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RESUMO

Este trabalho tem como objetivo estudar o Teorema do Ponto Fixo de Brouwer, destacando suas prin-
cipais propriedades e algumas de suas generalizagdes em diferentes contextos do espaco euclidiano.
Inicialmente, apresenta-se uma breve visao historica do matematico que provou esse resultado e dos
matematicos que posteriormente o relacionaram ao jogo Hex. Em seguida, discutem-se as demons-
tracdes do Teorema do Ponto Fixo de Brouwer, come¢ando com o caso da reta real e progredindo
para subconjuntos compactos e convexos do espaco Euclidiano. Posteriormente, introduzem-se o
jogo Hex e o Teorema de Hex, explorando a relacdo entre a impossibilidade de o jogo terminar em
empate e o Teorema do Ponto Fixo de Brouwer, e demonstrando a equivaléncia entre esses dois
resultados. Finalmente, discute-se o uso de jogos como recurso didatico no ensino da matematica,
enfatizando o potencial do jogo Hex como ferramenta pedagogica para a compreensao de conceitos

matematicos abstratos.

Palavras-chave: Teorema do Ponto Fixo de Brouwer; Teorema de Hex; jogo Hex; Ensino de Ma-

tematica; Jogos Matematicos.



ABSTRACT

This work aims to study Brouwer’s Fixed Point Theorem, highlighting its main properties and some
of its generalizations in different contexts of Euclidean space. Initially, a brief historical overview
of the mathematician who proved this result and the mathematicians who later related it to the game
Hex is presented. Next, the proofs of Brouwer’s Fixed Point Theorem are discussed, beginning with
the case of the real line and progressing to compact and convex subsets of Euclidean space. Sub-
sequently, the game Hex and the Hex Theorem are introduced, exploring the relationship between
the impossibility of this game ending in a draw and Brouwer’s Fixed Point Theorem, and demon-
strating the equivalence between these two results. Finally, the use of games as a didactic resource
in mathematics teaching is discussed, emphasizing the potential of the game Hex as a pedagogical

tool for understanding abstract mathematical concepts.

Keywords: Brouwer Fixed Point Theorem; Hex Theorem; Hex game; Teaching Mathematics; Math-
ematical Games.
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INTRODUCAO

A nogao de ponto fixo ocupa um lugar central em diversas areas da matematica, desempe-
nhando papel fundamental tanto em resultados tedricos quanto em aplicagcdes em campos como a
andlise, a topologia, a economia e a teoria dos jogos. Entre os resultados mais conhecidos nessa
tematica destaca-se o Teorema do Ponto Fixo de Brouwer, que garante a existéncia de pontos fi-
xos para fungdes continuas definidas em subconjuntos compactos e convexos do espaco euclidiano.
Apesar de sua formulagdo aparentemente simples, esse teorema possui demonstra¢des profundas e

conexoes inesperadas com diferentes ramos da matematica.

O presente trabalho tem como objetivo principal estudar o Teorema do Ponto Fixo de Brouwer
e algumas de suas generalizagdes, bem como explorar sua relagdo com o Teorema de Hex, um re-
sultado proveniente da teoria dos jogos combinatdrios. Em particular, busca-se evidenciar a equi-
valéncia entre esses dois teoremas, mostrando como um problema de natureza topologica pode ser
compreendido a partir de um jogo de regras simples, e vice-versa. Essa abordagem permite destacar
o carater interdisciplinar da matematica e revelar conexdes entre areas que, a primeira vista, pare-
cem distantes. Além disso, este trabalho aborda o potencial dos jogos para a criagdo de um ambiente
de investigacdo matematica em sala de aula, sendo estes uma ferramenta que vai além do carater

motivacional, capaz de promover o desenvolvimento do pensamento matematico abstrato.

No Capitulo 1, apresenta-se um panorama historico envolvendo matematicos que contribu-
iram de maneira significativa para o desenvolvimento das ideias discutidas ao longo do trabalho, a

saber, Luitzen Egbertus Jan Brouwer, John Forbes Nash Jr. e Piet Hein.

Ja no Capitulo 2, o Teorema do Ponto Fixo de Brouwer ¢ estudado de forma progressiva:
primeiramente no contexto da reta real, depois na bola unitaria fechada do R” e, por fim, em conjun-
tos convexos e compactos do espaco euclidiano. As demonstragdes sdo construidas com o intuito

de tornar explicitos os argumentos geométricos e topologicos envolvidos.

Posteriormente, no Capitulo 3, sera introduzido o jogo Hex, suas regras e propriedades fun-
damentais, culminando na apresentacao do Teorema de Hex e na prova de sua equivaléncia com o
Teorema do Ponto Fixo de Brouwer. Essa relacao evidencia como conceitos matematicos abstratos

podem emergir, até mesmo, de situacdes ludicas.

Por fim, no Capitulo 4, discutiremos o papel dos jogos no ensino e¢ na aprendizagem da
matematica, destacando o potencial do jogo Hex como ferramenta pedagdgica. Essa reflexao busca
aproximar a matematica formal do contexto educacional, ressaltando a importancia da investigacao,

da experimentac¢do e da ludicidade no processo de construcao do conhecimento matematico.



Vale ressaltar que ferramentas de inteligéncia artificial foram utilizadas como apoio a re-
visdo linguistica, a melhoria da clareza textual e geragdo de algumas imagens, sem interferir no

conteudo discutido no trabalho.
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CAPITULO 1
UM POUCO DE HISTORIA

Nesta sec¢do iremos apresentar um pouco da histdria de alguns dos matematicos que deram
grandes contribui¢des para a matematica através dos teoremas de ponto fixo. As principais referén-
cias utilizadas neste capitulo foram (St Andrews, 2000) e (Wikipédia, 2026).

1.1 Luitzen Egbertus Jan Brouwer

Luitzen Egbertus Jan Brouwer nasceu em 27 de fevereiro de 1881, em Overschie, Paises
Baixos. Foi uma das figuras centrais do desenvolvimento da matematica no século XX, especial-
mente no campo da topologia e da filosofia da matematica. Sua trajetoria académica teve inicio
na Universidade de Amsterda, onde ingressou aos 18 anos e obteve seu doutorado em 1907 com
uma tese intitulada Over de Grondslagen der Wiskunde, na qual comegou a desenvolver as ideias
que mais tarde fundamentariam o intuicionismo, uma corrente filosoéfica que ele mesmo criaria e

defenderia ao longo da vida.

Brouwer acreditava que a matematica era uma constru¢cao mental livre, independente da lin-
guagem formal e da ldgica cldssica. Essa concepcao o levou a rejeitar certos principios tradicionais,
como o terceiro excluido, propondo uma abordagem na qual a validade das proposi¢cdes matemati-
cas dependia de sua efetiva construg¢do. Tal visdo estabeleceu as bases do intuicionismo, corrente
que teve grande influéncia na filosofia da matematica, bem como na fundamentacao da teoria da

prova.

Paralelamente as suas contribuicdes filosoficas, Brouwer também desempenhou papel fun-
damental na consolidagdo da topologia, area que entdo estava em ascensdo. Seus trabalhos iniciais
estabeleceram resultados centrais, como o Teorema do Ponto Fixo de Brouwer, publicado em 1912,
que afirma que toda funcdo continua de uma bola fechada em um espago euclidiano em si mesma
possui ao menos um ponto fixo. Esse resultado, além de sua relevancia teodrica, tem aplicagdes

importantes em topologia, economia, teoria dos jogos e analise funcional.

A carreira académica de Brouwer foi marcada tanto pelo prestigio quanto pela controvérsia.
Em 1912, foi nomeado professor da Universidade de Amsterda, onde permaneceu até sua aposenta-
doria. Foi também editor da prestigiosa revista Mathematische Annalen, mas envolveu-se em uma
disputa editorial com David Hilbert, motivada por divergéncias filoséficas quanto aos fundamentos

da matematica, o que resultou em sua exclusdo do comité editorial.

L. E. J. Brouwer faleceu em 2 de dezembro de 1966, deixando um legado significativo

tanto nos campos técnicos da matematica quanto nas discussoes epistemologicas sobre sua natureza
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e fundamentos. Seu trabalho permanece relevante até os dias atuais, sendo amplamente citado e
discutido.

Figura 1 — Luitzen Egbertus Jan Brouwer.
Fonte: Imagem obtida em (St Andrews, 2000).

1.2 John Forbes Nash Jr

John Forbes Nash Jr. foi um matematico norte-americano nascido em 13 de junho de 1928,
em Bluefield, West Virginia. Desde a infincia, destacou-se por sua capacidade de raciocinio logico
e pelo interesse por problemas matematicos, embora sua personalidade fosse marcada por certo

isolamento e introversao.

Inicialmente, Nash iniciou seus estudos em engenharia quimica na Carnegie Institute of Te-
chnology (atual Carnegie Mellon University), mas rapidamente migrou para o curso de Matematica,
onde obteve grande destaque. Em 1948, ingressou no programa de doutorado em Princeton, institui-
¢do na qual desenvolveu trabalhos que se tornariam fundamentais para a teoria dos jogos. Em 1950,
defendeu sua tese intitulada Non-Cooperative Games, na qual introduziu o conceito de Equilibrio
de Nash, uma solu¢do matematica para jogos de estratégia em que nenhum jogador tem incentivo
para mudar sua estratégia individualmente. Esse conceito revolucionou a economia e a teoria dos

jogos, tornando-se uma das contribui¢des mais influentes do século XX.

Ap6s o doutorado, Nash trabalhou no Massachusetts Institute of Technology (MIT), onde
continuou suas pesquisas em diversas areas da matematica, como geometria diferencial, teoria dos

jogos e equagdes diferenciais parciais. No final da década de 1950, comecaram a surgir sinais de es-
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quizofrenia paranoide, o que afetou profundamente sua vida pessoal e profissional. Por muitos anos,
sua carreira académica foi interrompida, e Nash enfrentou periodos de hospitalizagdo e afastamento

do meio cientifico.

A partir da década de 1980, ele passou por um processo gradual de recuperacdo e retomada
de suas atividades intelectuais, voltando a interagir com a comunidade académica. Em reconhe-
cimento as suas contribui¢des, recebeu importantes distingdes, destacando-se o Prémio Nobel de
Ciéncias Econdmicas em 1994, compartilhado com John Harsanyi e Reinhard Selten, pela andlise
pioneira de equilibrio em jogos nao cooperativos. Em 2015, foi agraciado com o Prémio Abel, uma
das maiores honrarias da matematica, pela profundidade de suas contribui¢cdes em equacdes dife-

renciais parciais e analise geométrica.

