanto, a orientação do percurso garante que o padrão de cores se preserve em todo o
grafo.

Além disso, ao percorrer uma aresta do grafo, saindo de um vértice e chegando a outro
vértice cercado por três casas adjacentes, como na Figura 15, é sempre possível mover-se para outro
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Figura 15 – Três casas adjacentes do tabuleiro.
Fonte: O autor.

vértice diferente, isto é, percorrer uma nova aresta, de acordo com as regras do algoritmo e como
pode ser visto na Figura 15, há sempre uma única forma de fazer esse movimento. Desta forma, o
algoritmo constrói um grafo e este é único.

Adicionalmente, como o grafo é finito, já que a quantidade de arestas do tabuleiro 𝑘 × 𝑘 é
finita, concluímos que o processo deve acabar em algum momento. Porém, como já vimos, sempre
que houver três casas adjacentes é possível avançar. Desta forma concluímos que o processo deverá
se encerrar em um dos vértices 𝑢,𝑣,𝑢′ e 𝑣′. Porém o processo não pode terminar em 𝑢, já que ele
se iniciou neste vértice, e nem em 𝑣′, pois isso faria com que tivéssemos uma casa azul à direita do
grafo e uma vermelha à esquerda do grafo, o que já concluímos que é impossível. Logo, o grafo só
poderá terminar em 𝑣 ou 𝑢′. Observe os grafos, partindo do vértice 𝑢, Figura 16, e 𝑢′, Figura 17.

Figura 16 – Grafo construído utilizando o algoritmo no Tabuleiro de Hex 12 ×12.
Fonte: O autor.
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Figura 17 – Grafo construído utilizando o algoritmo no Tabuleiro de Hex 12 ×12.
Fonte: O autor.

No caso em que o grafo iniciado em 𝑢 termina em 𝑣, como na Figura 16, teremos um caminho
formado por hexágonos azuis ligando os lados azuis do tabuleiro. Caso o grafo tivesse terminado
em 𝑢′, teríamos um caminho formado por hexágonos vermelhos ligando os lados vermelhos do
tabuleiro.

Esse algoritmo traduz a ideia intuitiva trazida no início desta seção. Conforme vemos a
figura, os grafos obtidos formam um tipo de “barreira” azul criada por um dos jogadores e que
“impede” os movimentos do outro jogador.

3.3 Teorema do Ponto Fixo de Brouwer via Teorema de Hex

Nesta seção provaremos novamente o Teorema do Ponto Fixo de Brouwer, desta vez utili-
zando o Teorema de Hex.

Considere a função 𝑔0 ∶ ℝ2 ⟶ ℝ2 dada por

𝑔0(𝑥) = ⎛⎜
⎝

2𝑥1 −𝑥2
2 ,

√3𝑥2
2

⎞⎟
⎠

,
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para todo 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2. A função 𝑔0 é um homeomorfismo cuja inversa 𝑔−1
0 ∶ ℝ2 ⟶ ℝ2 é dada

por

𝑔−1
0 (𝑥) = ⎛⎜

⎝
3𝑥1 +√3𝑥2

3 , 2√3𝑥2
3

⎞⎟
⎠

,

para todo 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2.

Podemos definir ainda a seguinte função || ⋅ ||𝐴 ∶ ℝ2 ⟶ ℝ+ por ||𝑥||𝐴 = ||𝑔−1
0 (𝑥)||, em que || ⋅ ||

é a norma do máximo em ℝ2.

Lema 3.1. A função || ⋅ ||𝐴 é uma norma em ℝ2.

Demonstração. De fato:

i) Seja 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 tal que ||𝑥||𝐴 = 0. Então,

0 = ||𝑥||𝐴 = ∥𝑔−1
0 (𝑥)∥ ⟹ 𝑔−1

0 (𝑥) = (0,0).

Segue-se que
⎧{{
⎨{{⎩

3𝑥1 +√3𝑥2
3 = 0,

2√3𝑥2
3 = 0.

Portanto, (𝑥1, 𝑥2) = (0,0).

ii) Seja 𝜆 ∈ ℝ e 𝑥 ∈ ℝ2. Então,

||𝜆𝑥||𝐴 = ||𝑔−1
0 (𝜆𝑥)|| = ∥∥∥∥

⎛⎜
⎝

3𝜆𝑥1 +√3𝜆𝑥2
3 , 2√3𝜆𝑥2

3
⎞⎟
⎠

∥∥∥∥
= ∥∥∥∥

𝜆⎛⎜
⎝

3𝑥1 +√3𝑥2
3 , 2√3𝑥2

3
⎞⎟
⎠

∥∥∥∥

= |𝜆| ∥∥∥∥
⎛⎜
⎝

3𝑥1 +√3𝑥2
3 , 2√3𝑥2

3
⎞⎟
⎠

∥∥∥∥
= |𝜆| ⋅ ||𝑔−1

0 (𝑥)|| = |𝜆| ⋅ ||𝑥||𝐴.

iii) Sejam 𝑥 = (𝑥1, 𝑥2),𝑦 = (𝑦1, 𝑦2) ∈ ℝ2. Então,

||𝑥 +𝑦||𝐴 = ||𝑔−1
0 (𝑥 +𝑦)|| = ∥∥∥∥

⎛⎜
⎝

3(𝑥1 +𝑦1)+√3(𝑥2 +𝑦2)
3 , 2√3(𝑥2 +𝑦2)

3
⎞⎟
⎠

∥∥∥∥

= ∥∥∥∥
⎛⎜
⎝

3𝑥1 +√3𝑥2
3 , 2√3𝑥2

3
⎞⎟
⎠

+⎛⎜
⎝

3𝑦1 +√3𝑦2
3 , 2√3𝑦2

3
⎞⎟
⎠

∥∥∥∥
= ||𝑔−1

0 (𝑥)+𝑔−1
0 (𝑦)||

≤ ||𝑔−1
0 (𝑥)|| + ||𝑔−1

0 (𝑦)|| = ||𝑥||𝐴 + ||𝑦||𝐴.

Portanto, || ⋅ ||𝐴 é uma norma em ℝ2.
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Observe que a restrição 𝑔 da função 𝑔0 à 𝐼2 é um homeomorfismo do quadrado 𝐼2 no losango

de ℝ2 de lado um, com vértices em (0,0), (1,0),⎛⎜
⎝

−1
2,

√3
2

⎞⎟
⎠
e ⎛⎜

⎝
−1

2,
√3
2

⎞⎟
⎠
. Tal losango será denotado

por 𝐴. Geometricamente, a função 𝑔 mantém a base do quadrado 𝐼2 fixa e deforma o quadrado no
losango, empurrando seu topo para a esquerda2.

Figura 18 – A função 𝑔 é um homeomorfismo de 𝐼2 em 𝐴.

Figura 19 – A função 𝑔 é um homeomorfismo de 𝐼2 em 𝐴.
Fonte: O autor.

2 Pode-se ver o funcionamento da função 𝑔 através da construção disponível no link https://www.geogebra.org/
classic/ysf9gmjq.

https://www.geogebra.org/classic/ysf9gmjq
https://www.geogebra.org/classic/ysf9gmjq


34

Teorema 3.2 (Teorema do Ponto Fixo de Brouwer via Teorema doHex). Seja 𝐼 = [0,1] e 𝑓 ∶ 𝐼2 ⟶ 𝐼2

contínua. Então existe 𝑥0 ∈ 𝐼2 tal que 𝑓 (𝑥0) = 𝑥0.

Demonstração. Denotaremos por || ⋅ || a norma do máximo em ℝ2, isto é, ||𝑥|| = max{𝑥1, 𝑥2} para
qualquer 𝑥 = (𝑥1, 𝑥2) ∈ 𝐼2 e por || ⋅ ||𝐴 a norma em ℝ2 definida no início desta seção, a partir da
função 𝑔−1

0 ∶ ℝ2 ⟶ ℝ2. Como 𝑓 (𝑥) = (𝑓1(𝑥), 𝑓2(𝑥)) é contínua, temos que 𝑓1 e 𝑓2 são contínuas, pela
Proposição A.7. Suponha que exista 𝜀0 > 0 tal que ||𝑓 (𝑥)−𝑥|| ≥ 𝜀0, para todo 𝑥 ∈ 𝐼2. Isto significa,
que o ponto 𝑓 (𝑥) não pertence ao quadrado de lado 2𝜀0 e centro em 𝑥, pois estamos utilizando a
norma do máximo, conforme pode ser representado na Figura 20.

Figura 20 – Elemento 𝑥 ∈ 𝐼2 e sua imagem pela função 𝑓 .
Fonte: O autor.

Construiremos os seguintes conjuntos:

𝐻+ = {𝑥 ∈ 𝐼2; 𝑓1(𝑥)−𝑥1 > 𝜀0} ,

𝐻− = {𝑥 ∈ 𝐼2; 𝑥1 −𝑓1(𝑥) > 𝜀0} ,

e denotaremos por 𝐻 = 𝐻+ ∪𝐻−. Sendo 𝑋 = 𝐼2 −𝐻, construiremos também os conjuntos

𝑉+ = {𝑥 ∈ 𝑋; 𝑓2(𝑥)−𝑥2 > 𝜀0} ,

𝑉− = {𝑥 ∈ 𝑋;𝑥2 −𝑓2(𝑥) > 𝜀0} .

Em outras palavras, cada 𝑥 ∈ 𝐼2 determina 4 regiões em 𝐼2 conforme a Figura 21. Dizemos que
𝑥 ∈ 𝐻+ se 𝑓 (𝑥) pertencer a Região Azul Escuro; 𝑥 ∈ 𝐻− se 𝑓 (𝑥) pertencer a Região Azul Claro;
𝑥 ∈ 𝑉+ se 𝑓 (𝑥) pertencer a Região Vermelho Escuro; 𝑥 ∈ 𝑉− se 𝑓 (𝑥) pertencer a Região Vermelho
Claro.
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Figura 21 – Divisão de 𝐼2 em quatro regiões para cada 𝑥 ∈ 𝐼2.
Fonte: O autor.

Sendo 𝑔 = 𝑔0 |𝐼2 ∶ 𝐼2 ⟶ 𝐴, podemos definir os conjuntos:

𝐻+
𝐴 = {𝑧 ∈ 𝐴; 𝑔−1(𝑧) ∈ 𝐻+} ,

𝐻−
𝐴 = {𝑧 ∈ 𝐴; 𝑔−1(𝑧) ∈ 𝐻−} ,

𝑉+
𝐴 = {𝑧 ∈ 𝐴; 𝑔−1(𝑧) ∈ 𝑉+} ,

𝑉−
𝐴 = {𝑧 ∈ 𝐴; 𝑔−1(𝑧) ∈ 𝑉−} .

Assim, cada 𝑧 ∈ 𝐴 determina quatro regiões em 𝐴 conforme a Figura 22.

Figura 22 – Divisão de 𝐴 em quatro regiões para cada 𝑧 ∈ 𝐴.
Fonte: O autor.



36

Podemos construir um tabuleiro de Hex 𝑛 × 𝑛, em que 𝑛 ∈ ℕ é suficientemente grande tal
que cada hexágono esteja contido no losango de lado 2𝜀0 e cujo centro é o mesmo do hexágono,
como mostra a Figura 22.

Como a função 𝑔−1 é uma função contínua em 𝐴, que é um conjunto compacto, e 𝑓 é con-
tínua em 𝐼2, que também é compacto, segue-se pelo Teorema A.2 que 𝑔−1 e 𝑓 são uniformemente
contínuas. Daí existem 𝛿 > 0 e 𝛿0 > 0 tais que

se 𝑥,𝑥′ ∈ 𝐼2 e ||𝑥 −𝑥′|| < 𝛿, então ||𝑓 (𝑥)− 𝑓 (𝑥′)|| < 𝜀0,

e
se 𝑧, 𝑧′ ∈ 𝐴 e ||𝑧 − 𝑧′||𝐴 < 𝛿0, então ||𝑔−1(𝑧)−𝑔−1(𝑧′)|| < 𝛿.