Figura 2 — John Forbes Nash Jr.
Fonte: Imagem obtida em (St Andrews, 2000).

Poucos dias apos receber o Prémio Abel, Nash faleceu em 23 de maio de 2015, em um
acidente de carro em Nova Jersey. Sua trajetoria ¢ frequentemente lembrada como um exemplo de

superagdo e de impacto duradouro na matematica, na economia e em diversas areas cientificas.

1.3 Piet Hein

Piet Hein foi um matematico, inventor, designer, filésofo, autor e poeta dinamarqués, nas-
cido em 16 de dezembro de 1905, em Copenhague, Dinamarca. Hein desenvolveu uma educagao

diversa, estudando no Instituto de Fisica Teorica da Universidade de Copenhague (posteriormente
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Instituto Niels Bohr) e na Universidade Técnica da Dinamarca. Durante sua vida, ele também ex-
plorou areas como filosofia, artes e design, refletindo um espirito de unificacdo entre ciéncia e

criatividade.

Figura 3 — Piet Hein
Fonte: Imagem obtida em (Wikipédia, 2026).

Uma de suas contribuigdes mais conhecidas ¢ a criagdo dos “grooks” (gruks em dinamar-
qués), que sdo pequenos poemas filoséficos com tom irdnico e profundo. Esses poemas comegaram
a ser publicados no jornal Politiken durante a ocupagdo alema da Dinamarca na Segunda Guerra

Mundial, assinados sob o pseudonimo Kumbel Kumbell, que significa “lapide”.

Hein também se destacou por suas invengdes e criacdes matematicas. Entre elas, o jogo Hex
e o cubo Soma, que se tornaram classicos em jogos matematicos e quebra-cabegas. Além disso, ele
introduziu a superelipse, uma forma geométrica que unifica caracteristicas de elipses e retangulos,
aplicada em arquitetura e design urbano, especialmente no projeto da praca Sergels Torg, em Esto-

colmo, e em pecas de mobiliario.

Ao longo de sua carreira, Piet Hein recebeu diversos prémios e reconhecimentos internacio-
nais, incluindo uma doutor honoris causa pela Universidade de Yale em 1972 e multiplas honrarias
por seu trabalho criativo em arte e design. Ele faleceu em 17 de abril de 1996, deixando um legado

duradouro tanto na matematica quanto na cultura e na arte.
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CAPITULO 2
O TEOREMA DE PONTO FIXO DE
BROUWER

Neste capitulo, iremos apresentar o Teorema de Ponto Fixo de Brouwer. Iniciaremos provando-
o para fun¢des definidas em intervalos fechados da reta real e para isto, teremos como principal
referéncia (Lima, Elon Lages, 2018). Depois provaremos o teorema para a bola unitaria e fechada
centrada na origem de R”, cuja principal referéncia usada ¢ (Guillemin; Pollack, 1974). Em seguida
iremos definir o que ¢ um homeomorfismo e generalizar tal resultado para bolas fechadas quaisquer

do R" e também para subconjuntos convexos e compactos de R”.

2.1 O Teorema de Ponto Fixo de Brouwer em R

Para provar o Teorema Ponto Fixo de Brouwer em R utilizaremos o Teorema do Valor
Intermedidrio, cuja demonstragdo pode ser encontrada em (Lima, Elon Lages, 2018). Vale ressaltar

que esses dois teoremas sao equivalentes, como pode ser visto em (Santos, 2025).

Teorema 2.1 (Teorema do Valor Intermediario). Seja f : [a,b] — R continua. Se f (a) < d < f(b),
entdo existe ¢ € (a,b) tal que f(c) =d.

3

Exemplo 2.1. Considere a fungdo f : [0,4] — R dada por f (x) = % - %C + 2. Desta forma, temos

que para qualquer d € R tal que f(0) =2 <d <8 =f(4), existe c € (0,4), tal que f (c) =d.

3

Figura 4 — Fungdo f : [0,4] — R dada por f(x) = % - %C +2.
Fonte: O autor
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Defini¢do 2.1. Sejaf : X — X, com X C R. Dizemos que p € X ¢ um ponto fixo def quando f (p) = p.

Teorema 2.2 (Teorema do Ponto Fixo de Brouwer em R). Seja f : [a,b] — R uma funcdo continua
satisfazendo a < f (a) e f (b) < b. Entdo existe p € [a,b] tal que f (p) = p.

Demonstra¢do. Com efeito, se f(a) = a ouf(b) = b, ndo hd nada a fazer, pois, em cada caso, basta

tomar p = a ou p = b, respectivamente.

Considere entdo a < f(a) e f(b) < b. Defina a fun¢do y : [a,b] — R por y (x) = x—f(x).
Dai
v(@=a-f(a)<0 e y)=b-f(b)>0.

Assim temos y (a) < 0 < y(b). Segue-se do Teorema 2.1 que existe p € (a,b) tal que y(p) = 0.
Desta forma, existe p € [a,b] tal que f (p) = p. [

Exemplo 2.2. Considere a fungdo f : [0,3] — R dada por

11x3  17x2  26x
fo)=-—g=t+—=3- -5+l

Tal fungdo é continua e satisfaz
0<1=f(0)ef(3)=2<3.

Segue-se do Teorema 2.2 que f possui um ponto fixo.

11x3  17x2 B 26x

6+3 3+1.

Figura 5 — Fun¢do f : [0,3] — R dada por f(x) = —
Fonte: O autor

Podemos ainda enunciar a seguinte versdo o do Teorema do Ponto Fixo de Brouwer, que ¢

uma consequéncia imediata do Teorema 2.2.
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Corolario 2.1 (Teorema do Ponto Fixo de Brouwer em R). Seja f : [a,b] — [a,b] continua. Entdo

f possui ponto fixo em [a,b].

Exemplo 2.3. Considere a fun¢do continua f : [—1,3] — [—1,3] dada por

x* 53 x x 1

fX =g+ "3ty

Segue-se do Corolario 2.1 que f possui um ponto fixo em [—1,3].

Xt 53«2

Figura 6 — Funcao f : [-1,3] — [-1,3] dadaporf(x) = —— + — — —= —

4 6 12
Fonte: O autor

x+1
4 2

Note que o Teorema 2.2 ndo pede que a imagem da funcdo esteja inteiramente contida em

seu dominio como no Coroldrio 2.1, pede apenas que a imagem dos extremos esteja contida em seu

dominio. Em outras palavras, o Teorema 2.2 exige menos condigdes sobre a fung¢ao.

Observe novamente as Figuras 5 e 6. Note que os pontos fixos das fung¢des correspondem

aos pontos em que os graficos das fungdes interceptam o grafico da fungado identidade. E isto vale

para qualquer fung¢ao real. Geometricamente temos que a reta identidade divide o plano em dois

semiplanos. O Teorema de Ponto Fixo de Brouwer pede condi¢des suficientes para garantir que

os pontos (a,f(a)) e (b,f (b)) pertencam a semiplanos distintos determinados pela reta identidade
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(exceto claro, quando os extremos ja sdo pontos fixos). E como f € continua, o grafico de f iré inter-
ceptar o da reta identidade em algum ponto do intervalo [a,b], para “atravessar’” de um semiplano
para o outro, assim como ocorre nas Figuras 5 e 6. Tal ponto de intersecao ¢ um ponto fixo. Outra
observagdo importante ¢ que este € um teorema de existéncia, mas ele ndo garante a unicidade do
ponto fixo, como pode ser visto na Figura 6, em que a fun¢do do Exemplo 2.3 possui trés pontos

fixos.

2.2 O Teorema de Ponto Fixo de Brouwer na Bola Unitaria Fechada
de R”

A defini¢do a seguir ¢ uma generalizagcdo da Definicao 2.1, pois vale para qualquer espago

métrico, enquanto a apresentada na se¢ao anterior se restringe a subconjuntos dos reais.

Definicdo 2.2. Seja M um espago métrico e uma fungdo f : M — M. Dizemos que p € M é ponto
fixo de f quando f (p) = p.

Na sequéncia desta se¢do assumiremos que B” ¢ abola unitaria de R” e S” ¢ a esfera unitaria

de R”, a menos que se diga o contrario.

Para provar o Teorema de Ponto Fixo de Brouwer para bola unitaria e fechada do R” assu-

miremos o Teorema da Retragdo, cuja demostragcdo pode ser obtida em (Guillemin; Pollack, 1974).

Defini¢io 2.3. Seja M um espaco topolégico' e X ¢ M. Chamamos de retracio de M em X, uma

fungdo f : M — X que é continua e satisfaz f (x) = x,Vx € X.

Teorema 2.3 (Teorema da Retragdo). Seja X uma variedade® compacta com bordo. Entdo ndo existe

retracdo de X em dX.

Em particular B” ¢ uma variedade compacta com bordo, sendo dB” = §”. Assim, segue-se

do Teorema 2.3 que ndo existe retragdo de B” em S”.

Teorema 2.4 (Teorema do Ponto Fixo de Brouwer na Bola Unitaria e Fechadas de R"). Seja f :

B — B"™ uma fung¢do continua. Entdo existe p € B" tal que f (p) = p.

Demonstragdo. Suponha que f(x) # x,Vx € B". Defina a fungdo g : B" — S§”" da seguinte forma:

para cada x € B", tome g(x) sendo a interse¢ao da semirreta r, de origem em f (x) € que passa por

1
2

Todo espago métrico ¢ um espago topologico.
Espagos nos quais o ambiente de cada ponto é “igual” a um pequeno pedaco do espaco euclidiano, como por
exemplo a bola fechada de R”.
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x, com §”". Pela construcgao feita temos que g(x) = x,Vx € §”. Desta forma, basta mostrar que g ¢

continua, para concluir que g € uma retracdo de B” em S”, o que € um absurdo pelo Teorema 2.3.
) 8

Figura 7 — Construgao da fungao g : B" — S”.
Fonte: O autor

Note entdo que g(x) —f (x) € multiplo de x — f (x) por um escalar r € R com ¢ > 1, isto €,
g(x)—f(x) =t(x—f(x)), para algum 7 > 1.

Assim,
g(x) =t(x—f(x))+f(x), paraalgum ¢ > 1. (2.1)
Além disso, como g(x) € S”, temos que ||g(x)|| = 1. Logo,
1=[1g)I? = llt(x —f (%)) +f ) = (t(x —f (x)) +f (x), 1 (x = f (x)) +f (x))
=12 (x—f(x),x —f (X)) + 2t {(x = (x),f (%)) + (F (x),f (x)) (2.2)
= b —f )12 + 2 (x = f (x).f (1)) £ + [ (0)]%.

Segue-se da Equagdo (2.2) que
X —f (1222 + 2 (x —f (x),f (x)) £ +|[f (%) [I> =1 = 0. (2.3)

Como para cada x € B" temos um unico ¢ > 1 que satisfaz a Equagdo (2.3), estamos interessados
em encontrar uma forma de escrever ¢ explicitamente em fungdo apenas de x € B”, isto ¢, escrever

t=t(x).

Observe que, por hipotese, |[x —f (x)|| > 0. Assim, a Equacdo (2.3) ¢ uma equagdo do tipo
at> +bt+c=0,emquea=|lx—f(x)|>>0,b=2{x—f(x),f(x))ec=fx)*>-1<0.

Afirmacao: A equagdo quadratica dada em (2.3) possui exatamente uma raiz positiva maior

que ou igual a 1.
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De fato, calculando o discriminante obtemos

A =b%—dac =4(x—f(x).f(x)) =4l —f @I (IF @) IP-1).

Assim, podemos concluir que A > 0, portanto a equagdo quadratica possui duas raizes reais (iguais
ou distintas).

Note ainda que,

0 < lhe=f (O = X% = 2 {x.f () + [ )IIF < 2 =2 (x.f (x)), (2.4)

pois x € B" e f(x) € B". Portanto,

1 1
2 2(nf ) IS

0< (2.5)

Sejam ¢, e t, as raizes da equagdo quadratica dada em (2.3).

Se f(x) € §", entdo ||f (x)|| = 1 e assim ¢ = 0. Desta forma,

2{x—f(x),f(x))

e —f OIP2+2(x—f(x),f (X)) 1=0=1,=0et, = - e =f (0117

Assim,

C2(xnf () =2 W)IP _ 2-2(x.f(x))
llx = f ()12 [lx = f ()12

y = > 1, pela Equagao (2.5).

~ , &
Por outro lado, se f(x) ¢ S”, entdo ||[f (x)]| < 1, dai ¢ < 0, desta forma ¢, - t, = P < 0. Isto
significa que as raizes #; e t, possuem sinais opostos, isto ¢, uma ¢ positiva e a outra negativa.

Digamos, sem perda de generalidade, que #; < 0 < f,. Desta forma, temos que

; _—b+\/Z

2 2a
Além disso, como nesse caso a Equacao (2.3) possui duas raizes distintas, logo A > 0.

Suponha que 7, < 1. Entdo

#<1=>—b+ﬂ<2a:/0< VA <2a+b =

0< A <4a?+4ab+b> = 0 < b* —4ac < b +4ab + 4a® = (2.6)

0<4a?+4ab+4ac =0<a+b+c.
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Note ainda que

a+b+c=Ilx—f@)I?+2(x—f(x). )+ (x)*-1
= [Ixll? = 2 (x,f (X)) + [f )P + 2 (x,f () = 2I[f ) l1Z + [[f () II> = 1 (2.7)

= |l — 1.

Pelas Equagoes (2.6) e (2.7), segue-se que 0 < |Ilx[|2 — 1, isto &, 1 < ||x||>. Uma contradic3o,
pois x € B". Portanto, t, > 1.

Em todo caso, a equacdo quadratica dada em (2.3) possui duas raizes reais distintas, com

exatamente uma delas maior ou igual a 1, sendo ela dada por

L mbrVA 2 ff )+ \/4<x ~f @) ) =4l =F I (If )2 - 1)
- 2 2l ~f (I

Defina entdo, a fungdo 7 : B — R por

t _—2@—funﬂx»+J4@—fumfu»2—4u—funﬁuvumZ—U
() = 2 —f ()2 '

Como a norma e o produto interno sdo fun¢des continuas, ¢ imediato que a funcdo ¢ é con-
tinua. Note que a fungdo ¢ foi construida de forma que para cada x € B”, t(x) > 1, com #(x) satisfa-

zendo a Equacgdo (2.3).
Entdo, substituindo ¢ por #(x) em (2.1) podemos escrever a funcao g da seguinte maneira,
g(x) = a(x)x+ (1-1(x))f (x).

Isto significa que g € uma funcdo continua. Assim g ¢ uma retracdo de B” em S”, o que contradiz o
8 8 5

Teorema da Retragdo. Portanto, f(p) = p, para algum p € B". [

Definicao 2.4. Seja M e N espagos métricos e f : M — N uma fun¢do. Dizemos que f é um home-

omorfismo quando:
* f ¢ uma bije¢do;
. _] ~ 4
* f esua inversa f~' sdo continuas.

Dizemos que M e N sao homeomorfos, quando existe um homeomorfismos entre esses espagos.

Exemplo 2.4. Sejaa € R" er >0. A bola B = Bla,r] é homeomorfa a bola B".
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1
De fato, defina a funcio T : B — B" por T (x) = 7(x —a). Note que T esta bem definida,

pois

=1.

1 1
7@ =7 6= = ik -l <

NN

Sua inversa é T~ : B" — B dada por T 'x)=rx+a.

B" B
Figura 8 — A funcdo T : B — B" definida por T'(x) = %(x -a).
Fonte: O autor

Afirmacao: T é continua. De fato, dados € > 0 e x, € B, tome § = er > 0. Dai, sex € B e

satisfaz ||x — xgl| < 8, temos que

1 1
70 =Tl = | (x-a) = o - )

Hl( )H Lol < 28
== (x=xp)|| = =lIx—xpll < — = &.
r 0 r 0 r

~ , , . & ,
Afirmaciao: T~ é continua. Com efeito, dados € > 0 e yy € B", tome & = -> 0. Dai, seye B" e
satisfaz ||y — yoll < 8, temos que

IT=10) =T~ o) = (ry +a) = (ryo + @)l = lIr (y = yo)ll = rlly = yoll < r% =&

Portanto T ¢ um homeomorfismo.

A funcdo definida no exemplo anterior realiza uma translagcdo da bola B, posicionando seu

centro na origem, e depois realiza uma homotetia®, transformando-a numa bola unitaria.

Proposicao 2.1. Sejam X c R"™ homeomorfo a B" e f : X — X uma fun¢do continua. Entdo existe

p € X tal que f (p) = p.
3

Dado um espago vetorial normado V, os conjuntos X,Y c V quaisquer ¢ um nimero ¢ € R com «a # 0, a fungéo
h, : X — Y dada por i, (x) = ax, é chamada homotetia. Ver (DOMINGUES, 1982).
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Demonstra¢do. Como X é homeomorfo a bola B”, existe um homeomorfismo /4 : X — B". Note
que a fun¢ado
g=hofoh !:B" — B"

¢ composta de fungdes continuas. Segue-se do Teorema 2.4 que existe a € B" tal que g(a) = a.

8
B" B"

h! h

f

Figura 9 — A fungo g = hofoh™!.
Fonte: O autor

Como & ¢ homeomorfismo, existe p € X tal que h(p) = a, e consequentemente 4~ ! (a) = p.

Afirmamos que p € ponto fixo de f. Com efeito
fp)=(feh (@) =[(h eh)o(foh™)](a) =[(h e (ho(foh™))](a)
= (h7'og)(a) =h1(a) =p.
O

Corolario 2.2 (Teorema de Brouwer em uma Bola Fechada do R"). Seja B uma bola fechada

qualquer de R" e f : B— B continua. Entdo existe p € B tal que f (p) = p.

Sejam xp € R” e r > 0. Mostraremos agora que o Teorema de Brouwer em uma bola fechada

B = B[xg,r] qualquer de R” implica no Teorema da Retra¢do em B.

Corolario 2.3. Seja B = B[x,r] uma bola fechada de R" e S = S(xq,r) o seu bordo. Ndo existe

retragdo de B em S.

Demonstragdo. Suponha que exista g : B — S continua e satisfazendo g(x) = x,Vx € S. Podemos
definir a func¢do f : B — B por
J(x) =2xp - g(x).

Note que f estd bem definida, pois f (B) C S c B. De fato,

IIf (x) = xpll = 112x9 — g(x) —xpll = llg(x) —xpll = r, pois g(x) € S.



23

Além disso, f € continua. Segue-se do 2.2 que existe p € B tal que f(p) = p. E como vimos
acima, p € §, assim, g(p) = p. Dai

P=f(p)=2x0-8(p) =2xg—-p=2p=2xg=p=xg=|lp—x0ll =0

o que contradiz o fato de que p € S. Portanto ndo pode existir retracdo de B em S. O

2.3 O Teorema do Ponto Fixo de Brouwer em Conjuntos Convexos

Compactos de R”

A seguir faremos uma generalizacao do Teorema do Ponto Fixo de de Brouwer para conjun-

tos convexos e compactos de R”. A principal referéncia utilizada nesta se¢ao foi (Institute, 2025).

Teorema 2.5 (Teorema do Ponto Fixo de Brouwer em Conjuntos Convexos Compactos de R").

Sejam K um conjunto convexo e compacto de R" e f : K — K uma fung¢do continua. Entdo existe

p € K tal que f (p) = p.

Demonstragdo. Como K ¢ compacto, temos que K ¢ limitado. Portanto podemos tomar alguma

bola B de R” tal que K C B. Fixe x € B. A partir da norma euclidiana, defina a func¢ao
d,:K— R pord,(z) =|x-z].

Como d, ¢ continua e K ¢ compacto, temos que d, assume valor minimo em algum y, € K, isto &,

lIx =yl < llx—zll,Vz € K.

&

Figura 10 — O ponto y, € K fornece a menor distancia entre o ponto x € B ¢ o conjunto K.
Fonte: O autor
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Afirmacdo: Este y, ¢ Unico. De fato, sejam y;,y, € K tais que
e =yill =llx=yall=d < |lx-zll,¥z € K.
1 .
Como K € convexo, u = 5 (y; +y,) € K. Dai, aplicando-se a regra do paralelogramo* temos
1 > 2
@ <le-ul = fr= 3 01 3)| = 7126- 0149

1 2
=Z||(X—)’1)+(X—Y2)|| 2.9)
1 ) 1 > 1 ) '
=5 =il + 5l =y2 " = Z I =y1) = (=2

1 2 1 2 1 2 1
=5yl + e =y2l" =zl =y2l" = d? — 7l —yall* <d?.
Pela Equagao (2.8) temos que

1
d?<d?- leyl —y,|I? < d>.