Podemos tomar 𝛿 pequeno o suficiente tal que 𝛿 < 𝜀0. Novamente, uma vez fixado o valor de 𝛿0,
podemos tomar 𝑛 ∈ ℕ suficientemente grande tal que se 𝑧, 𝑧′ ∈ 𝐴 forem centros de dois hexágonos
adjacentes, então a distância ||𝑧 − 𝑧′||𝐴 < 𝛿0.

Por fim, iremos colorir cada hexágono de acordo com o conjunto em que seu centro estiver,
isto é, se o centro do hexágono estiver em 𝐻+

𝐴 ,𝐻−
𝐴 ,𝑉+

𝐴 ou 𝑉−
𝐴 iremos colorir o hexágono de azul

escuro, azul claro, vermelho escuro ou vermelho claro, respectivamente.

Mostraremos agora que não existem hexágonos adjacentes que sejam um azul escuro e o
outro azul claro. Suponham que existam umhexágono de centro em 𝑧 = (𝑧1, 𝑧2) ∈ 𝐻+

𝐴 e um hexágono
de centro em 𝑧′ = (𝑧′

1, 𝑧′
2) ∈ 𝐻−

𝐴 , adjacentes. Isto significa que 𝑥 = 𝑔−1(𝑧) = (𝑥1, 𝑥2) ∈ 𝐻+ e 𝑥′ =
𝑔−1(𝑧′) = (𝑥′

1, 𝑥′
2)) ∈ 𝐻−. De acordo com a escolha de 𝑛 ∈ ℕ, temos

||𝑧 − 𝑧′||𝐴 < 𝛿0 ⟹ ||𝑔−1(𝑧)−𝑔−1(𝑧′)|| = ||𝑥 −𝑥′|| < 𝛿 ⟹ ||𝑓 (𝑥)− 𝑓 (𝑥′)|| < 𝜀0.

Além disso, como 𝑥 ∈ 𝐻+ e 𝑥′ ∈ 𝐻−, temos que

𝑓1(𝑥)−𝑥1 > 𝜀0 e 𝑥′
1 −𝑓1(𝑥′) > 𝜀0 ⟹ 𝑓1(𝑥)− 𝑓1(𝑥′)+𝑥′

1 −𝑥1 > 2𝜀0.

Logo, como estamos usando a norma do máximo em 𝐼2, temos que 𝑓1(𝑥) − 𝑓1(𝑥′) ≤ ||𝑓 (𝑥) − 𝑓 (𝑥′)||
e 𝑥′

1 −𝑥1 ≤ ||𝑥 −𝑥′|| < 𝛿 < 𝜀0. Assim,

2𝜀0 < 𝑓1(𝑥)− 𝑓1(𝑥′)+𝑥′
1 −𝑥1 < ||𝑓 (𝑥)− 𝑓 (𝑥′)|| +𝜀0.

Concluímos então que
||𝑓 (𝑥)− 𝑓 (𝑥′)|| > 𝜀0,

contradizendo a continuidade uniforme de 𝑓 , pois ||𝑥 − 𝑥′|| < 𝛿, mas ||𝑓 (𝑥) − 𝑓 (𝑥′)|| > 𝜀0. Portanto
não existem hexágonos adjacentes que sejam um azul escuro e o outro azul claro. Analogamente,
não existem hexágonos adjacentes que sejam um vermelho escuro e o outro vermelho claro.
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Além disso, os hexágonos adjacentes à borda direita do tabuleiro, não podem ser pintados de
azul escuro. Suponha que pudessem. Então existiria um hexágono, de centro em 𝑧 = (𝑧1, 𝑧2) ∈ 𝐻+

𝐴 ,
adjacente à borda direita do tabuleiro. Assim, temos que 𝑥 = 𝑔−1(𝑧) = (𝑥1, 𝑥2) ∈ 𝐻+. Segue-se disto
que

𝑓1(𝑥)−𝑥1 > 𝜀0 ⟹ 𝑓1(𝑥) > 𝑥1 +𝜀0.

Pela construção da função 𝑔, como (1,𝑥2) ∈ 𝐼2 pertence à borda direita de 𝐼2, podemos
concluir que 𝑧′ = 𝑔(1,𝑥2) ∈ 𝐴 pertence à borda direita do tabuleiro. Podemos tomar 𝑛 ∈ ℕ sufici-
entemente grande tal que ||𝑧 − 𝑢||𝐴 < 𝜀0, para todo 𝑢 ∈ 𝐴 que pertença à borda direita do tabuleiro.
Daí, em particular, tem-se ||𝑧 − 𝑧′||𝐴 < 𝜀0. Segue-se que

||𝑧 − 𝑧′||𝐴 = ||𝑔−1(𝑧)−𝑔−1(𝑧′)|| = ||(𝑥1, 𝑥2)−(1,𝑥2)|| = |𝑥1 −1| = 1−𝑥1,

pois 0 ≤ 𝑥1 ≤ 1, já que (𝑥1, 𝑥2) ∈ 𝐼2.

Desta forma, 1 − 𝑥1 < 𝜀0, daí 1 < 𝑥1 + 𝜀0 < 𝑓1(𝑥). Logo 𝑓 (𝑥) não pertenceria a 𝐼2, e isto é
uma contradição, pois por hipótese 𝑓 (𝑥) ∈ 𝐼2,∀𝑥 ∈ 𝐼2. Da mesma maneira: os hexágonos da borda
esquerda do tabuleiro, não podem ser pintados de azul claro; os hexágonos da borda superior do
tabuleiro, não podem ser pintados de vermelho escuro; os hexágonos da borda inferior do tabuleiro,
não podem ser pintados de vermelho claro.

Concluímos assim que embora todas as casas do tabuleiro estejam pintadas, não há um
caminho de hexágonos azuis (escuros ou claros) adjacentes ligando os lados azuis do tabuleiro e não
há um caminho de hexágonos vermelhos (escuros ou claros) adjacentes ligando os lados vermelhos
do tabuleiro. Este fato contradiz o Teorema 3.1. Portanto, concluímos que para todo 𝜀 > 0, existe
𝑥 ∈ 𝐼2 tal que ||𝑓 (𝑥)−𝑥|| < 𝜀.

Desta forma, é possível tomar uma sequência (𝑥𝑛)𝑛∈ℕ ⊂ 𝐼2 tal que

||𝑓 (𝑥𝑛)−𝑥𝑛|| < 1
𝑛.

Como 𝐼2 é compacto, existe uma subsequência (𝑥𝑛𝑘)𝑘∈ℕ ⊂ 𝐼2 tal que lim
𝑘→∞

𝑥𝑛𝑘 = 𝑥0 ∈ 𝐼2.
Como 𝑓 é contínua segue-se que

||𝑓 (𝑥0)−𝑥0|| = lim
𝑘→∞

||𝑓 (𝑥𝑛𝑘)−𝑥𝑛𝑘 || ≤ lim
𝑘→∞

1
𝑛𝑘

= 0.

Portanto, 𝑓 (𝑥0) = 𝑥0.
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3.4 Teorema de Hex via Teorema do Ponto Fixo de Brouwer

Considere a seguir o seguinte resultado, cuja demonstração não faremos neste trabalho, mas
pode ser encontrada em (Lima, Elon Lages, 2015).

Proposição 3.1. Sejam 𝐴 = (𝑎1,𝑎2),𝐵 = (𝑏1,𝑏2) e 𝐶 = (𝑐1, 𝑐2), pontos de ℝ2, não colineares. A
área do triângulo com vértices 𝐴,𝐵 e 𝐶 é dada por

𝑆(𝐴,𝐵,𝐶) = 1
2 ⋅det

⎛⎜⎜⎜⎜⎜
⎝

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
1 1 1

⎞⎟⎟⎟⎟⎟
⎠

= 1
2 [(𝑎1 −𝑐1)(𝑏2 −𝑐2)−(𝑏1 −𝑐1)(𝑎2 −𝑐2)] .

Corolário 3.1. Se 𝐴 = (𝑎1,𝑎2),𝐵 = (𝑏1,𝑏2) e 𝐶 = (𝑐1, 𝑐2) são pontos de ℝ2 não colineares, então

det
⎛⎜⎜⎜⎜⎜
⎝

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
1 1 1

⎞⎟⎟⎟⎟⎟
⎠

≠ 0.

A seguir provaremos alguns resultados que usaremos para provar o Teorema 3.1 a partir do
Teorema 3.2.

Considere um tabuleiro de Hex, de tamanho 𝑘 × 𝑘, completo ao fim de uma partida, como
na Figura 13. Podemos identificá-lo como um quadrado 𝐼2.

Definição 3.1. Os centros dos hexágonos serão chamados de vértices. Dois vértices são adjacentes
quando seus respectivos hexágonos forem adjacentes. O segmento ligando dois vértices adjacentes
será chamado de aresta.

Ligando os vértices adjacentes e nomeando os lados do tabuleiro por 𝑂 (lado esquerdo), 𝐿
(lado direito), 𝑁 (lado superior) e 𝑆 (lado inferior), obtém-se a Figura 23.

Definição 3.2. O conjunto 𝐵𝑘 é o conjunto de todos os vértices.

Definição 3.3. Chamaremos de triângulo o polígono formado por três vértices, dois a dois, adja-
centes.

É fácil perceber que cada ponto do quadrado 𝐼2 satisfaz uma única das seguintes situações:

• é um vértice;
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• está sobre uma aresta, isto é, pertence ao segmento de reta ligando dois vértices adjacentes;

• pertence ao interior de um triângulo.

Considere que o conjunto 𝐵𝑘 seja particionado em dois conjuntos 𝐻 e 𝑉 , em que 𝐻 é o
conjunto dos vértices azuis e 𝑉 é o conjunto dos vértices vermelhos.

Definiremos então os seguintes conjuntos conjuntos:

• ̂𝑂 é o conjunto dos vértices azuis que estão ligados a 𝑂 por um caminho formado por arestas
ligando apenas vértices que pertencem à 𝐻;

• 𝐿̂ = 𝐻 − ̂𝑂;

• ̂𝑆 é o conjunto dos vértices vermelhos que estão ligados a 𝑆 por um caminho formado por
arestas ligando apenas vértices que pertencem à 𝑉 ;

• ̂𝑁 = 𝑉 − ̂𝑆.

É claro que, pela definição destes conjuntos,

̂𝑂 ∩ ̂𝑆 = ̂𝑂 ∩ ̂𝑁 = 𝐿̂ ∩ ̂𝑆 = 𝐿̂ ∩ ̂𝑁 = ∅.

Figura 23 – Triangulação do tabuleiro de Hex 12 ×12 da Figura 13
Fonte: O autor.
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Lema 3.2. Não existe um vértice 𝑥 ∈ ̂𝑂 adjacente a um vértice 𝑦 ∈ 𝐿̂ e não existe um vértice 𝑥 ∈ ̂𝑆
adjacente a um vértice 𝑦 ∈ ̂𝑁 .

Demonstração. Suponha que exista um vértice 𝑥 ∈ ̂𝑂 adjacente a um vértice 𝑦 ∈ 𝐿̂. Neste caso
existe um caminho formado apenas pelos vértices azuis, ligando 𝑥 ao lado 𝑂 do tabuleiro. Como 𝑦 é
azul e está ligado à 𝑥, segue-se que existe um caminho azul ligando 𝑦 ao lado 𝑂. Logo 𝑦 ∈ ̂𝑂. Isso é
um absurdo pois 𝑦 ∈ 𝐿̂ = 𝐻 − ̂𝑂. Portanto, não existe um vértice 𝑥 ∈ ̂𝑂 adjacente a um vértice 𝑦 ∈ 𝐿̂.
A segunda parte é análoga.