Portanto [ly; —y,|| = 0, e assim y; = y,. Em outras palavras, para cada x € B existe Uinico y, € K tal
que

llx =yl = %%{le —zll}.
Podemos entdo definir a fungao
g:B— Kporg(x)=y,¥xeB.

Note que, g(x) =x,Vx € K.

Afirmagéo: A fungdo g ¢ continua. Com efeito, seja xg € B ¢ (x,) C B com lim x,, = xo.
Suponha que (g(x,,)) € K ndo convirja para g(xy) € K. Entdo existe £ > 0 e uma subsequéncia

(g (xnj)) tais que
g (xnj) - g(xg)ll = &, paratodo j € N.

Como K ¢ compacto, existe uma subsequéncia ( g (xnf_ )) de ( g (xnl,) ), que converge para algum
ponto y* € K.

Desta forma, para todo i € N temos que

xnfi —8 (xn!'z)H =

x"fz —-zll,Vz € K,

em particular

xnfz' —8 (x”/f)H = xnfi —g(xo)

Usamos que dados u,v € R” vale que |lu + v||? + |lu— v|[Z = 2|jul|? + 2||v|?.

b

4
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e passando o limite obtemos que

Ixo = ¥*II < llxg — g (xp)Il.

Segue-se da minimalidade de |lxg — g(xg) ]l que y* = g(xq).

Dai lim g(xnl, ) = g(xg), 0 que contradiz o fato de ||g(xnj) —g(x)|l = &, para todo j € N.
1— 00 Ji

Portanto, (g(x,)) converge para g(xy). Portanto g ¢ continua.

Defina a fun¢do 4 : B — B pondo

h(x) = (fog) (x),Vx €B.

K KCB
f

Figura 11 — A funcdo h=f o g.
Fonte: O autor

Como f e g sdo continuas, segue-se que & ¢ continua. Pelo Corolario 2.2, temos que existe

p € Btal que h(p) = p. Como h(B) =f (g(B)) C K, temos que p € K. Assim, g(p) = p. Portanto,

f(p) =f(gp)) =h(p) =p,

e p ¢ um ponto fixo de f. [
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CAPITULO 3
0O JOGO HEX

Neste capitulo vamos discutir a equivaléncia entre o Teorema de Hex e o Teorema do Ponto
Fixo de Brouwer. O Jogo Hex! ¢ um jogo ndo cooperativo, isto ¢, cada participante age de forma
independentemente, sem colaboragao ou comunicagdo com nenhum outro jogador, como visto em
(Salvanés, 2021), e além disso possui regras bem simples. O Teorema de Hex afirma, basicamente,
que o jogo Hex nunca termina empatado. Por fim, provaremos que o Teorema do Ponto Fixo de
Brouwer e o Teorema de Hex sdo equivalentes. As principais referéncias utilizadas neste capitulo
foram (Salvanés, 2021) e (Gale, 1979).

3.1 O Jogo Hex

O jogo Hex ¢ um jogo de estratégia criado por Piet Hein, em 1942, e reinventado por John
Nash, em 1948. O tabuleiro de Hex € composto por células hexagonais regulares dispostas de modo
a formar um losango. Esse tabuleiro ¢ normalmente identificado como sendo de tamanho & x k, indi-
cando que ha k hexagonos em cada lado. As bordas opostas do tabuleiro sdo distinguidas por duas
cores diferentes, geralmente vermelho e azul, cada uma correspondendo a um dos dois jogadores.

A Figura 12 apresenta um tabuleiro de Hex 12 x 12. As regras do jogo sdo:

* A cada jogador ¢ atribuida uma cor;
* Os jogadores jogam alternadamente;
* A jogada consiste em colorir uma casa vazia do tabuleiro com a sua cor;

* Vence o jogo o primeiro jogador a conseguir obter um caminho formado por hexagonos adja-

centes, todos da sua cor, ligando os lados opostos do tabuleiro da cor do jogador.

* O jogo termina quando um dos jogadores vencer.

Assim, observando a Figura 12, o jogador vermelho deve construir um caminho de hexago-
nos vermelhos adjacentes que ligue as bordas vermelhas (superior e inferior), enquanto o jogador
azul busca conectar as bordas azuis (esquerda e direita) com um caminho formado por hexagonos

azuis adjacentes.

I Existem aplicativos gratuitos que podem ser baixados, para se jogar o jogo tanto a versdo para computadores

quanto para celulares. Pode-se baixar a versdo para computadores no seguinte link: https://hex-boardgame.
en.softonic.com/


https://hex-boardgame.en.softonic.com/
https://hex-boardgame.en.softonic.com/
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Figura 12 — Tabuleiro de Hex 12 x 12.
Fonte: O autor.

A Figura 13 ilustra um tabuleiro de Hex no qual as células vermelhas e azuis representam
as jogadas dos dois participantes. As bordas vermelhas correspondem as extremidades superior e

inferior, e as bordas azuis as laterais esquerda e direita.

Figura 13 — Tabuleiro de Hex 12 x 12, ao fim do jogo.
Fonte: O autor.
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3.2 O Teorema de Hex

Nesta secdo mostraremos que o jogo Hex nunca termina empatado, isto €, sempre um dos

dois jogadores ira vencer.

Intuitivamente, para que houvesse um empate, seria necessario que ambos os jogadores
estivessem “presos”, isto ¢, que nenhum deles conseguisse estabelecer um caminho formado por
hexagonos adjacentes entre as suas respectivas bordas. No entanto, tal situagdo ¢ impossivel no jogo
Hex. De fato, suponha que o jogador azul tenha formado um conjunto de pecas que impede o avango
do jogador vermelho. Isso significa que o azul criou uma espécie de barreira fechada, delimitando
uma regido onde o vermelho ndo pode mais conectar suas bordas. Contudo, essa mesma barreira
azul, ao se fechar sobre o vermelho, forgosamente cria um caminho continuo de pecas azuis que

liga as bordas azuis do tabuleiro, garantindo assim a vitéria do azul.

De modo analogo, se o vermelho tentar impedir completamente o azul, a fronteira que ele
formar acabara conectando suas proprias bordas, resultando na vitoria vermelha. Portanto, é impos-
sivel que ambos fiquem presos simultaneamente, pois o ato de “prender” o adversario j& constitui

uma conexdao vencedora.

Teorema 3.1 (Teorema de Hex, Gale 1979). Se todos os hexagonos do tabuleiro k x k do jogo Hex
estdao coloridos por alguma cor, seja vermelho ou azul, entdo existira um caminho de hexdgonos

adjacentes que une ou os lados vermelhos, ou os lados azuis.

Demonstragdo. Inicialmente observe que se o jogo se encerrar antes de o tabuleiro estar comple-
tamente preenchido, entdo um dos jogadores tera vencido, isto €, construido um caminho ligando
as bordas da sua cor por um caminho de hexdgonos dessa mesma cor, e o resultado estard provado.
Consideraremos entdo uma partida em que todas as casas do tabuleiro foram preenchidas e mostra-
remos que um dos jogadores venceu. Para demonstrar esse resultado, construiremos um algoritmo
que, para qualquer tabuleiro k x kK completo ap6s uma partida do jogo Hex, como a Figura 13, sempre
encontre um caminho de hexagonos adjacentes unindo dois lados opostos do tabuleiro, da mesma

cor do caminho. Nomearemos de u,v,u’ e v/ os vértices do tabuleiro.

Para construir o algoritmo criaremos um grafo. Em Teoria de Grafos, o que chamamos de
nos serdo os vértices dos hexagonos e os vértices do tabuleiro; as arestas do grafo serdo os lados
dos hexagonos e os segmentos ligando os vértices u,v,u’ € v' ao bloco de hexagonos do tabuleiro,
conforme a Figura 14. Chamaremos de casas azuis os hexagonos azuis e os lados azuis do tabuleiro.
Analogamente, chamaremos de casas vermelhas os hexagonos vermelhos e os lados vermelhos do

tabuleiro.
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U

Figura 14 — Tabuleiro de Hex 12 x 12 com seus nds e arestas.
Fonte: O autor.

A regra de construcdo do grafo € que ele sempre avance por uma aresta que tenha uma casa
azul de um lado e uma casa vermelha de outro. E facil ver que as arestas que partem de quaisquer

dos vértices u,v,u’ e V' satisfazem essa propriedade.

Sem perda de generalidade, consideremos o grafo sendo percorrido a partir do vértice u. A
medida que seguimos as arestas do grafo, imaginemos que caminhamos sobre elas, avancando de
um vértice ao préximo conforme a orientacdo definida pelo percurso. Dessa forma, convencionamos
chamar de lado direito do grafo aquele que corresponde a direcdo voltada para a nossa mao direita,

e de lado esquerdo aquele voltado para a nossa mao esquerda.

Nessa perspectiva, ao iniciarmos o trajeto, temos uma casa vermelha localizada a direita do
grafo e uma casa azul a esquerda. Ou seja, € como se “‘caminhdssemos” sobre a primeira aresta, indo
do vértice u ao proximo, tendo a nossa direita uma casa vermelhas e a nossa esquerda uma casa azul.
Ao continuarmos a caminhada, isto €, ao avancarmos de vértice em vértice seguindo a construcao
do grafo, essa relacdo entre as cores se mantém: a cada novo passo, encontramos sempre uma casa

vermelha a direita e uma azul a esquerda, conforme ilustrado na Figura 15.

Para que essa disposicao se invertesse, seria necessario que o trajeto passasse por uma aresta
que ligasse duas casas da mesma cor em ambos os lados, o que violaria a forma como o grafo foi
construido. Portanto, a orientagdo do percurso garante que o padrdo de cores se preserve em todo o

grafo.

Além disso, ao percorrer uma aresta do grafo, saindo de um vértice e chegando a outro

vértice cercado por trés casas adjacentes, como na Figura 15, é sempre possivel mover-se para outro
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Figura 15 — Trés casas adjacentes do tabuleiro.
Fonte: O autor.

vértice diferente, isto €, percorrer uma nova aresta, de acordo com as regras do algoritmo e como
pode ser visto na Figura 15, ha sempre uma tnica forma de fazer esse movimento. Desta forma, o

algoritmo constrdi um grafo e este € Gnico.

Adicionalmente, como o grafo ¢ finito, ja que a quantidade de arestas do tabuleiro k x k ¢
finita, concluimos que o processo deve acabar em algum momento. Porém, como ja vimos, sempre
que houver trés casas adjacentes € possivel avancgar. Desta forma concluimos que o processo devera
se encerrar em um dos vértices u,v,u’ € v'. Porém o processo ndo pode terminar em u, ja que ele
se iniciou neste vértice, € nem em v’, pois isso faria com que tivéssemos uma casa azul a direita do
grafo e uma vermelha a esquerda do grafo, o que ja concluimos que ¢ impossivel. Logo, o grafo s

podera terminar em v ou u”. Observe os grafos, partindo do vértice u, Figura 16, e u’, Figura 17.

U

Figura 16 — Grafo construido utilizando o algoritmo no Tabuleiro de Hex 12 x 12.
Fonte: O autor.
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v

u

Figura 17 — Grafo construido utilizando o algoritmo no Tabuleiro de Hex 12 x 12.
Fonte: O autor.

No caso em que o grafo iniciado em u termina em v, como na Figura 16, teremos um caminho
formado por hexdgonos azuis ligando os lados azuis do tabuleiro. Caso o grafo tivesse terminado
em u’, teriamos um caminho formado por hexdgonos vermelhos ligando os lados vermelhos do

tabuleiro.

O

Esse algoritmo traduz a ideia intuitiva trazida no inicio desta se¢d@o. Conforme vemos a
figura, os grafos obtidos formam um tipo de “barreira” azul criada por um dos jogadores e que
“impede” os movimentos do outro jogador.

3.3 Teorema do Ponto Fixo de Brouwer via Teorema de Hex
Nesta secdo provaremos novamente o Teorema do Ponto Fixo de Brouwer, desta vez utili-
zando o Teorema de Hex.

Considere a fungdo g, : R? — R? dada por

2x1 — X \/gxz)

go(x)=( )
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para todo x = (x1,x,) € R2. A fungdo g, ¢ um homeomorfismo cuja inversa g;' : R? — R? é dada

por

_1 3.X1 + \/ng 2\/§X2
g() ('x) = 3 B 3 D)

para todo x = (xq,x,) € R2.

Podemos definir ainda a seguinte funcio |- ||, : R? — R, por|jx|[4, = ||g51 (x)|l, em que || - ||

¢ a norma do maximo em R2.

Lema 3.1. A4 funcdo || || é uma norma em R2.

Demonstragdo. De fato:

i) Sejax = (x;,x,) € R? tal que ||x||4 = 0. Entio,
0=llxlls = |gg" )] = g5 (x) = (0,0).

Segue-se que
3X1 + \/5)62 _

3 0,
2\/3)62 _
3 =

0.

Portanto, (x;,x,) = (0,0).
ii) Seja 1 € R e x € R2. Entio,

H(3/1X1 + \/§le 2\/§le)

122114 = llgg" (22)1] = 2 T

3X1 + \/§)C2 2\/§X2

” (3X1+\/§X2 2\/§X2)
=1 3 3

‘ = [21-llgg" ol = 141 - [1xll4-

iii) Sejam x = (x1,X,),y = (y1,Y2) € R2. Entio,

[+ ylla = llgg" (x+ )l = “(3("1 1) +3‘/§(x2+)’2),2‘/§(x32+)’2))”

361+ V3%, 243x, 3y1+ 3y, 243y,
B 3 3 |7 3 3

=llgo! (x) + g5 W)l

<ligo' )1+ llgg  O)II = llxlla + 1yll4-

Portanto, || - ||4 € uma norma em R2. O
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Observe que a restrigio g da fungdo g, a I? é um homeomorfismo do quadrado I% no losango
13 13

2 7) ¢ (‘5’ 5

por A. Geometricamente, a fungiio g mantém a base do quadrado /2 fixa e deforma o quadrado no

losango, empurrando seu topo para a esquerda’.

de R? de lado um, com vértices em (0,0), (1,0), ( ) Tal losango sera denotado

’sr = (x1,x2)

Figura 18 — A funcdo g é um homeomorfismo de /% em A.

Figura 19 — A funcdo g é um homeomorfismo de /% em A.
Fonte: O autor.

2 Pode-se ver o funcionamento da fungdo g através da construgio disponivel no link https: //www.geogebra.org/

classic/ysf9gmjq.


https://www.geogebra.org/classic/ysf9gmjq
https://www.geogebra.org/classic/ysf9gmjq
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Teorema 3.2 (Teorema do Ponto Fixo de Brouwer via Teorema do Hex). Sejal =[0,1]ef : 1> — I?

continua. Entdo existe xo € I tal que f (xy) = Xg.

Demonstracdo. Denotaremos por || - || a norma do maximo em R?2, isto ¢, ||x|| = max {x1,x,} para
qualquer x = (x1,x,) €1 2 e por ||| 4 a norma em R?2 definida no inicio desta secfio, a partir da
fungdo g5' : R? — R2. Comof (x) = (f} (x).f>(x)) é continua, temos que f] e f> sdo continuas, pela
Proposi¢@o A.7. Suponha que exista g, > 0 tal que ||f (x) —x|| > &, para todo x € ] 2, Isto significa,
que o ponto f(x) ndo pertence ao quadrado de lado 2¢( e centro em x, pois estamos utilizando a

norma do maximo, conforme pode ser representado na Figura 20.

® flx)

Figura 20 — Elemento x € /2 e sua imagem pela fungio f.
Fonte: O autor.

Construiremos os seguintes conjuntos:
H* = {x S Iz;fl (x) —x; > go},
H™ = {x IS Iz;xl -f1(x) > 80},
e denotaremos por H = H* UH~. Sendo X = I? — H, construiremos também os conjuntos
Vt={xeX;fr(x)—xy > &p},

Vo={xeX;x, —f(x) > &p}.

Em outras palavras, cada x € I? determina 4 regides em /2 conforme a Figura 21. Dizemos que
x € H" se f(x) pertencer a Regido Azul Escuro; x € H™ se f(x) pertencer a Regido Azul Claro;
x € V* se f(x) pertencer a Regido Vermelho Escuro; x € V™ se f(x) pertencer a Regido Vermelho
Claro.



Figura 21 — Divisdo de /? em quatro regides para cada x € I2.

Fonte: O autor.

Sendo g = g P I?> — A, podemos definir os conjuntos:

Hi={zeA; ¢! z)eH+},
Hy={zed gl () e ),
Vi={zeAg 1(z)ev+},

Vi={zeA; ¢ () eV }.

Assim, cada z € A determina quatro regides em A conforme a Figura 22.

Figura 22 — Divisdo de A em quatro regides para cada z € A.

Fonte: O autor.
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Podemos construir um tabuleiro de Hex n xn, em que n € N ¢ suficientemente grande tal
que cada hexagono esteja contido no losango de lado 2¢( e cujo centro € o mesmo do hexagono,

como mostra a Figura 22.

Como a fun¢iio g~! é uma fungio continua em A, que ¢ um conjunto compacto, e f é con-
tinua em /2, que também ¢é compacto, segue-se pelo Teorema A.2 que g~ ! e f sdo uniformemente

continuas. Dai existem § > 0 e &, > 0 tais que

se x,x’ €l?e|lx—-x'|| <8, entdo [|f(x)—f ()< o,

se 7,7 €Aellz—7|ls <8¢, entdo |lg7!(z) —g 1)l < 6.

Podemos tomar & pequeno o suficiente tal que § < . Novamente, uma vez fixado o valor de §),
podemos tomar n € N suficientemente grande tal que se z,z” € A forem centros de dois hexagonos

adjacentes, entdo a distancia ||z —z'|[4 < 8.

Por fim, iremos colorir cada hexdgono de acordo com o conjunto em que seu centro estiver,
isto &, se o centro do hexagono estiver em H;,H,,V} ou V; iremos colorir o hexdgono de azul

escuro, azul claro, vermelho escuro ou vermelho claro, respectivamente.

Mostraremos agora que nao existem hexdgonos adjacentes que sejam um azul escuro e o
outro azul claro. Suponham que existam um hexagono de centro em z = (z;,z,) € H; ¢ um hexdgono
de centro em 7" = (z],25) € Hy, adjacentes. Isto significa que x = g71(z) = (x;,x,) € HY e x’ =

g () = (xi,xé)) € H~. De acordo com a escolha de n € N, temos
lz=2'lla <80 =1Ig7 (2) =g M (I =lx=x"I| < 8 = [If (x) —=f (")l < &0.
Além disso, como x € H' e x’ € H™, temos que
filx)=x; >e9 e x]—f1(x)>¢e0=f1(x)—f1(x") +x] —x1 > 2¢.

Logo, como estamos usando a norma do maximo em /2, temos que f1 (x) —f1 (") < |If (x) =f (DI

ex;—x; <|lx—x'| <8 < &gg. Assim,
2e0 <fi () =fi(x") +x] —x <[[f (x) =f ()] + &.
Concluimos entdo que

IIf () =f I > &,

contradizendo a continuidade uniforme de f, pois |x —x’|| < 8, mas ||f (x) —f (x")|| > &. Portanto
ndo existem hexdgonos adjacentes que sejam um azul escuro e o outro azul claro. Analogamente,

ndo existem hexagonos adjacentes que sejam um vermelho escuro e o outro vermelho claro.
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Além disso, os hexagonos adjacentes a borda direita do tabuleiro, ndo podem ser pintados de
azul escuro. Suponha que pudessem. Ento existiria um hexagono, de centro em z = (zy,2,) € H},
adjacente a borda direita do tabuleiro. Assim, temos que x = g~ ! (z) = (x;,x,) € H*. Segue-se disto
que
J1(x) =x1 > 9 = f1(x) >x1 + &.

Pela construcdo da fungdo g, como (1,x,) € I? pertence a borda direita de 7%, podemos
concluir que z” = g(1,x,) € A pertence a borda direita do tabuleiro. Podemos tomar n € N sufici-
entemente grande tal que ||z —ull4 < &(, para todo u € A que pertenca a borda direita do tabuleiro.