Como estamos identificando o tabuleiro 𝑘 ×𝑘, em que 𝑘 representa o números de hexágonos
em cada lado do tabuleiro, com 𝐼2, a distância entre dois vértices consecutivos, na horizontal e na
vertical, é 1

𝑘 −1. Considere então os vetores 𝑢1 = ( 1
𝑘 −1,0) e 𝑢2 = (0, 1

𝑘 −1).

Lema 3.3. Se não existir um caminho azul ligando os lados 𝑂 e 𝐿, e não existir um caminho ver-
melho ligando os lado 𝑆 e 𝑁 , então a função 𝑔 ∶ 𝐵𝑘 ⟶ 𝐵𝑘 ⊂ 𝐼2 por

𝑔(𝑥) =

⎧{{{
⎨{{{⎩

𝑥 +𝑢1, se 𝑥 ∈ ̂𝑂;
𝑥 −𝑢1, se 𝑥 ∈ 𝐿̂;
𝑥 +𝑢2, se 𝑥 ∈ ̂𝑆;
𝑥 −𝑢2, se 𝑥 ∈ ̂𝑁,

está bem definida.

Demonstração. Observe que a função 𝑔, translada um ponto de ̂𝑂 para a posição do vértice a sua
direita, um ponto de 𝐿̂ para a posição do vértice a sua esquerda, um ponto de ̂𝑆 para a posição
do vértice imediatamente acima e um ponto de ̂𝑁 para a posição do vértice imediatamente abaixo.
Desta forma, 𝑔(𝑥) ≠ 𝑥,∀𝑥 ∈ 𝐵𝑘. Analisaremos os quatro casos possíveis:

• Caso 𝑥 ∈ ̂𝑂. A única forma de 𝑔(𝑥) = 𝑥 + 𝑢1 ∉ 𝐵𝑘, seria se 𝑥 ∈ 𝐿. Porém, se 𝑥 ∈ 𝐿, existiria
um caminho azul ligando 𝐿 a 𝑂, o que por hipótese não existe. Portanto, 𝐿 ∩ ̂𝑂 = ∅.

• Caso 𝑥 ∈ 𝐿̂. A única forma de 𝑔(𝑥) = 𝑥 −𝑢1 ∉ 𝐵𝑘, seria se 𝑥 ∈ 𝑂. Porém se 𝑥 ∈ 𝑂, haveria um
caminho trivial (pois 𝑥 já estaria em 𝑂) ligando 𝑥 a 𝑂, assim 𝑥 ∈ ̂𝑂. Isso é um absurdo pois
𝐿̂ = 𝐻 − ̂𝑂. Portanto 𝑂 ∩𝐿̂ = ∅.

• Caso 𝑥 ∈ ̂𝑆. A única forma de 𝑔(𝑥) = 𝑥 + 𝑢2 ∉ 𝐵𝑘, seria se 𝑥 ∈ 𝑁 . Porém, se 𝑥 ∈ 𝑁 , existiria
um caminho ligando 𝑁 a 𝑆, o que por hipótese não existe. Portanto, 𝑁 ∩ ̂𝑆 = ∅.

• Caso 𝑥 ∈ ̂𝑁 . A única forma de 𝑔(𝑥) = 𝑥 −𝑢2 ∉ 𝐵𝑘, seria se 𝑥 ∈ 𝑆. Porém se 𝑥 ∈ 𝑆, haveria um
caminho trivial (pois 𝑥 já estaria em 𝑆) ligando 𝑥 a 𝑆, assim 𝑥 ∈ ̂𝑆. Isso é um absurdo pois

̂𝑁 = 𝑉 − ̂𝑆. Portanto 𝑆 ∩ ̂𝑁 = ∅.
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Portanto, a função 𝑔 está bem definida.

Lema 3.4. Seja 𝑥 ∈ 𝐼2 um ponto pertencente a uma aresta (segmento de reta) ligando os dois
vértices adjacentes 𝐴 = (𝑎1,𝑎2) e 𝐵 = (𝑏1,𝑏2). Então existem únicos 𝜆1,𝜆2 ≥ 0 tais que 𝑥 = 𝜆1𝐴+
𝜆2𝐵 e 𝜆1 +𝜆2 = 1.

Demonstração. Com efeito, pela própria definição de segmento entre dois pontos, existe um único
parâmetro 0 ≤ 𝜆2 ≤ 1 tal que

𝑥 = (1−𝜆2)𝐴+𝜆2𝐵.

Daí basta tomar 𝜆1 = 1−𝜆2.

Lema 3.5. Seja 𝑥 ∈ 𝐼2 um ponto pertencente ao interior de um triângulo, determinado pelos vértices,
dois a dois adjacentes, 𝐴,𝐵 e 𝐶. Então existem únicos 𝜆1,𝜆2,𝜆3 ≥ 0 tais que 𝑥 = 𝜆1𝐴+𝜆2𝐵+𝜆3𝐶
e 𝜆1 +𝜆2 +𝜆3 = 1.

Figura 24 – Ponto 𝑥 ∈ 𝐼2 no interior do triângulo ABC, o divide em três outros triângulos.
Fonte: O autor.

Demonstração. Observe que

𝑥 = 𝜆1𝐴+𝜆2𝐵 +𝜆3𝐶 ⟹
⎧{{
⎨{{⎩

𝜆1𝑎1 +𝜆2𝑏1 +𝜆3𝑐1 = 𝑥1
𝜆1𝑎2 +𝜆2𝑏2 +𝜆3𝑐2 = 𝑥2

𝜆1 +𝜆2 +𝜆3 = 1.
,

Segue-se da Proposição 3.1 e do Corolário 3.1, que

𝑆(𝐴,𝐵,𝐶) = 1
2 ⋅det

⎛⎜⎜⎜⎜⎜
⎝

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
1 1 1

⎞⎟⎟⎟⎟⎟
⎠

≠ 0,
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portanto o sistema possui uma solução única.

Resolvendo o sistema linear acima, pela Regra de Cramer, obtemos

𝜆1 = 𝑆(𝑥,𝐵,𝐶)
𝑆(𝐴,𝐵,𝐶), 𝜆2 = 𝑆(𝐴,𝑥,𝐶)

𝑆(𝐴,𝐵,𝐶) e 𝜆3 = 𝑆(𝐴,𝐵,𝑥)
𝑆(𝐴,𝐵,𝐶). (3.1)

É imediato pela Equação (3.1) e da Proposição 3.1, que 𝜆1 +𝜆2 +𝜆3 = 1 como queríamos.

Afirmação: o Teorema 3.2 implica no Teorema 3.1

De fato, seja um tabuleiro 𝑘 × 𝑘 do jogo Hex, todo preenchido após o fim de uma partida.
Suponha que não haja nenhum caminho de hexágonos azuis ligando os lado azuis do tabuleiro e
nenhum caminho de hexágonos vermelhos ligando os lados vermelhos do tabuleiro. A partir dos
Lemas 3.3, 3.4 e 3.5, podemos definir uma função contínua 𝐺 ∶ 𝐼2 ⟶ 𝐼2 tal que para cada 𝑥 ∈ 𝐼2 do
seguinte modo:

• Se 𝑥 ∈ 𝐵𝑘, então 𝐺(𝑥) = 𝑔(𝑥);

• Se 𝑥 ∉ 𝐵𝑘, podemos escrever 𝑥 = 𝜆1𝐴 + 𝜆2𝐵 + 𝜆3𝐶 de forma única, em que 𝐴,𝐵 e 𝐶 são
vértices adjacentes de 𝐵𝑘 e determinam um triângulo que contenha 𝑥, então

𝐺(𝑥) = 𝜆1(𝑥)𝑔(𝐴)+𝜆2(𝑥)𝑔(𝐵)+𝜆3(𝑥)𝑔(𝐶).

Vamos verificar que 𝐺 está bem definida em qualquer triângulo formado por vértices ad-
jacentes 𝐴,𝐵 e 𝐶. De fato, como 𝑔(𝐴), 𝑔(𝐵) e 𝑔(𝐶) são vértices de 𝐵𝑘 ⊂ 𝐼2, segue-se que 𝐺(𝑥)
pertence ou a um segmento de reta que liga os pontos 𝑔(𝐴), 𝑔(𝐵) e 𝑔(𝐶) ou a um triângulo cujos
vértices são 𝑔(𝐴), 𝑔(𝐵) e 𝑔(𝐶). Em todo caso, temos 𝐺(𝑥) ∈ 𝐼2. Além disso, segue-se da Equação
(3.1) e da Proposição 3.1, que as funções 𝜆1,𝜆2 e 𝜆3 são polinômios lineares em ℝ2 e portanto são
contínuas. Desta forma, a função 𝐺 é também contínua em cada triângulo.

Além disso, sejam dois triângulos Δ𝐴𝐵𝐶 e Δ𝐴𝐵𝐶′ adjacentes, com a aresta 𝐴𝐵 em comum,
conforme a Figura 25. Segue-se dos Lemas 3.4 e 3.5 que

𝑥 = 𝜆1(𝑥)𝐴+𝜆2(𝑥)𝐵 = 𝜆1(𝑥)𝐴+𝜆2(𝑥)𝐵 +0 ⋅𝐶,

pois 𝑥 pertence ao triângulo Δ𝐴𝐵𝐶 e ainda

𝑥 = 𝜆1(𝑥)𝐴+𝜆2(𝑥)𝐵 = 𝜆1(𝑥)𝐴+𝜆2(𝑥)𝐵 +0 ⋅𝐶′,

pois 𝑥 pertence ao triângulo Δ𝐴𝐵𝐶′. Portanto, a imagem de 𝑥 independe do triângulo escolhido,
garantindo que 𝐺 está bem definida e é contínua em 𝐼2.
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Figura 25 – Elemento 𝑥 pertencente à aresta comum a dois triângulos adjacentes.
Fonte: O autor.

Como𝐺 ∶ 𝐼2 ⟶ 𝐼2 é contínua, segue-se do Teorema 3.2 que existe 𝑥0 ∈ 𝐼2 tal que𝐺(𝑥0) = 𝑥0.
Pela construção de 𝐺, sabemos que 𝑥0 ∉ 𝐵𝑘, pois 𝐺(𝑥) = 𝑔(𝑥) ≠ 𝑥,∀𝑥 ∈ 𝐵𝑘. Logo 𝑥0 pertence a
algum triângulo formado por vértices adjacentes de 𝐵𝑘 que denotaremos por 𝐴,𝐵 e 𝐶, sendo que
𝑥0 ∉ {𝐴,𝐵,𝐶}.

Neste caso, podemos escrever 𝑥0 = 𝜆1𝐴 + 𝜆2𝐵 + 𝜆3𝐶, em que 𝜆𝑖 = 𝜆𝑖(𝑥0), para cada 𝑖 =
1,2,3. Daí

𝐺(𝑥0) = 𝜆1𝑔(𝐴)+𝜆2𝑔(𝐵)+𝜆3𝑔(𝐶).
Segue-se que,

0 =𝐺(𝑥0)−𝑥0 = (𝜆1𝑔(𝐴)+𝜆2𝑔(𝐵)+𝜆3𝑔(𝐶))−(𝜆1𝐴+𝜆2𝐵 +𝜆3𝐶)
=𝜆1(𝑔(𝐴)−𝐴)+𝜆2(𝑔(𝐵)−𝐵)+𝜆3(𝑔(𝐶)−𝐶)
=𝜆1𝑣1 +𝜆2𝑣2 +𝜆3𝑣3,

(3.2)

em que 𝑣1, 𝑣2, 𝑣3 ∈ {+𝑢1,−𝑢1,+𝑢2,−𝑢2} e 𝜆1 +𝜆2 +𝜆3 = 1.

Como 𝐴,𝐵 e 𝐶 são adjacentes, podemos analisar os casos, por exemplo, se 𝐴 ∈ ̂𝑂. Segue-se
do Lema 3.2 que 𝐵,𝐶 ∉ 𝐿̂. Daí: (1) ou 𝐵,𝐶 ∈ ̂𝑂; (2) ou 𝐵,𝐶 ∈ ̂𝑆; (3) ou 𝐵,𝐶 ∈ ̂𝑁.