Dai, em particular, tem-se ||z —z’||4 < £g. Segue-se que

llz=2"lla = llg™" (2) =g~ (&) = lI(x1,x0) = (L)l = ey = 1 = T —xy,

pois 0 < x; <1, ja que (x;,x,) € I

Desta forma, 1 —x; < g, dai 1 < x; + £y < f; (x). Logo f(x) ndo pertenceria a I?, e isto é
uma contradigio, pois por hipétese f(x) € I2,¥x € I?. Da mesma maneira: os hexagonos da borda
esquerda do tabuleiro, ndo podem ser pintados de azul claro; os hexdgonos da borda superior do
tabuleiro, ndo podem ser pintados de vermelho escuro; os hexdgonos da borda inferior do tabuleiro,

nao podem ser pintados de vermelho claro.

Concluimos assim que embora todas as casas do tabuleiro estejam pintadas, ndo hd um
caminho de hexdgonos azuis (escuros ou claros) adjacentes ligando os lados azuis do tabuleiro e ndo
ha um caminho de hexdgonos vermelhos (escuros ou claros) adjacentes ligando os lados vermelhos
do tabuleiro. Este fato contradiz o Teorema 3.1. Portanto, concluimos que para todo ¢ > 0, existe
x € I? tal que ||f (x) —x|| < &.

Desta forma, é possivel tomar uma sequéncia (x,,),,cn C I tal que
1
Hf(xn) _xn” < E

Como I? é compacto, existe uma subsequéncia (x,, JkeN C 1 2 tal que klim Xp, =% €1 2,
- 00

Como f € continua segue-se que

. .1
IF (o) =xoll = Jim [ ) =, |1 < fim - = 0.

Portanto, f (xq) = xg. OJ
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3.4 Teorema de Hex via Teorema do Ponto Fixo de Brouwer

Considere a seguir o seguinte resultado, cuja demonstracao nao faremos neste trabalho, mas

pode ser encontrada em (Lima, Elon Lages, 2015).

Proposicio 3.1. Sejam A = (ay,a,),B = (by,by) e C = (cy,c,), pontos de R2, ndo colineares. A

area do tridngulo com vertices A,B e C é dada por

1 ap by ¢ 1
S(A,B,C) = 5-det|ay by ¢ =z[(al—01)(52—02)—(191—Cl)(az—cz)]-
1 1 1

Corolario 3.1. Se A = (ay,a,),B = (b;,b,) e C = (cy,¢,) sdo pontos de R? ndo colineares, entio

ay by ¢
det a b2 Co 790
1 1 1

A seguir provaremos alguns resultados que usaremos para provar o Teorema 3.1 a partir do

Teorema 3.2.

Considere um tabuleiro de Hex, de tamanho k x k, completo ao fim de uma partida, como

na Figura 13. Podemos identifica-lo como um quadrado I2.

Definicao 3.1. Os centros dos hexdgonos serdo chamados de vértices. Dois vértices sdo adjacentes
quando seus respectivos hexdagonos forem adjacentes. O segmento ligando dois vértices adjacentes

sera chamado de aresta.

Ligando os vértices adjacentes e nomeando os lados do tabuleiro por O (lado esquerdo), L

(lado direito), N (lado superior) e S (lado inferior), obtém-se a Figura 23.
Definicdo 3.2. O conjunto By, é o conjunto de todos os vértices.

Definicao 3.3. Chamaremos de triangulo o poligono formado por trés vértices, dois a dois, adja-

centes.
E facil perceber que cada ponto do quadrado /2 satisfaz uma unica das seguintes situagdes:

e & um vértice;
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* esta sobre uma aresta, isto €, pertence ao segmento de reta ligando dois vértices adjacentes;

* pertence ao interior de um triangulo.

Considere que o conjunto By, seja particionado em dois conjuntos H ¢ V, em que H ¢ o

conjunto dos vértices azuis e V € o conjunto dos vértices vermelhos.

Definiremos entdo os seguintes conjuntos conjuntos:

* O ¢ o conjunto dos vértices azuis que estdo ligados a O por um caminho formado por arestas

ligando apenas vértices que pertencem a H,
« L=H-0;

« S é o conjunto dos vértices vermelhos que estdo ligados a S por um caminho formado por

arestas ligando apenas vértices que pertencem a V;

e N=V-38.

E claro que, pela defini¢do destes conjuntos,

%
%
%
%
%
a%
%
a%
%
Y,

%

N

4

Figura 23 — Triangulacdo do tabuleiro de Hex 12 x 12 da Figura 13
Fonte: O autor.
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Lema 3.2. Ndo existe um vértice x € O adjacente a um vértice y € L e ndo existe um vértice x € S

adjacente a um vértice y € N.

Demonstra¢do. Suponha que exista um vértice x € O adjacente a um vértice y € L. Neste caso
existe um caminho formado apenas pelos vértices azuis, ligando x ao lado O do tabuleiro. Como y ¢
azul e esta ligado & x, segue-se que existe um caminho azul ligando y ao lado O. Logo y € O. Isso é
um absurdo pois y € L = H — O. Portanto, ndo existe um vértice x € O adjacente a um vértice y € L.
A segunda parte ¢ analoga. [

Como estamos identificando o tabuleiro k x k, em que k representa o nimeros de hexagonos
em cada lado do tabuleiro, com 72, a distancia entre dois vértices consecutivos, na horizontal e na

) , 1 ) N 1
vertical, é 1 Considere entdo os vetores u; = (k—_l’o) €Uy = (0, le)

Lema 3.3. Se nao existir um caminho azul ligando os lados O e L, e ndo existir um caminho ver-

melho ligando os lado S e N, entdo a funcdo g : B, — By C I? por

x+uy, sex € 0;
X—uy, sex €lL;
X+u, sex €S;

X — Uy, sex €N,

estd bem definida.

Demonstragdo. Observe que a fungdo g, translada um ponto de O para a posigdo do vértice a sua
direita, um ponto de L para a posigdo do vértice a sua esquerda, um ponto de S para a posi¢io
do vértice imediatamente acima e um ponto de N para a posicdo do vértice imediatamente abaixo.

Desta forma, g(x) # x, Vx € Bj. Analisaremos os quatro casos possiveis:

* Caso x € O. A Unica forma de g(x) = x +u; ¢ By, seria se x € L. Porém, se x € L, existiria

um caminho azul ligando L a O, o que por hipétese no existe. Portanto, LN O = (.

» Casox € L. A tnica forma de g(x) =x—u; & By, seriase x € 0. Porém se x € O, haveria um
caminho trivial (pois x ja estaria em O) ligando x a O, assim x € O. Isso ¢ um absurdo pois
L =H - 0. Portanto ONnL = (.

+ Caso x € S. A unica forma de g(x) =x+uy ¢ By, seria se x € N. Porém, se x € N, existiria

um caminho ligando N a S, o que por hipétese nio existe. Portanto, N NS = @.

 Caso x € N. A tinica forma de g(x) =x—u, & By, seriase x € S. Porém se x € S, haveria um
caminho trivial (pois x ja estaria em S) ligando x a S, assim x € S. Isso é um absurdo pois
N =V -S§. Portanto SN N = Q.
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Portanto, a funcdo g esta bem definida. [

Lema 3.4. Seja x € I> um ponto pertencente a uma aresta (segmento de reta) ligando os dois
vértices adjacentes A = (a,,a,) e B = (by,b,). Entdo existem unicos A1, A, >0 tais que x = 1{A+
123611+12: 1.

Demonstragdo. Com efeito, pela propria definicdo de segmento entre dois pontos, existe um unico
parametro 0 < 1, < 1 tal que
x=(1-21,)A+ A,B.

Dai basta tomar A; =1 - 2,. [l

Lema 3.5. Seja x € I? um ponto pertencente ao interior de um triangulo, determinado pelos vértices,
dois a dois adjacentes, A,B e C. Entdo existem unicos A, A, Az > 0tais que x = LA+ 1,B+ A3C
e/11+/12+l3 =1.

A B

Figura 24 — Ponto x € I? no interior do tridangulo ABC, o divide em trés outros tridngulos.
Fonte: O autor.

Demonstragdo. Observe que
/llal + /Atzbl + 136'1 =X
X = llA-i-/lzB-i-/’{?,C = /11(12+12b2+2,3C2 =X,
ll + 12 + /13 =1.
Segue-se da Proposi¢do 3.1 e do Corolario 3.1, que
| a; by ¢
S(A,B,C) = z - det a b2 (653 56 0,
1 1 1
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portanto o sistema possui uma solu¢do Unica.

Resolvendo o sistema linear acima, pela Regra de Cramer, obtemos

S(x,B,C) S(A,x,C) S(A,B,x)

=“SABCO) 2T ¢ 3= SAB.O) (.1

41 " S(A,B,C)

E imediato pela Equacdo (3.1) e da Proposicdo 3.1, que 1, + 1, + 13 = | como queriamos.
O

Afirmacgao: o Teorema 3.2 implica no Teorema 3.1

De fato, seja um tabuleiro k x k do jogo Hex, todo preenchido apds o fim de uma partida.
Suponha que ndo haja nenhum caminho de hexagonos azuis ligando os lado azuis do tabuleiro e
nenhum caminho de hexagonos vermelhos ligando os lados vermelhos do tabuleiro. A partir dos
Lemas 3.3, 3.4 e 3.5, podemos definir uma funcéo continua G : 1> — I? tal que para cada x € I do

seguinte modo:

* Se x € By, entdo G(x) = g(x);

* Se x ¢ By, podemos escrever x = 1A + A,B + 13C de forma unica, em que A,B e C sdo

vértices adjacentes de B, e determinam um tridngulo que contenha x, entdo

G(x) = 11 (x)g(A) + A2 (x)g(B) + A3 (x)g(C).

Vamos verificar que G estd bem definida em qualquer tridngulo formado por vértices ad-
jacentes A,B e C. De fato, como g(A), g(B) e g(C) sdo vértices de By, C 12, segue-se que G(x)
pertence ou a um segmento de reta que liga os pontos g(A), g(B) e g(C) ou a um tridngulo cujos
vértices s3o g(A), g(B) e g(C). Em todo caso, temos G(x) € I?. Além disso, segue-se da Equagio
(3.1) e da Proposigdo 3.1, que as fungdes 1, 1, € A3 sdo polindmios lineares em R? e portanto sdo

continuas. Desta forma, a fun¢do G ¢ também continua em cada tridngulo.

Além disso, sejam dois tridngulos AABC e AABC’ adjacentes, com a aresta AB em comum,

conforme a Figura 25. Segue-se dos Lemas 3.4 ¢ 3.5 que

X=A21(x)A+ A(x)B=21(x)A+ A,(x)B+0-C,
pois x pertence ao triangulo AABC e ainda

X=21(x)A+ A, (x)B=A1{(x)A+ 1,(x)B+0-C’,

pois x pertence ao tridngulo AABC’. Portanto, a imagem de x independe do tridngulo escolhido,

garantindo que G estd bem definida e é continua em /2.
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A C

Figura 25 — Elemento x pertencente a aresta comum a dois tridngulos adjacentes.
Fonte: O autor.

Como G : I? — I? é continua, segue-se do Teorema 3.2 que existe x,, € 12 tal que G (xy) = Xo.
Pela construg¢do de G, sabemos que x ¢ By, pois G(x) = g(x) # x,Vx € By. Logo x pertence a
algum tridngulo formado por vértices adjacentes de B, que denotaremos por A,B e C, sendo que
xg ¢ {A,B,C}.

Neste caso, podemos escrever xo = 11A+ 1,B+ 13C, em que 4; = 1;(xy), paracada i =
1,2,3. Dai
Glxg) = 118(A) + A,8(B) + A38(C).

Segue-se que,

0=G(xyg) —x9 = (1,8(A) + 1,8(B) + 138(C)) = (L1A+ 1,B+ 15C)
=A1(g(A) —A) + A,(g(B) —B) + 153(g(C) - C) (3.2)

=A1v] + Aovp + A3V3,
em que vy, vo,v3 € {+uy,—uy,+uy,—ty} € Ay + Ay + Az = 1.
Como A, B e C sio adjacentes, podemos analisar os casos, por exemplo, se A € O. Segue-se
do Lema 3.2 que B,C ¢ L.Dai: (1) ouB,C € 0; (2) ouB,C € 5’; (3) ouB,C € N.
(1) Neste caso, temos da Equagdo 3.2 que
0=Auy+ Auy+ Azuy = (A + A+ A3)uy = uy.
Um absurdo.

(2) Neste caso, temos da Equagdo 3.2 que

0= ilul + 2,21/!24' A3M2 = /llul + (124' l3)l/l2,
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como u; € u, sao linearmente independentes segue-se que 1; =0 e 1, + 13 = 0. Segue-se
que 1; + A5 + 13 = 0. Um absurdo.

(3) Neste caso, temos da Equagao 3.2 que
0= Ayuy + Ao (—up) + A3(—up) = Aquy — (A + A3)uy,

como u; € u, sao linearmente independentes segue-se que 1; =0 e A, + 13 = 0. Segue-se
que 11 + A, + 13 = 0. Um absurdo.

Analogamente, todos os demais casos, de um total de 12 casos possiveis, conduzem a um absurdo

como nestes trés.

Portanto, ao supor a inexisténcia de um caminho de hexdgonos adjacentes de mesma cor
ligando lados opostos do tabuleiro da mesma cor do caminho, foi possivel construir uma fungao
continua de 72 em /% com ponto fixo. Porém a existéncia desse ponto fixo levou a uma contradi-
¢do. Portanto, existe um caminho de hexdgonos adjacentes de mesma cor ligando lados opostos do

tabuleiro da mesma cor do caminho. O que prova o Teorema do Hex.
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CAPITULO 4
JOGOS COMO FERRAMENTA NA
APRENDIZAGEM MATEMATICA

O ensino da Matematica demanda metodologias que favorecam a participagdo ativa dos
alunos e a constru¢do do conhecimento. Nesse contexto, o uso de jogos apresenta-se como uma
estratégia pedagogica relevante, pois contribui para o desenvolvimento do pensamento matematico
ao estimular a investigacdo, a formulagdo de hipdteses, a argumentacdo e a abstragdo, além de
estar em consonancia com as orientagdoes dos principais documentos oficiais da educagdo basica
brasileira. As principais referencias deste capitulo sdo (Ponte; Brocardo; Oliveira, 2013) e (Grando,
2000).

4.1 A Importancia da Investigacdo Matematica

De acordo com (Fiorentini, 1995), muitos alunos apresentam dificuldades no aprendizado
da Matematica em fungdo, em grande parte, do seu carater abstrato e da predominancia de praticas
educacionais tradicionais, nas quais assumem uma postura passiva e se limitam a receber conheci-

mentos pré-existentes que, frequentemente, carecem de significado.

Existem diversos exemplos ao longo da historia que mostram que a matematica sempre foi
desenvolvida através da investigacao e da curiosidade, e ndo apenas aprendendo conhecimentos ja
estabelecidos. Dentre eles, vale destacar Srinivasa Ramanujan (1887-1920), que foi um grande mate-
matico indiano autodidata que, embora nao tenha tido uma formacao académica formal, fez grandes
contribui¢des em teoria dos numeros, séries infinitas e analise matematica. Segundo (Hardy, 1940),
Ramanujan demonstrava uma intui¢do matematica extraordinaria, frequentemente desvinculada de
formalismos rigorosos. Ao ter contato com o livro A Synopsis of Elementary Results in Pure and Ap-
plied Mathematics, escrito por George Shoobridge Carr, Ramanujan teve, definitivamente, o inicio

de sua carreira matematica.

Por meio do novo mundo que assim se abriu para ele (dizem seus bidgrafos india-
nos), Ramanujan o percorreu com deleite. Foi esse livro que despertou o seu génio.
Ele passou a estabelecer para si mesmo as formulas nele contidas. Como estava
sem o auxilio de outros livros, cada solugdo era, para ele, uma verdadeira peca de
investigacdo. Ramanujan costumava dizer que a deusa de Namakkal o inspirava
com as formulas em sonhos. E um fato notével que, frequentemente, ao levantar-se
da cama, ele anotava resultados e os verificava rapidamente, embora nem sempre
fosse capaz de fornecer uma prova rigorosa...(Hardy, 1940, p. 3, Tradugédo do au-
tor).
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A trajetoria de Ramanujan evidencia que a producao do conhecimento matematico nao se limita a
aplicagdo de métodos formais previamente estabelecidos, destacando o papel da investigagdo como
elemento central da pratica matematica, bem como a relevancia da intuicao e da criatividade no

surgimento de ideias que posteriormente podem ser sistematizadas e formalizadas.

Vale destacar também o mateméatico Andrew Wiles (1953 — ), que resolveu o Ultimo Teo-
rema de Fermat em 1994, um problema que permaneceu em aberto por 358 anos, € que perturbou

grandes mentes da matematica ao longo dos séculos. De acordo com Wiles,

Desde que vi o Ultimo Teorema de Fermat pela primeira vez, ainda crianga, ele se
tornou minha grande paixao. [...] Eu encontrara este problema que passara trezen-
tos anos sem ser resolvido. Eu ndo creio que muitos dos meus colegas de escola
tenham pego a mania pela matematica, assim ndo comentei o assunto com meus
companheiros. Mas eu tinha um professor que fizera alguma pesquisa em matema-
tica e ele me deu um livro sobre a teoria dos numeros, com algumas pistas sobre
como comegar a abordar o problema. Para comegar eu trabalhei na suposi¢ao de que
Fermat ndo sabia mais matematica do que eu. E tentei encontrar a demonstragéo
perdida usando os métodos que ele poderia ter usado em sua época.(Singh, 1998,

p-89).
Ainda segundo Wiles,

E 6timo trabalhar em qualquer problema desde que ele gere uma matematica inte-
ressante ao longo do caminho, mesmo que nio consiga resolvé-lo no final do dia. A
defini¢do de um bom problema de matematica reside na matematica que ele produz,
nao no problema em si. (Singh, 1998, p.175).

As experiéncias de Wiles destacam dois fatores cruciais no ensino e aprendizado da mate-
matica. O primeiro € o papel motivador que o professor possui, sendo capaz de guiar e instigar o
aluno a se interessar pela matematica. O segundo € que o ensino da matematica deve valorizar a
curiosidade, a investigagdo e o prazer pelo conhecimento, incentivando os alunos a se envolverem
ativamente no processo de descoberta, e ndo apenas na memorizacao de formulas e procedimentos,

como destaca o matematico portugués Carlos Braumann,

Aprender Matematica ndo é simplesmente compreender a Matematica ja feita, mas
ser capaz de fazer investiga¢do de natureza matematica (ao nivel adequado a cada
grau de ensino). S6 assim se pode verdadeiramente perceber o que é a Matematica
e a sua utilidade na compreensdo do mundo e na intervengao sobre o mundo. S¢6 as-
sim se pode realmente dominar os conhecimentos adquiridos. S6 assim se pode ser
inundado pela paixdo “detectivesca” indispensavel a verdadeira fruigdo da Matema-
tica. Aprender Matematica sem forte intervencao da sua faceta investigativa ¢ como
tentar aprender a andar de bicicleta vendo os outros andar e recebendo informagao
sobre como o conseguem. Isso ndo chega. Para verdadeiramente aprender ¢ preciso
montar a bicicleta e andar, fazendo erros e aprendendo com eles. (Braumann, 2002,

p-95).
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No livro Investigagdes Matematicas na Sala de Aula (Ponte; Brocardo; Oliveira, 2013) sao
apresentadas as quatro fases em que, segundo os autores, se divide uma investigagdo matematica. A
primeira sendo de exploragao e formulacao de questdes, em que o sujeito faz um reconhecimento do
problema, o explora, percebe padrdes e faz questionamentos. A segunda fase € a de conjecturas em
que o individuo, a partir das observagdes feitas, organiza os dados e faz conjecturas e hipoteses. A
terceira fase consiste em testar as conjecturas e refina-las. Ja a quarta fase, refere-se a argumentacao,
a demonstragao ¢ avaliacao do trabalho desenvolvido, isto €, a comunicagao dos resultados aos seus
pares. Sendo que essas fases podem ocorrer de forma simultanea. Além disso, os autores defendem

que esse processo de investigacdo estd ao alcance dos alunos na sala de aula de matematica.

4.2 O Papel dos Jogos no Ensino da Matematica

Etimologicamente, a palavra “jogo” tem origem no latim “jocus/joci”, cujo sentido inicial
era “brincadeira, diversdo ou gracejo”. Essa concep¢do de jogo estd intrinsecamente associada a
infancia, periodo em que a crianga dedica parte significativa de seu tempo a atividades de carater

ludico, embora tais praticas também estejam presentes na vida adulta.