(1) Neste caso, temos da Equação 3.2 que

0 = 𝜆1𝑢1 +𝜆2𝑢1 +𝜆3𝑢1 = (𝜆1 +𝜆2 +𝜆3)𝑢1 = 𝑢1.

Um absurdo.

(2) Neste caso, temos da Equação 3.2 que

0 = 𝜆1𝑢1 +𝜆2𝑢2 +𝜆3𝑢2 = 𝜆1𝑢1 +(𝜆2 +𝜆3)𝑢2,
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como 𝑢1 e 𝑢2 são linearmente independentes segue-se que 𝜆1 = 0 e 𝜆2 + 𝜆3 = 0. Segue-se
que 𝜆1 +𝜆2 +𝜆3 = 0. Um absurdo.

(3) Neste caso, temos da Equação 3.2 que

0 = 𝜆1𝑢1 +𝜆2(−𝑢2)+𝜆3(−𝑢2) = 𝜆1𝑢1 −(𝜆2 +𝜆3)𝑢2,

como 𝑢1 e 𝑢2 são linearmente independentes segue-se que 𝜆1 = 0 e 𝜆2 + 𝜆3 = 0. Segue-se
que 𝜆1 +𝜆2 +𝜆3 = 0. Um absurdo.

Analogamente, todos os demais casos, de um total de 12 casos possíveis, conduzem a um absurdo
como nestes três.

Portanto, ao supor a inexistência de um caminho de hexágonos adjacentes de mesma cor
ligando lados opostos do tabuleiro da mesma cor do caminho, foi possível construir uma função
contínua de 𝐼2 em 𝐼2 com ponto fixo. Porém a existência desse ponto fixo levou a uma contradi-
ção. Portanto, existe um caminho de hexágonos adjacentes de mesma cor ligando lados opostos do
tabuleiro da mesma cor do caminho. O que prova o Teorema do Hex.
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CAPÍTULO 4

JOGOS COMO FERRAMENTA NA
APRENDIZAGEM MATEMÁTICA

O ensino da Matemática demanda metodologias que favoreçam a participação ativa dos
alunos e a construção do conhecimento. Nesse contexto, o uso de jogos apresenta-se como uma
estratégia pedagógica relevante, pois contribui para o desenvolvimento do pensamento matemático
ao estimular a investigação, a formulação de hipóteses, a argumentação e a abstração, além de
estar em consonância com as orientações dos principais documentos oficiais da educação básica
brasileira. As principais referencias deste capítulo são (Ponte; Brocardo; Oliveira, 2013) e (Grando,
2000).

4.1 A Importância da Investigação Matemática

De acordo com (Fiorentini, 1995), muitos alunos apresentam dificuldades no aprendizado
da Matemática em função, em grande parte, do seu caráter abstrato e da predominância de práticas
educacionais tradicionais, nas quais assumem uma postura passiva e se limitam a receber conheci-
mentos pré-existentes que, frequentemente, carecem de significado.

Existem diversos exemplos ao longo da história que mostram que a matemática sempre foi
desenvolvida através da investigação e da curiosidade, e não apenas aprendendo conhecimentos já
estabelecidos. Dentre eles, vale destacar Srinivasa Ramanujan (1887-1920), que foi um grandemate-
mático indiano autodidata que, embora não tenha tido uma formação acadêmica formal, fez grandes
contribuições em teoria dos números, séries infinitas e análise matemática. Segundo (Hardy, 1940),
Ramanujan demonstrava uma intuição matemática extraordinária, frequentemente desvinculada de
formalismos rigorosos. Ao ter contato com o livro A Synopsis of Elementary Results in Pure andAp-
plied Mathematics, escrito por George Shoobridge Carr, Ramanujan teve, definitivamente, o início
de sua carreira matemática.

Por meio do novo mundo que assim se abriu para ele (dizem seus biógrafos india-
nos), Ramanujan o percorreu com deleite. Foi esse livro que despertou o seu gênio.
Ele passou a estabelecer para si mesmo as fórmulas nele contidas. Como estava
sem o auxílio de outros livros, cada solução era, para ele, uma verdadeira peça de
investigação. Ramanujan costumava dizer que a deusa de Namakkal o inspirava
com as fórmulas em sonhos. É um fato notável que, frequentemente, ao levantar-se
da cama, ele anotava resultados e os verificava rapidamente, embora nem sempre
fosse capaz de fornecer uma prova rigorosa…(Hardy, 1940, p. 3, Tradução do au-
tor).



46

A trajetória de Ramanujan evidencia que a produção do conhecimento matemático não se limita à
aplicação de métodos formais previamente estabelecidos, destacando o papel da investigação como
elemento central da prática matemática, bem como a relevância da intuição e da criatividade no
surgimento de ideias que posteriormente podem ser sistematizadas e formalizadas.

Vale destacar também o matemático Andrew Wiles (1953 – ), que resolveu o Último Teo-
rema de Fermat em 1994, um problema que permaneceu em aberto por 358 anos, e que perturbou
grandes mentes da matemática ao longo dos séculos. De acordo com Wiles,

Desde que vi o Último Teorema de Fermat pela primeira vez, ainda criança, ele se
tornou minha grande paixão. [...] Eu encontrara este problema que passara trezen-
tos anos sem ser resolvido. Eu não creio que muitos dos meus colegas de escola
tenham pego a mania pela matemática, assim não comentei o assunto com meus
companheiros. Mas eu tinha um professor que fizera alguma pesquisa em matemá-
tica e ele me deu um livro sobre a teoria dos números, com algumas pistas sobre
como começar a abordar o problema. Para começar eu trabalhei na suposição de que
Fermat não sabia mais matemática do que eu. E tentei encontrar a demonstração
perdida usando os métodos que ele poderia ter usado em sua época.(Singh, 1998,
p.89).

Ainda segundo Wiles,

É ótimo trabalhar em qualquer problema desde que ele gere uma matemática inte-
ressante ao longo do caminho, mesmo que não consiga resolvê-lo no final do dia. A
definição de um bom problema de matemática reside na matemática que ele produz,
não no problema em si. (Singh, 1998, p.175).

As experiências de Wiles destacam dois fatores cruciais no ensino e aprendizado da mate-
mática. O primeiro é o papel motivador que o professor possui, sendo capaz de guiar e instigar o
aluno a se interessar pela matemática. O segundo é que o ensino da matemática deve valorizar a
curiosidade, a investigação e o prazer pelo conhecimento, incentivando os alunos a se envolverem
ativamente no processo de descoberta, e não apenas na memorização de fórmulas e procedimentos,
como destaca o matemático português Carlos Braumann,

Aprender Matemática não é simplesmente compreender a Matemática já feita, mas
ser capaz de fazer investigação de natureza matemática (ao nível adequado a cada
grau de ensino). Só assim se pode verdadeiramente perceber o que é a Matemática
e a sua utilidade na compreensão do mundo e na intervenção sobre o mundo. Só as-
sim se pode realmente dominar os conhecimentos adquiridos. Só assim se pode ser
inundado pela paixão “detectivesca” indispensável à verdadeira fruição daMatemá-
tica. AprenderMatemática sem forte intervenção da sua faceta investigativa é como
tentar aprender a andar de bicicleta vendo os outros andar e recebendo informação
sobre como o conseguem. Isso não chega. Para verdadeiramente aprender é preciso
montar a bicicleta e andar, fazendo erros e aprendendo com eles. (Braumann, 2002,
p.5).
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No livro Investigações Matemáticas na Sala de Aula (Ponte; Brocardo; Oliveira, 2013) são
apresentadas as quatro fases em que, segundo os autores, se divide uma investigação matemática. A
primeira sendo de exploração e formulação de questões, em que o sujeito faz um reconhecimento do
problema, o explora, percebe padrões e faz questionamentos. A segunda fase é a de conjecturas em
que o indivíduo, a partir das observações feitas, organiza os dados e faz conjecturas e hipóteses. A
terceira fase consiste em testar as conjecturas e refiná-las. Já a quarta fase, refere-se à argumentação,
à demonstração e avaliação do trabalho desenvolvido, isto é, a comunicação dos resultados aos seus
pares. Sendo que essas fases podem ocorrer de forma simultânea. Além disso, os autores defendem
que esse processo de investigação está ao alcance dos alunos na sala de aula de matemática.

4.2 O Papel dos Jogos no Ensino da Matemática

Etimologicamente, a palavra “jogo” tem origem no latim “jocus/joci”, cujo sentido inicial
era “brincadeira, diversão ou gracejo”. Essa concepção de jogo está intrinsecamente associada à
infância, período em que a criança dedica parte significativa de seu tempo a atividades de caráter
lúdico, embora tais práticas também estejam presentes na vida adulta.

Em (Huizinga, 1990), o jogo é definido como sendo uma

[...] atividade livre, conscientemente tomada como não-séria e exterior à vida habi-
tual, mas ao mesmo tempo capaz de absorver o jogador de maneira intensa e total.
É uma atividade desligada de todo e qualquer interesse material, com a qual não
se pode obter qualquer lucro, praticada dentro dos limites espaciais e temporais
próprios, segundo uma certa ordem e certas regras.(Huizinga, 1990, p.16).

Segundo Piaget (1978 apud (Grando), (2000)), os jogos se dividem em três tipos: de exer-
cício, de símbolo e de regra.

Os jogos de exercício correspondem às primeiras formas de brincadeira da criança e baseiam-
se na repetição de ações pelo prazer de executá-las, sem intenção de representação. Nesses jogos, a
criança exercita habilidades motoras e sensoriais, encontrando satisfação no próprio funcionamento
da atividade. Por exemplo, sacudir um chocalho, empilhar e derrubar blocos ou correr e pular.

Já os jogos simbólicos, também chamados de jogos de faz-de-conta, caracterizam-se pela
capacidade de representação e imaginação. Nesse tipo de jogo, a criança atribui novos significados
a objetos, ações e situações, transformando a realidade de acordo com sua compreensão. Servem
como exemplo, cuidar de uma boneca como se fosse um bebê, fingir que uma caixa é um carro,
ou representar papéis sociais, como professor ou médico. Essas brincadeiras permitem à criança
expressar sentimentos, compreender o mundo social e elaborar experiências vividas.
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O jogo de regras é aquele em que a criança brinca seguindo normas combinadas com os
outros. Nesse tipo de jogo, ela aprende a cooperar, respeitar os outros e a se interessar pelo grupo,
deixando de lado o egocentrismo. O cumprimento das regras é essencial, e desrespeitá-las pode
encerrar a brincadeira. São exemplos deste tipo o xadrez e o jogo quatro cores, em que os partici-
pantes devem colorir regiões de um mapa utilizando apenas quatro cores, sem repetir a mesma cor
em áreas vizinhas, seguindo regras previamente estabelecidas. As situações vivenciadas nos jogos
de regras criam um ambiente propício à reflexão, à tomada de decisões e à análise de possibilidades,
elementos que se aproximam das práticas investigativas próprias da Matemática.

Nos jogos de regra há dois fatores importantes. Um deles são as próprias regras, que ga-
rantem o que pode ou não ser executado no jogo, e as jogadas do adversário. Esses dois fatores
influenciam as jogadas do jogador. Desta forma, buscando a vitória no jogo, é necessário que o
indivíduo antecipe mentalmente as jogadas do oponente, assim como suas próprias jogadas, pla-
nejando seus movimentos seguintes conforme as regras do jogo. Nesse sentido, (Macedo; Petty;
Passos, 1997) dizem o seguinte a respeito do jogo quatro cores,

[...] Antecipar significa ‘pintar mentalmente a figura’. O jogador deve imaginar
previamente como ela ficará depois de pronta. Planejar, por sua vez, implica numa
ação motora: o jogador efetivamente registra seu plano no contexto da figura, por
exemplo, fazendo pintinhas coloridas nas regiões para garantir que a relação entre
as cores vizinhas fique correta. (Macedo; Petty; Passos, 1997, p.25).

Essas ações, como antecipar jogadas, planejar estratégias e analisar consequências, caracterizam
um processo de investigação matemática, ainda que em um nível inicial e intuitivo, no qual o aluno
formula hipóteses, testa possibilidades e avalia resultados.

Baseando-se nisso, pode-se pensar no uso de jogos de regra no ensino da Matemática como
uma proposta metodológica capaz de promover a investigação matemática e de apresentar desafios
que, em função da natureza competitiva dos jogos, despertam o interesse dos alunos, prendem sua
atenção e favorecem seu engajamento. Além disso, ao lidar com jogos dessa natureza, os alunos
mobilizam noções matemáticas como regularidade, comparação, organização de possibilidades e
identificação de padrões, que, mesmo não formalizadas, constituem a base para posteriores proces-
sos de abstração.

Contudo, tal uso dos jogos não deve ser realizado de forma leviana. Deve haver, por parte
do professor, um objetivo a ser alcançado após a proposta, isto é, não seja apenas o “jogo pelo jogo”,
mas que após sua execução haja de fato alguma formalização e alguma aprendizagem por parte dos
alunos, dentre outros fatores como é destacado por (Grando, 2000). Segundo a autora,

Muitas vezes os educadores tentam utilizar jogos em sala de aula sem, no entanto,
entender como dar encaminhamento ao trabalho, depois do jogo em si. [...] A grande
maioria ainda vem desenvolvendo as atividades com jogos espontaneamente, isto
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é, com um fim em si mesmo, “o jogo pelo jogo”, ou imaginando privilegiar o cará-
ter apenas motivacional. [...] Trata-se apenas de compreensão e cumprimento das
regras, com elaboração informal e espontânea de estratégias, e sem muita contribu-
ição para o processo ensino-aprendizagem da Matemática. (Grando, 2000, p.5).

Quando nos referimos à utilização de jogos nas aulas de Matemática como um su-
porte metodológico, consideramos que tenha utilidade em todos os níveis de ensino.
O importante é que os objetivos com o jogo estejam claros, a metodologia a ser
utilizada seja adequada ao nível que se está trabalhando e, principalmente, que re-
presente uma atividade desafiadora ao aluno para o desencadeamento do processo”
(Grando, 2000, p.28).

Nesse contexto, o papel do professor torna-se fundamental, uma vez que é ele quem deve mediar as
situações de jogo, orientar reflexões e promover a sistematização dos conhecimentos construídos a
partir da atividade lúdica.

É importante destacar que o “jogo pelo jogo” não é algo negativo; ele apenas não pode se
constituir como um fim em si mesmo, conforme destacado pela autora. Ao contrário, o “jogo pelo
jogo” é necessário para que os alunos compreendam as regras, evitem violá-las posteriormente,
envolvam-se de forma prazerosa com a atividade e observem padrões que lhes permitam, por meio
da intuição, formular estratégias e avançar para a abstração do objeto em estudo.

Ainda de acordo com (Grando, 2000),

[...] o jogo, em seu aspecto pedagógico, se apresenta produtivo ao professor que
busca nele um aspecto instrumentador e, portanto, facilitador na aprendizagem de
estruturas matemáticas, muitas vezes de difícil assimilação, e também produtivo
ao aluno, que desenvolveria sua capacidade de pensar, refletir, analisar, compreen-
der conceitos matemáticos, levantar hipóteses, testá-las e avaliá-las (investigação
matemática), com autonomia e cooperação.(Grando, 2000, p.28).

Os jogos de estratégia favorecem a construção e a verificação de hipóteses. As pos-
sibilidades de jogo são construídas a partir destas hipóteses que vão sendo elabora-
das pelos sujeitos. Quando o sujeito executa uma jogada, leva em conta o universo
das possibilidades existentes para aquela jogada. Nesse processo, quanto mais o
sujeito analisa, executa e toma decisões sobre as possibilidades, coordenando as in-
formações que ele vai obtendo no jogo, melhor jogador ele se torna, pois é capaz de
“enxergar” as várias possibilidades. A análise de possibilidades favorece, também,
a previsão e/ou antecipação no jogo.. (Grando, 2000, p.40).

Nesse contexto, o uso dos jogos se torna uma ferramenta interessante no ensino da Ma-
temática, pois, por meio deles, é possível realizar investigações matemáticas e trabalhar diversos
conceitos e noções matemáticas, conforme discutido na Seção 4.1. Além disso, os jogos promovem
um ambiente socializador no qual os alunos são incentivados a interagir, argumentar, justificar suas
escolhas e confrontar diferentes estratégias, expressando suas ideias de forma mais espontânea e
colaborativa. Diante disso, (Grando, 2000) ainda reflete sobre
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será que a atividade de jogo permitiria à criança intuir, abstrair e generalizar para
novos campos, novas jogadas e/ou outras aplicações? Será que seria possível uma
conceitualização a partir das noções, intuições estabelecidas, pelos sujeitos, diante
dos desafios que se colocam numa situação de jogo? Acredita-se que sim. Tem-se
que, se conceituar significa “abstrair” e “generalizar”, “dar ouvidos à intuição”, isto
é possível no jogo (Grando, 2000, p.55).

Desta forma, o uso do jogo como metodologia no ensino da Matemática pode contribuir
significativamente para a transição do aluno do pensamento concreto para o pensamento abstrato, ao
favorecer a reflexão, a elaboração de estratégias, a investigação de possibilidades e a sistematização
de conceitos a partir de situações desafiadoras mediadas pelo professor. Assim, o jogo deixa de ser
apenas um recurso motivacional e passa a assumir um papel efetivo no desenvolvimento e no ensino
de conceitos matemáticos.

4.3 AAbordagem dos Jogos nos Documentos Oficiais da Educação
Básica

Na seção anterior, discutiu-se a utilidade dos jogos no ensino da Matemática. Nesta seção,
serão apresentados os principais apontamentos dos documentos oficiais da Educação Básica relaci-
onados a esse tema.

Os Parâmetros Curriculares Nacionais (PCNs)

Os Parâmetros Curriculares Nacionais (PCNs) são documentos publicados pelo Ministério
da Educação entre 1997 e 1998, após a promulgação da Lei de Diretrizes e Bases da Educação Na-
cional (LDB nº 9.394/1996). Têm como finalidade orientar a organização curricular da Educação
Básica, oferecendo referências comuns para os sistemas de ensino, sem caráter obrigatório, respei-
tando as especificidades regionais e culturais do país. De acordo com esse documento,

Os jogos constituem uma forma interessante de propor problemas, pois permitem
que estes sejam apresentados de modo atrativo e favorecem a criatividade na ela-
boração de estratégias de resolução e busca de soluções. Propiciam a simulação de
situações problema que exigem soluções vivas e imediatas, o que estimula o pla-
nejamento das ações; possibilitam a construção de uma atitude positiva perante os
erros, uma vez que as situações sucedem-se rapidamente e podem ser corrigidas de
forma natural, no decorrer da ação, sem deixar marcas negativas. Na situação de
jogo, muitas vezes, o critério de certo ou errado é decidido pelo grupo. Assim, a prá-
tica do debate permite o exercício da argumentação e a organização do pensamento
(Brasil, 1998, p.46).

Nos jogos de estratégia (busca de procedimentos para ganhar) parte-se da realização
de exemplos práticos (e não da repetição de modelos de procedimentos criados por
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outros) que levam ao desenvolvimento de habilidades específicas para a resolução
de problemas e os modos típicos do pensamento matemático. (Brasil, 1998, p.47).

Diante do exposto, percebe-se que as orientações apresentadas nos Parâmetros Curriculares
Nacionais corroboram as discussões realizadas anteriormente, ao evidenciar que os jogos, quando
utilizados de forma intencional no contexto educacional, constituem um importante recurso didá-
tico. Eles favorecem não apenas a resolução de problemas e o desenvolvimento de estratégias, mas
também a argumentação, a reflexão e a organização do pensamento matemático. Assim, os PCNs
reforçam a relevância dos jogos como práticas pedagógicas que contribuem para uma aprendizagem
mais significativa, participativa e alinhada às necessidades do processo de ensino e aprendizagem.

A Base Nacional Comum Curricular (BNCC)

A Base Nacional Comum Curricular (BNCC) é um documento normativo que define as
aprendizagens essenciais que todos os estudantes da Educação Básica devem desenvolver ao longo
da Educação Infantil, do Ensino Fundamental e do Ensino Médio. Seu objetivo é garantir equidade
e qualidade na educação, orientando os currículos dos sistemas e redes de ensino em todo o país,
ao mesmo tempo em que respeita as diversidades regionais, culturais e locais. A BNCC organiza o
ensino a partir de competências e habilidades, promovendo uma formação integral do estudante, que
envolve não apenas conhecimentos acadêmicos, mas também aspectos sociais, emocionais, éticos
e culturais. Segundo o documento

[...] recursos didáticos como malhas quadriculadas, ábacos, jogos, livros, vídeos,
calculadoras, planilhas eletrônicas e softwares de geometria dinâmica têm um pa-
pel essencial para a compreensão e utilização das noções matemáticas. Entretanto,
esses materiais precisam estar integrados a situações que levem à reflexão e à siste-
matização, para que se inicie um processo de formalização. (Brasil, 2018, p.276).

Ou seja, o jogo é apresentado como uma ferramenta importante para o ensino da matemática.
Mas alerta para o uso adequado do mesmo, de forma integrada aos objetivos do ensino.

Além disso, sobre o Ensino fundamental, a BNCC apresenta a seguinte argumentação,

O Ensino Fundamental deve ter compromisso com o desenvolvimento do letra-
mento matemático, definido como as competências e habilidades de raciocinar,
representar, comunicar e argumentar matematicamente, de modo a favorecer o es-
tabelecimento de conjecturas, a formulação e a resolução de problemas em uma
variedade de contextos, utilizando conceitos, procedimentos, fatos e ferramentas
matemáticas. É também o letramento matemático que assegura aos alunos reconhe-
cer que os conhecimentos matemáticos são fundamentais para a compreensão e a
atuação no mundo e perceber o caráter de jogo intelectual da matemática, como
aspecto que favorece o desenvolvimento do raciocínio lógico e crítico, estimula a
investigação e pode ser prazeroso (fruição). (Brasil, 2018, p.266).
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E dentre as competências específicas de matemática para o ensino fundamental, tem-se

Desenvolver o raciocínio lógico, o espírito de investigação e a capacidade de pro-
duzir argumentos convincentes, recorrendo aos conhecimentos matemáticos para
compreender e atuar no mundo. (Brasil, 2018, p.267).

Já no Ensino Médio, a BNCC apresenta o seguinte texto,

[...] os estudantes devem desenvolver habilidades relativas aos processos de inves-
tigação, de construção de modelos e de resolução de problemas. Para tanto, eles
devem mobilizar seu modo próprio de raciocinar, representar, comunicar, argu-
mentar e, com base em discussões e validações conjuntas, aprender conceitos e
desenvolver representações e procedimentos cada vez mais sofisticados. [...] em
muitas situações são também mobilizadas habilidades relativas à representação e à
comunicação para expressar as generalizações, bem como à construção de uma ar-
gumentação consistente para justificar o raciocínio utilizado. (Brasil, 2018, p.529).

Dessa forma, as orientações da BNCC, tanto para o Ensino Fundamental quanto para o En-
sino Médio, estão alinhadas ao que foi discutido nas seções anteriores deste trabalho. O documento
destaca a importância da investigaçãomatemática, da resolução de problemas e do desenvolvimento
do raciocínio lógico, aspectos que podem ser fortalecidos por meio do uso de jogos no ensino da
Matemática. Assim, a BNCC reforça que práticas pedagógicas que valorizam a investigação e o uso
de jogos contribuem para uma aprendizagem mais significativa, participativa e contextualizada.

4.4 O Jogo Hex: Possibilidades na Sala de Aula

Conforme apresentado no Capítulo 3 e nas Seções 4.1 e 4.2, o jogo Hex é um jogo de regras
e estratégia que possui uma forte relação com o Teorema do Ponto Fixo de Brouwer, um resultado
fundamental da Topologia. Embora a exploração formal dessa conexão no contexto da Educação
Básica seja, sem dúvida, avançada demais, o Hex oferece diversas possibilidades pedagógicas aces-
síveis e igualmente ricas.

Entre os conceitos envolvidos no jogo, destaca-se a conexidade por caminhos, uma noção
topológica que pode ser trabalhada de maneira intuitiva e visual, sem a necessidade de formalis-
mos rigorosos. Além disso, o Hex constitui uma ferramenta eficiente para o desenvolvimento do
pensamento abstrato, da capacidade de argumentação e do raciocínio estratégico dos alunos.

Um dos aspectos mais relevantes que podem ser explorados por meio do Hex é o Teorema
de Hex, apresentado no Capítulo 3. A partir da experiência prática de “jogar pelo jogar”, os alu-
nos podem perceber que o jogo não admite empates e serem motivados a buscar uma justificativa
intuitiva para essa propriedade. A partir dessa constatação inicial, torna-se viável iniciar uma in-
vestigação matemática mais formal, conduzindo os estudantes à construção de uma demonstração,
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como a apresentada neste trabalho. Trata-se de uma prova acessível, que pode ser compreendida
sem grande complexidade técnica e que se baseia na mesma construção realizada na demonstração
do Teorema 3.1, para garantir a existência de caminhos nos quais haja casas azuis de um lado e
vermelhas de outro, conforme as Figuras 16 e 17.

De acordo com (Salvanés, 2021), já foi demonstrado que, em qualquer tabuleiro de Hex, o
primeiro jogador possui uma estratégia vencedora, embora tal estratégia não seja conhecida expli-
citamente para tabuleiros maiores que 10 × 10. Assim, é possível utilizar tabuleiros menores como
ferramenta didática, incentivando os alunos a investigar e tentar descobrir estratégias vencedoras,
explorando conceitos como simetria e a vantagem de iniciar pelo centro do tabuleiro, conforme
discutido em (Nunes, 2009).

Dessa forma, o jogo Hex pode ser utilizado não apenas para trabalhar conteúdos matemáti-
cos específicos, mas também para proporcionar aos alunos um ambiente de investigação, no qual
possam desenvolver o pensamento matemático e o prazer pela matemática.
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CONCLUSÃO
Ao longo deste trabalho, estudamos o Teorema do Ponto Fixo de Brouwer sob diferentes

perspectivas, evidenciando tanto sua relevância teórica quanto suas conexões com outras áreas da
matemática. A abordagem histórica teve como objetivo apresentar figuras relevantes para os temas
abordados ao longo do trabalho, em especial no que diz respeito à relação entre o teorema e o jogo
Hex.

Em seguida, apresentamos demonstrações do Teorema do Ponto Fixo de Brouwer em con-
textos progressivamente mais gerais, iniciando pela reta real, passando pela bola unitária fechada do
ℝ𝑛 e culminando no caso de conjuntos convexos e compactos. Esse percurso permitiu destacar os
aspectos geométricos e topológicos envolvidos no teorema, bem como a importância de ferramentas
como a continuidade, a compacidade e a convexidade.

Um dos pontos centrais do trabalho foi o estudo do jogo Hex e do Teorema de Hex, mos-
trando que um resultado aparentemente simples, oriundo de um jogo de tabuleiro, possui profunda
relação com um dos teoremas fundamentais da topologia. A demonstração da equivalência entre o
Teorema de Hex e o Teorema do Ponto Fixo de Brouwer evidencia de forma clara como problemas
combinatórios podem capturar ideias topológicas sofisticadas, reforçando a unidade da matemática.

Por fim, discutimos as contribuições dos jogos para a aprendizagemmatemática, destacando
o potencial pedagógico do jogo Hex. Essa abordagem sugere que jogos podem servir como ins-
trumentos eficazes para promover a investigação, o raciocínio lógico e a compreensão conceitual,
aproximando os estudantes de ideias matemáticas profundas de maneira acessível e motivadora.

Dessa forma, espera-se que este trabalho contribua tanto para a compreensão matemática
dos teoremas de ponto fixo quanto para reflexões sobre o ensino da matemática, mostrando que
rigor, criatividade e ludicidade podem caminhar juntos na construção do conhecimento.
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APÊNDICE A
Neste capítulo apresentaremos algumas noções importantes de espaços métricos, que fo-

ram utilizadas no decorrer deste trabalho. Adotaremos como referências principais (DOMINGUES,
1982) e (Lima, Elon L., 2020).

A.1 Noções Básicas de Espaços Métricos

Definição A.1. Seja 𝑀 um conjunto não vazio. Dizemos que a aplicação 𝑑 ∶ 𝑀 × 𝑀 ⟶ ℝ+ é uma
métrica sobre 𝑀 se para quaisquer 𝑥,𝑦, 𝑧 ∈ 𝑀 forem satisfeitas as seguintes condições:

i) 𝑑(𝑥,𝑦) = 0 ⟺ 𝑥 = 𝑦;

ii) 𝑑(𝑥,𝑦) = 𝑑(𝑦,𝑥) (simetria);

iii) 𝑑(𝑥,𝑦) ≤ 𝑑(𝑥, 𝑧)+𝑑(𝑧,𝑦) (desigualdade triangular).

Nestas condições 𝑑(𝑥,𝑦) é a distância de 𝑥 a 𝑦, e o par (𝑀,𝑑) é chamado de espaço métrico.

Exemplo A.1. Sejam 𝑥 = (𝑥1, 𝑥2,⋯,𝑥𝑛),𝑦 = (𝑦1, 𝑦2,⋯,𝑦𝑛) ∈ ℝ𝑛. A aplicação

𝑑(𝑥,𝑦) = √(𝑥1 −𝑦1)2 +(𝑥2 −𝑦2)2 +⋯+(𝑥𝑛 −𝑦𝑛)2

é uma métrica em ℝ𝑛 chamada métrica euclidiana.

Exemplo A.2. Dados os espaços métricos (𝑀1,𝑑1), (𝑀2,𝑑2),⋯,(𝑀𝑛,𝑑𝑛), podemos definir as mé-
tricas 𝐷,𝐷𝑚,𝐷𝑠 ∶ 𝑀 ×𝑀 ⟶ ℝ+, em que 𝑀 = 𝑀1 ×𝑀2 ×⋯×𝑀𝑛, por

𝐷(𝑥,𝑦) = √𝑑1(𝑥1, 𝑦1)2 +𝑑2(𝑥2, 𝑦2)2 +⋯+𝑑𝑛(𝑥𝑛, 𝑦𝑛)2,

𝐷𝑚(𝑥,𝑦) = max{𝑑1(𝑥1, 𝑦1),𝑑2(𝑥2, 𝑦2),⋯,𝑑𝑛(𝑥𝑛, 𝑦𝑛)}

e
𝐷𝑠(𝑥,𝑦) = 𝑑1(𝑥1, 𝑦1)+𝑑2(𝑥2, 𝑦2)+⋯+𝑑𝑛(𝑥𝑛, 𝑦𝑛),

para todos 𝑥,𝑦 ∈ 𝑀.

Proposição A.1. Sejam (𝑀1,𝑑1), (𝑀2,𝑑2),⋯,(𝑀𝑛,𝑑𝑛) espaços métricos. Então para todos 𝑥,𝑦 ∈
𝑀, em que 𝑀 = 𝑀1 ×𝑀2 ×⋯×𝑀𝑛, vale

𝐷𝑚(𝑥,𝑦) ≤ 𝐷(𝑥,𝑦) ≤ 𝐷𝑠(𝑥,𝑦) ≤ 𝑛𝐷𝑚(𝑥,𝑦).



Demonstração. Com efeito,

𝐷𝑚(𝑥,𝑦) = max{𝑑1(𝑥1, 𝑦1),𝑑2(𝑥2, 𝑦2),⋯,𝑑𝑛(𝑥𝑛, 𝑦𝑛)}
≤ 𝐷(𝑥,𝑦) = √𝑑1(𝑥1, 𝑦1)2 +𝑑2(𝑥2, 𝑦2)2 +⋯+𝑑𝑛(𝑥𝑛, 𝑦𝑛)2

≤ 𝐷𝑠(𝑥,𝑦) = 𝑑1(𝑥1, 𝑦1)+𝑑2(𝑥2, 𝑦2)+⋯+𝑑𝑛(𝑥𝑛, 𝑦𝑛)
≤ 𝑛 ⋅max{𝑑1(𝑥1, 𝑦1),𝑑2(𝑥2, 𝑦2),⋯,𝑑𝑛(𝑥𝑛, 𝑦𝑛)} = 𝑛𝐷𝑚(𝑥,𝑦),∀𝑥,𝑦 ∈ 𝑀.

Observação .1. É válido notar que em um espaço vetorial normado 𝑉 a norma ‖⋅‖ ∶ 𝑉 ⟶ ℝ+ induz
a métrica 𝑑 ∶ 𝑉 ×𝑉 ⟶ ℝ+ dada por 𝑑(𝑥,𝑦) = ∥𝑥 −𝑦∥.

Proposição A.2. Seja (𝑀,𝑑) um espaço métrico. Então |𝑑(𝑥, 𝑧)−𝑑(𝑦, 𝑧)| ≤ 𝑑(𝑥,𝑦),∀𝑥,𝑦, 𝑧 ∈ 𝑀.

Demonstração. Segue-se da desigualdade triangular que

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥,𝑦)+𝑑(𝑦, 𝑧) e 𝑑(𝑦, 𝑧) ≤ 𝑑(𝑦,𝑥)+𝑑(𝑥, 𝑧),∀𝑥,𝑦, 𝑧 ∈ 𝑀.

Daí vale que

𝑑(𝑥, 𝑧)−𝑑(𝑦, 𝑧) ≤ 𝑑(𝑥,𝑦) e 𝑑(𝑦, 𝑧)−𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥,𝑦),∀𝑥,𝑦, 𝑧 ∈ 𝑀.

Portanto,
|𝑑(𝑥, 𝑧)−𝑑(𝑦, 𝑧)| ≤ 𝑑(𝑥,𝑦),∀𝑥,𝑦, 𝑧 ∈ 𝑀.

Definição A.2. Seja (𝑀,𝑑) um espaço métrico e 𝑥0 ∈ 𝑀. Dado 𝑟 > 0, chamamos de bola aberta
em 𝑀 de centro em 𝑥0 e raio 𝑟, e denotamos por 𝐵(𝑥0, 𝑟), o seguinte subconjunto de 𝑀,

𝐵(𝑥0, 𝑟) = {𝑥 ∈ 𝑀;𝑑(𝑥0, 𝑥) < 𝑟} .

Definição A.3. Seja (𝑀,𝑑) um espaço métrico e 𝑥0 ∈ 𝑀. Dado 𝑟 > 0, chamamos de bola fechada
em 𝑀 de centro em 𝑥0 e raio 𝑟, e denotamos por 𝐵[𝑥0, 𝑟], o seguinte subconjunto de 𝑀,

𝐵[𝑥0, 𝑟] = {𝑥 ∈ 𝑀;𝑑(𝑥0, 𝑥) ≤ 𝑟} .

Definição A.4. Seja (𝑀,𝑑) um espaço métrico e 𝑥0 ∈ 𝑀. Dado 𝑟 > 0, chamamos de esfera em 𝑀
de centro em 𝑥0 e raio 𝑟, e denotamos por 𝑆(𝑥0, 𝑟), o seguinte subconjunto de 𝑀,

𝑆(𝑥0, 𝑟) = {𝑥 ∈ 𝑀;𝑑(𝑥0, 𝑥) = 𝑟} .

Definição A.5. Seja 𝑀 um espaço métrico e 𝐴 ⊂ 𝑀. Dizemos que 𝐴 é aberto se ∀𝑥 ∈ 𝐴 existir 𝜀 > 0
tal que 𝐵(𝑥,𝜀) ⊂ 𝐴.
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Definição A.6. Seja 𝑀 um espaço métrico e 𝐴 ⊂ 𝑀. Dizemos que 𝑎 ∈ 𝑀 é um ponto de aderência
de 𝐴 quando ∀𝜀 > 0, 𝐵(𝑎,𝜀)∩𝐴 ≠ ∅. O conjunto dos pontos de aderência de 𝐴, denotado por 𝐴, é
chamado de fecho de 𝐴.

Observe que, por definição, 𝐴 ⊂ 𝐴. Dado 𝑎 ∈ 𝐴, temos que 𝑎 ∈ 𝐵(𝑎,𝜀)∩𝐴,∀𝜀 > 0.

Definição A.7. Seja 𝑀 um espaço métrico e 𝐴 ⊂ 𝑀. Dizemos que 𝐴 é fechado quando 𝐴 = 𝐴.

A.2 Sequências em Espaços Métricos

Definição A.8. Seja (𝑀,𝑑) um espaço métrico. Toda aplicação 𝑥 ∶ ℕ ⟶ 𝑀 é chamada sequência
de elementos de 𝑀 e é denotada por (𝑥1, 𝑥2,⋯,𝑥𝑛,⋯), (𝑥𝑛)𝑛∈ℕ ou simplesmente por (𝑥𝑛). Neste
caso, escrevemos ainda que a sequência (𝑥𝑛) ⊂ 𝑀.

DefiniçãoA.9. Seja (𝑀,𝑑) um espaçométrico e (𝑥𝑛)𝑛∈ℕ ⊂ 𝑀.Dado um subconjunto infinitoℕ1 de
ℕ, chamamos a restrição de 𝑥 ∶ ℕ ⟶ 𝑀 aℕ1 de subsequência de (𝑥𝑛), e denotamos por (𝑥𝑛𝑘)𝑛𝑘∈ℕ1 ,
ou (𝑥𝑛𝑘)𝑘∈ℕ ou simplesmente (𝑥𝑛𝑘).

Definição A.10. Seja (𝑀,𝑑) um espaço métrico. Dizemos que 𝑝 ∈ 𝑀 é o limite de uma sequência
quando para todo 𝜀 > 0, existe 𝑛0 ∈ ℕ tal que

𝑛 ≥ 𝑛0 ⟹ 𝑥𝑛 ∈ 𝐵(𝑝,𝜀)

ou equivalentemente
𝑛 ≥ 𝑛0 ⟹ 𝑑(𝑥𝑛,𝑝) < 𝜀,

e escrevemos lim𝑛→∞𝑥𝑛 = 𝑝. Neste caso, dizemos que (𝑥𝑛) é convergente.

Considere 𝑀 um espaço métrico e 𝐴 ⊂ 𝑀. Observe que pela Definição A.6, existe uma
sequência de (𝑥𝑛) ⊂ 𝐴 tal que lim𝑛→∞𝑥𝑛 = 𝑎 se, e somente se, 𝑎 ∈ 𝐴.

Proposição A.3. Seja M um espaço métrico e (𝑥𝑛) ⊂ 𝑀 uma sequência convergente para 𝑎 ∈ 𝑀.
Então toda subsequência (𝑥𝑛𝑘)𝑘∈ℕ converge para 𝑎.

Demonstração. Com efeito, dado 𝜀 > 0 existe 𝑛0 ∈ ℕ tal que 𝑛 ≥ 𝑛0 implica 𝑑(𝑥𝑛,𝑎) < 𝜀. Desta
forma, existe 𝑘0 ∈ ℕ tal que 𝑛𝑘0 ≥ 𝑛0.Daí, para todo 𝑘 ≥ 𝑘0 temos 𝑛𝑘 ≥ 𝑛0, daí 𝑑(𝑥𝑛𝑘 ,𝑎) < 𝜀. Portanto
(𝑥𝑛𝑘)𝑘∈ℕ converge para 𝑎.

Definição A.11. Seja 𝑀 um espaço métrico. Dizemos que uma sequência (𝑥𝑛) ⊂ 𝑀 é de Cauchy
quando ∀𝜀 > 0 existe 𝑛0 ∈ ℕ tal que 𝑚,𝑛 ≥ 𝑛0 implica que 𝑑(𝑥𝑚,𝑑𝑛) < 𝜀.
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Proposição A.4. Toda sequência de Cauchy é limitada.

Demonstração. Seja𝑀 um espaço métrico e (𝑥𝑛) ⊂ 𝑀 uma sequência de Cauchy. Então existe 𝑛0 ∈
ℕ tal que 𝑚,𝑛 > 𝑛0 implicam que 𝑑(𝑥𝑚, 𝑥𝑛) < 1. Fixe 𝑛 > 𝑛0. Daí ∀𝑚 > 𝑛0 temos que 𝑑(𝑥𝑚, 𝑥𝑛) < 1.
Tome 𝜀 = max{𝑑(𝑥1, 𝑥𝑛),𝑑(𝑥2, 𝑥𝑛),⋯,𝑑(𝑥𝑛0 , 𝑥𝑛),1}. Daí

𝑥𝑚 ∈ 𝐵[𝑥𝑛,𝜀],∀𝑚 ∈ ℕ.

Portanto (𝑥𝑛) é limitada.

A.3 Espaços Métricos Compactos

Definição A.12. Seja 𝑀 um espaço métrico. Dizemos que 𝑀 é compacto quando toda sequência
(𝑥𝑛) ⊂ 𝑀 possui uma subsequência (𝑥𝑛𝑘) que converge para um ponto de 𝑀.

Exemplo A.3. O conjunto dos números racionais não é compacto. Por exemplo, a sequência (𝑥𝑛) ⊂
ℚ definida por

𝑥𝑛 =
𝑛

∑
𝑘=0

1
𝑘!

converge para 𝑒 ∈ ℝ − ℚ. Logo toda subsequência de (𝑥𝑛) também converge para 𝑒, que não
pertence ao conjunto ℚ.

Proposição A.5. Seja 𝑀 um espaço métrico. Se 𝐾 ⊂ 𝑀 é compacto, então 𝐾 é fechado.

Demonstração. Suponha que 𝐾 −𝐾 ≠ . Seja então 𝑎 ∈ 𝐾 −𝐾 . Daí existe (𝑥𝑛) ⊂ 𝐾 tal que lim𝑥𝑛 = 𝑎.
Como 𝐾 é compacto toda existe uma subsequência (𝑥𝑛𝑘) que converge para um ponto de 𝐾 . Como
toda subsequência se (𝑥𝑛) também converge para 𝑎, pela Proposição A.3, temos que (𝑥𝑛𝑘) converge
para 𝑎. Daí 𝑎 ∈ 𝐾. Um absurdo. Portanto, 𝐾 = 𝐾 , isto é, 𝐾 é fechado.

Proposição A.6. Seja 𝑀 um espaço métrico. Se 𝐾 ⊂ 𝑀 é compacto, então 𝐾 é limitado.

Demonstração. Suponha que 𝐾 não seja limitado. Dado 𝑎 ∈ 𝐾 , temos que para cada 𝑛 ∈ ℕ, existe
𝑥𝑛 ∈ 𝐾 tal que 𝑥𝑛 ∉ 𝐵(𝑎,𝑛). Desta forma, obtém-se uma sequência (𝑥𝑛) ⊂ 𝐾 . Como 𝐾 é compacto,
segue-se que esta sequência possui uma subsequência (𝑥𝑛𝑘)𝑘∈ℕ convergente para algum ponto 𝑏 ∈
𝐾 . Segue-se da definição da sequência, que 𝑑(𝑥𝑛𝑘 ,𝑎) ≥ 𝑛𝑘 para todo 𝑘 ∈ ℕ. Além disso, como
𝑑(𝑏,𝑎) > 0, existe 𝑘0 ∈ ℕ tal que 𝑛𝑘 ≥ 𝑛𝑘0 implica que 𝑑(𝑥𝑛𝑘 ,𝑏) < 𝑑(𝑏,𝑎). Desta forma, tomando
𝑘 ≥ 𝑘0 satisfazendo 𝑛𝑘 ≥ 2𝑑(𝑏,𝑎) temos pela desigualdade triangular que

𝑛𝑘 ≤ 𝑑(𝑥𝑛𝑘 ,𝑎) ≤ 𝑑(𝑥𝑛𝑘 ,𝑏)+𝑑(𝑏,𝑎) < 2𝑑(𝑏,𝑎) ≤ 𝑛𝑘,

um absurdo. Portanto, 𝐾 é limitado.
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A.4 Continuidade de Funções

Definição A.13. Sejam 𝑀,𝑁 espaços métricos e 𝑓 ∶ 𝑀 ⟶ 𝑁 . Dizemos que 𝑓 é contínua em 𝑎 ∈ 𝑀,
quando para todo 𝜀 > 0, existir𝛿 > 0, tal que se 𝑥 ∈ 𝑀 satisfizer 𝑑(𝑥,𝑎) < 𝛿, então 𝑑 (𝑓 (𝑥), 𝑓 (𝑎)) < 𝜀.

Exemplo A.4. Sejam 𝑀 e 𝑁 espaços métricos e 𝑓 ∶ 𝑀 ⟶ 𝑁 uma contração. Então 𝑓 é contínua.

Demonstração. Como 𝑓 é contração, existe 𝐾 > 0 tal que 𝑑(𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝐾𝑑(𝑥,𝑦),∀𝑥,𝑦 ∈ 𝑀. Daí
dado 𝑎 ∈ 𝑀 qualquer, segue-se que para todo 𝜀 > 0 pode-se escolher 𝛿 = 𝜀

𝐾 > 0. Assim, para todos
𝑥 ∈ 𝑀 tais que 𝑑(𝑥,𝑎) < 𝛿 temos que

𝑑(𝑓 (𝑥), 𝑓 (𝑎)) ≤ 𝐾𝑑(𝑥,𝑎) < 𝐾 𝜀
𝐾 = 𝜀.

Portanto, 𝑓 é contínua em 𝑎.

Exemplo A.5. Seja (𝑀,𝑑) um espaço métrico. A métrica 𝑑 é uma função contínua.

Demonstração. Sejam 𝑥 = (𝑥1, 𝑥2),𝑦 = (𝑦1, 𝑦2) ∈ 𝑀 × 𝑀. Considerando a métrica 𝐷𝑠 para 𝑀 × 𝑀,
temos que ∀𝜀 > 0, pode-se escolher 𝛿 = 𝜀, daí se 𝐷𝑠(𝑥,𝑦) < 𝛿, segue-se da Proposição A.2 que

|𝑑(𝑥1, 𝑥2)−𝑑(𝑦1, 𝑦2)| = |𝑑(𝑥1, 𝑥2)−𝑑(𝑥1, 𝑦2)+𝑑(𝑥1, 𝑦2)−𝑑(𝑦1, 𝑦2)|
≤ |𝑑(𝑥1, 𝑥2)−𝑑(𝑥1, 𝑦2)|+ |𝑑(𝑥1, 𝑦2)−𝑑(𝑦1, 𝑦2)|
≤ 𝑑(𝑥2, 𝑦2)+𝑑(𝑥1, 𝑦1) = 𝐷𝑠(𝑥,𝑦) < 𝜀.

Portanto 𝑑 é contínua.

Teorema A.1. Sejam 𝑀,𝑁 espaços métricos e 𝑓 ∶ 𝑀 ⟶ 𝑁 . São equivalente:

i) 𝑓 é contínua em 𝑎 ∈ 𝑀;

ii) Para toda sequência (𝑥𝑛) ⊂ 𝑀, se lim𝑛→∞𝑥𝑛 = 𝑎, então lim𝑛→∞ 𝑓 (𝑥𝑛) = 𝑓 (𝑎).

Demonstração. (𝑖) ⟹ (𝑖𝑖) Se 𝑓 é contínua em 𝑎, então para cada 𝑚 ∈ ℕ, existe 𝛿𝑚 > 0 tal que se
𝑥 ∈ 𝑀 com 𝑑(𝑥,𝑎) < 𝛿𝑚, então

𝑑(𝑓 (𝑥), 𝑓 (𝑎)) < 1
𝑚.

Seja (𝑥𝑛) ⊂ 𝑀 convergindo para 𝑎, então existe 𝑛0 ∈ ℕ tal que 𝑛 > 𝑛0 implica que 𝑑(𝑥𝑛,𝑎) ≤ 𝛿𝑛.
Tomando 𝑚 > 𝑛0, temos que

𝑑(𝑥𝑛,𝑎) < 𝛿𝑚 ⟹ 𝑑(𝑓 (𝑥𝑛), 𝑓 (𝑎)) < 1
𝑚,
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portanto lim𝑛→∞ 𝑓 (𝑥𝑛) = 𝑓 (𝑎).

(𝑖𝑖) ⟹ (𝑖) Considere que para toda sequência (𝑥𝑛) ⊂ 𝑀, se lim𝑛→∞𝑥𝑛 = 𝑎, então

lim𝑛→∞ 𝑓 (𝑥𝑛) = 𝑓 (𝑎).

Suponha que 𝑓 seja descontínua em 𝑎. Daí existe 𝜀 > 0 tal que ∀𝑛 > 0, existe 𝑥𝑛 ∈ 𝑀 satisfazendo

𝑑(𝑥𝑛,𝑎) < 1
𝑛 e 𝑑(𝑓 (𝑥𝑛), 𝑓 (𝑎)) ≥ 𝜀.

Ora a sequência (𝑥𝑛) ⊂ 𝑀 construída satisfaz lim𝑛→∞𝑥𝑛 = 𝑎, porém não satisfaz lim𝑛→∞ 𝑓 (𝑥𝑛) = 𝑓 (𝑎), uma
contradição. Portanto 𝑓 é contínua.

Sejam 𝑁1,𝑁2 e 𝑀 espaços métricos e 𝑓 ∶ 𝑀 ⟶ 𝑁1 × 𝑁2, dada por 𝑓 (𝑥) = (𝑓1(𝑥), 𝑓2(𝑥)), em
que 𝑓1 ∶ 𝑀 ⟶ 𝑁1 e 𝑓2 ∶ 𝑀 ⟶ 𝑁2. Dizemos que 𝑓1 e 𝑓2, são as funções coordenadas de 𝑓 .

Proposição A.7. A aplicação 𝑓 ∶ 𝑀 ⟶ 𝑁1 ×𝑁2 é contínua em 𝑎 ∈ 𝑀, se e somente se, cada compo-
nente 𝑓1 e 𝑓2 são contínuas em 𝑎.

Demonstração. Considere em amétrica𝐷𝑚(𝑥,𝑦) =max{𝑑1(𝑥1, 𝑦1),𝑑2(𝑥2, 𝑦2)} em𝑁1 ×𝑁2, em que
𝑑1 e 𝑑2, são as métricas em 𝑁1 e 𝑁2, respectivamente..

(⟹) Seja 𝑓 contínua em 𝑎 ∈ 𝑀. Então para todo 𝜀 > 0, existe 𝛿 > 0 tal que 𝑑(𝑥,𝑎) < 𝛿
implica que

𝐷𝑚 (𝑓 (𝑥), 𝑓 (𝑎)) = 𝐷𝑚 ((𝑓1(𝑥), 𝑓2(𝑥)) ,(𝑓1(𝑎), 𝑓2(𝑎))) < 𝜀.
Daí dado 𝑥 ∈ 𝑀 satisfazendo 𝑑(𝑥,𝑎) < 𝛿 temos

𝑑1 (𝑓1(𝑥), 𝑓1(𝑎)) ≤ 𝐷𝑚 (𝑓 (𝑥), 𝑓 (𝑎)) < 𝜀

e
𝑑2 (𝑓2(𝑥), 𝑓2(𝑎)) ≤ 𝐷𝑚 (𝑓 (𝑥), 𝑓 (𝑎)) < 𝜀.

Portanto 𝑓1 e 𝑓2 são contínuas em 𝑎.

(⟸) Sejam 𝑓1 e 𝑓2 contínuas em 𝑎 ∈ 𝑀. Daí, para todo 𝜀 > 0 existem 𝛿1,𝛿2 > 0 tais que

𝑑(𝑥,𝑎) < 𝛿1 ⟹ 𝑑1(𝑓1(𝑥), 𝑓1(𝑎)) < 𝜀

e
𝑑(𝑥,𝑎) < 𝛿2 ⟹ 𝑑2(𝑓2(𝑥), 𝑓2(𝑎)) < 𝜀.

Tome 𝛿 = min{𝛿1,𝛿2} > 0. Daí,

𝑑(𝑥,𝑎) < 𝛿 ⟹ 𝐷𝑚(𝑓 (𝑥), 𝑓 (𝑎)) = max{𝑑1(𝑓1(𝑥), 𝑓1(𝑎)),𝑑2(𝑓2(𝑥), 𝑓2(𝑎))} < 𝜀.

Portanto, 𝑓 é contínua em 𝑎.
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Proposição A.8. Sejam 𝑀 e 𝑁 espaços métricos e uma função 𝑓 ∶ 𝑀 ⟶ 𝑁 contínua. Se 𝐾 ⊆ 𝑀 é
compacto, então 𝑓 (𝐾) é compacto.

Demonstração. Seja (𝑦𝑛) ⊂ 𝑓 (𝐾), então existe uma sequência (𝑥𝑛) ⊂ 𝐾 tal que 𝑦𝑛 = 𝑓 (𝑥𝑛) para cada
𝑛 ∈ ℕ. Como 𝐾 é compacto, existe uma subsequência (𝑥𝑛𝑘) que converge para 𝑎 ∈ 𝐾. Como 𝑓 é
contínua segue-se que do Teorema A.1 que

lim
𝑘→∞

𝑦𝑛𝑘 = lim lim
𝑘→∞

𝑓 (𝑥𝑛𝑘) = 𝑓 (𝑎) ∈ 𝑓 (𝐾).

Portanto, a subsequência (𝑦𝑛𝑘) converge para um ponto 𝑓 (𝑎) ∈ 𝑓 (𝐾).

Proposição A.9. Sejam 𝑀 um espaço métrico e 𝑓 ∶ 𝑀 ⟶ ℝ contínua. Se 𝐾 ⊆ 𝑀 é compacto, então
existem 𝑎,𝑏 ∈ 𝐾 tais que 𝑓 (𝑎) ≤ 𝑓 (𝑥) ≤ 𝑓 (𝑏) para todos 𝑥 ∈ 𝐾.

Demonstração. Segue-se das proposições A.8, A.5 e A.6, que 𝑓 (𝐾) ⊂ ℝ é fechado e limitado, isto
é, existem 𝑢 = inf 𝑓 (𝐾) e 𝑣 = sup 𝑓 (𝐾). Vamos mostrar que 𝑢,𝑣 ∈ 𝑓 (𝐾). Com efeito, para cada 𝑛 ∈ ℕ,
existem 𝑥𝑛, 𝑦𝑛 ∈ 𝑓 (𝐾) ⊂ ℝ tais que

𝑢 ≤ 𝑥𝑛 < 𝑢 + 1
𝑛 e 𝑣 − 1

𝑛 < 𝑦𝑛 ≤ 𝑣.

Desta forma, as sequências (𝑥𝑛), (𝑦𝑛) ⊂ 𝑓 (𝐾) e convergem respectivamente para 𝑢 e 𝑣. Desta forma,
𝑢,𝑣 ∈ 𝑓 (𝐾). Como 𝑓 (𝐾) é fechado, segue-se que 𝑢,𝑣 ∈ 𝑓 (𝐾). Portanto existem 𝑎,𝑏 ∈ 𝐾 tais que
𝑓 (𝑎) = 𝑢 e 𝑓 (𝑏) = 𝑣.

A.5 Continuidade Uniforme de Funções

Definição A.14. Seja uma função 𝑓 ∶ 𝑀 ⟶ 𝑁 , em que 𝑀 e 𝑁 são espaços métricos. Dizemos que 𝑓
é uniformemente contínua quando para todo 𝜀 > 0 existe 𝛿 > 0, tal que, sejam quais forem 𝑥,𝑦 ∈ 𝑀,
𝑑(𝑥,𝑦) < 𝛿 implicam 𝑑(𝑓 (𝑥), 𝑓 (𝑦)) < 𝜀.

Teorema A.2. Seja uma função 𝑓 ∶ 𝑀 ⟶ 𝑁 , em que 𝑀 e 𝑁 são espaços métricos. Se 𝑓 é contínua
e 𝑀 é compacto, então 𝑓 é uniformemente contínua.

Demonstração. Suponha que 𝑓 não seja uniformemente contínua. Então existe 𝜀0 > 0 tal que para
todo 𝑛 ∈ ℕ, existem 𝑥𝑛, 𝑦𝑛 ∈ 𝑀 tais que

𝑑(𝑥𝑛, 𝑦𝑛) < 1
𝑛, mas 𝑑(𝑓 (𝑥𝑛), 𝑓 (𝑦𝑛)) ≥ 𝜀0.
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Como𝑀 é compacto, existe uma subsequência (𝑥𝑛𝑘) que converge para algum 𝑝 ∈ 𝑀.Desta
forma, existe 𝑛𝑘1 ∈ ℕ tal que 𝑑(𝑥𝑛𝑘 ,𝑝) < 𝜀

2 , para todo 𝑛𝑘 > 𝑛𝑘1 . Além disso, existe 𝑛𝑘2 ∈ ℕ tal que

𝑛𝑘 > 𝑛𝑘2 implica que 1
𝑛𝑘

< 𝜀
2 . Tomando 𝑛0 = max{𝑛𝑘1 ,𝑛𝑘2} ∈ ℕ, temos que 𝑛𝑘 > 𝑛0 implica que

𝑑(𝑦𝑛𝑘 ,𝑝) ≤ 𝑑(𝑦𝑛𝑘 , 𝑥𝑛𝑘)+𝑑(𝑥𝑛𝑘 ,𝑝) < 1
𝑛𝑘

+ 𝜀
2 < 𝜀

2 + 𝜀
2 = 𝜀.

Portanto (𝑦𝑛𝑘) também converge para 𝑝. Como 𝑓 é contínua, segue-se que

lim
𝑘→∞

𝑓 (𝑥𝑛𝑘) = 𝑓 (𝑝) = lim
𝑘→∞

𝑓 (𝑦𝑛𝑘).

Desta forma, para uma infinidade de índices 𝑛𝑘 temos

𝑑(𝑓 (𝑥𝑛𝑘), 𝑓 (𝑦𝑛𝑘)) ≤ 𝑑(𝑓 (𝑥𝑛𝑘), 𝑓 (𝑝))+𝑑(𝑓 (𝑝), 𝑓 (𝑦𝑛𝑘)) < 𝜀0
2 + 𝜀0

2 = 𝜀0.

O que é um absurdo, pois as sequências (𝑥𝑛) e (𝑦𝑛) foram escolhidas tais que

𝑑(𝑥𝑛, 𝑦𝑛) < 1
𝑛, mas 𝑑(𝑓 (𝑥𝑛), 𝑓 (𝑦𝑛)) ≥ 𝜀0,∀𝑛 ∈ ℕ.

Portanto, 𝑓 é uniformemente contínua.
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