Em (Huizinga, 1990), o jogo ¢ definido como sendo uma

[...] atividade livre, conscientemente tomada como ndo-séria e exterior a vida habi-
tual, mas a0 mesmo tempo capaz de absorver o jogador de maneira intensa e total.
E uma atividade desligada de todo e qualquer interesse material, com a qual ndo
se pode obter qualquer lucro, praticada dentro dos limites espaciais e temporais
proprios, segundo uma certa ordem e certas regras.(Huizinga, 1990, p.16).

Segundo Piaget (1978 apud (Grando), (2000)), os jogos se dividem em trés tipos: de exer-

cicio, de simbolo e de regra.

Os jogos de exercicio correspondem as primeiras formas de brincadeira da crianca e baseiam-
se na repeticao de acdes pelo prazer de executa-las, sem inten¢do de representacdo. Nesses jogos, a
crianga exercita habilidades motoras e sensoriais, encontrando satisfacao no proprio funcionamento

da atividade. Por exemplo, sacudir um chocalho, empilhar e derrubar blocos ou correr e pular.

Ja os jogos simbolicos, também chamados de jogos de faz-de-conta, caracterizam-se pela
capacidade de representagdo e imaginagao. Nesse tipo de jogo, a crianga atribui novos significados
a objetos, agdes e situagdes, transformando a realidade de acordo com sua compreensdo. Servem
como exemplo, cuidar de uma boneca como se fosse um bebé, fingir que uma caixa ¢ um carro,
ou representar papéis sociais, como professor ou médico. Essas brincadeiras permitem a crianca

expressar sentimentos, compreender o mundo social e elaborar experiéncias vividas.
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O jogo de regras ¢ aquele em que a crianga brinca seguindo normas combinadas com os
outros. Nesse tipo de jogo, ela aprende a cooperar, respeitar os outros € a se interessar pelo grupo,
deixando de lado o egocentrismo. O cumprimento das regras ¢ essencial, e desrespeita-las pode
encerrar a brincadeira. S3o exemplos deste tipo o xadrez e o0 jogo quatro cores, em que os partici-
pantes devem colorir regides de um mapa utilizando apenas quatro cores, sem repetir a mesma cor
em areas vizinhas, seguindo regras previamente estabelecidas. As situagdes vivenciadas nos jogos
de regras criam um ambiente propicio a reflexao, a tomada de decisdes e a anélise de possibilidades,
elementos que se aproximam das praticas investigativas proprias da Matematica.

Nos jogos de regra ha dois fatores importantes. Um deles sdo as proprias regras, que ga-
rantem o que pode ou ndo ser executado no jogo, € as jogadas do adversario. Esses dois fatores
influenciam as jogadas do jogador. Desta forma, buscando a vitdria no jogo, é necessario que o
individuo antecipe mentalmente as jogadas do oponente, assim como suas proprias jogadas, pla-

nejando seus movimentos seguintes conforme as regras do jogo. Nesse sentido, (Macedo; Petty;
Passos, 1997) dizem o seguinte a respeito do jogo quatro cores,

[...] Antecipar significa ‘pintar mentalmente a figura’. O jogador deve imaginar
previamente como ela ficara depois de pronta. Planejar, por sua vez, implica numa
acdo motora: o jogador efetivamente registra seu plano no contexto da figura, por
exemplo, fazendo pintinhas coloridas nas regides para garantir que a relagdo entre
as cores vizinhas fique correta. (Macedo; Petty; Passos, 1997, p.25).

Essas agdes, como antecipar jogadas, planejar estratégias e analisar consequéncias, caracterizam
um processo de investigagdo matematica, ainda que em um nivel inicial e intuitivo, no qual o aluno

formula hipoteses, testa possibilidades e avalia resultados.

Baseando-se nisso, pode-se pensar no uso de jogos de regra no ensino da Matematica como
uma proposta metodologica capaz de promover a investigagdo matematica e de apresentar desafios
que, em funcdo da natureza competitiva dos jogos, despertam o interesse dos alunos, prendem sua
atencao e favorecem seu engajamento. Além disso, ao lidar com jogos dessa natureza, os alunos
mobilizam nog¢gdes matematicas como regularidade, comparagdo, organizacao de possibilidades e
identificacdo de padrdes, que, mesmo nao formalizadas, constituem a base para posteriores proces-

sos de abstracao.

Contudo, tal uso dos jogos nao deve ser realizado de forma leviana. Deve haver, por parte
do professor, um objetivo a ser alcangado ap0s a proposta, isto €, ndo seja apenas o “jogo pelo jogo”,
mas que apos sua execucao haja de fato alguma formalizagdo e alguma aprendizagem por parte dos

alunos, dentre outros fatores como ¢ destacado por (Grando, 2000). Segundo a autora,

Muitas vezes os educadores tentam utilizar jogos em sala de aula sem, no entanto,
entender como dar encaminhamento ao trabalho, depois do jogo em si. [...] A grande
maioria ainda vem desenvolvendo as atividades com jogos espontaneamente, isto
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¢, com um fim em si mesmo, “o jogo pelo jogo”, ou imaginando privilegiar o cara-
ter apenas motivacional. [...] Trata-se apenas de compreensdo e cumprimento das
regras, com elaboracdo informal e espontinea de estratégias, e sem muita contribu-
icdo para o processo ensino-aprendizagem da Matematica. (Grando, 2000, p.5).

Quando nos referimos a utilizagdo de jogos nas aulas de Matematica como um su-
porte metodologico, consideramos que tenha utilidade em todos os niveis de ensino.
O importante ¢ que os objetivos com o jogo estejam claros, a metodologia a ser
utilizada seja adequada ao nivel que se esta trabalhando e, principalmente, que re-
presente uma atividade desafiadora ao aluno para o desencadeamento do processo”
(Grando, 2000, p.28).

Nesse contexto, o papel do professor torna-se fundamental, uma vez que € ele quem deve mediar as
situagoes de jogo, orientar reflexdes e promover a sistematizacao dos conhecimentos construidos a

partir da atividade ludica.

E importante destacar que o “jogo pelo jogo” ndo ¢é algo negativo; ele apenas nio pode se
constituir como um fim em si mesmo, conforme destacado pela autora. Ao contrario, o “jogo pelo
jogo” € necessario para que os alunos compreendam as regras, evitem viold-las posteriormente,
envolvam-se de forma prazerosa com a atividade e observem padroes que lhes permitam, por meio

da intuicdo, formular estratégias e avangar para a abstracdo do objeto em estudo.

Ainda de acordo com (Grando, 2000),

[...] o jogo, em seu aspecto pedagogico, se apresenta produtivo ao professor que
busca nele um aspecto instrumentador e, portanto, facilitador na aprendizagem de
estruturas matematicas, muitas vezes de dificil assimilagdo, e também produtivo
ao aluno, que desenvolveria sua capacidade de pensar, refletir, analisar, compreen-
der conceitos matematicos, levantar hipoteses, testa-las e avalid-las (investigacao
matematica), com autonomia e cooperacdo.(Grando, 2000, p.28).

Os jogos de estratégia favorecem a construcdo e a verificacdo de hipdteses. As pos-
sibilidades de jogo sdo construidas a partir destas hipdteses que vao sendo elabora-
das pelos sujeitos. Quando o sujeito executa uma jogada, leva em conta o universo
das possibilidades existentes para aquela jogada. Nesse processo, quanto mais o
sujeito analisa, executa e toma decisdes sobre as possibilidades, coordenando as in-
formacgdes que ele vai obtendo no jogo, melhor jogador ele se torna, pois € capaz de
“enxergar” as varias possibilidades. A analise de possibilidades favorece, também,
a previsdo e/ou antecipagdo no jogo.. (Grando, 2000, p.40).

Nesse contexto, o uso dos jogos se torna uma ferramenta interessante no ensino da Ma-
tematica, pois, por meio deles, ¢ possivel realizar investigacdes matematicas e trabalhar diversos
conceitos e nogdes matematicas, conforme discutido na Se¢do 4.1. Além disso, os jogos promovem
um ambiente socializador no qual os alunos sdo incentivados a interagir, argumentar, justificar suas
escolhas e confrontar diferentes estratégias, expressando suas ideias de forma mais espontinea e

colaborativa. Diante disso, (Grando, 2000) ainda reflete sobre
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sera que a atividade de jogo permitiria & crianga intuir, abstrair ¢ generalizar para
novos campos, novas jogadas e/ou outras aplicagdes? Sera que seria possivel uma
conceitualizagdo a partir das nogdes, intui¢des estabelecidas, pelos sujeitos, diante
dos desafios que se colocam numa situac@o de jogo? Acredita-se que sim. Tem-se
que, se conceituar significa “abstrair” e “generalizar”, “dar ouvidos a intui¢do”, isto
¢ possivel no jogo (Grando, 2000, p.55).

Desta forma, o uso do jogo como metodologia no ensino da Matematica pode contribuir
significativamente para a transi¢ao do aluno do pensamento concreto para o pensamento abstrato, ao
favorecer a reflexdo, a elaboracao de estratégias, a investigagao de possibilidades e a sistematizagao
de conceitos a partir de situacdes desafiadoras mediadas pelo professor. Assim, o jogo deixa de ser
apenas um recurso motivacional e passa a assumir um papel efetivo no desenvolvimento e no ensino

de conceitos matematicos.

4.3 A Abordagem dos Jogos nos Documentos Oficiais da Educagao
Basica

Na sec¢do anterior, discutiu-se a utilidade dos jogos no ensino da Matemadtica. Nesta secao,
serdo apresentados os principais apontamentos dos documentos oficiais da Educacao Basica relaci-

onados a esse tema.

Os Parametros Curriculares Nacionais (PCNs)

Os Parametros Curriculares Nacionais (PCNs) sdo documentos publicados pelo Ministério
da Educacao entre 1997 e 1998, apds a promulgacdo da Lei de Diretrizes e Bases da Educacdo Na-
cional (LDB n° 9.394/1996). Tém como finalidade orientar a organizacao curricular da Educacao
Bésica, oferecendo referéncias comuns para os sistemas de ensino, sem carater obrigatorio, respei-

tando as especificidades regionais e culturais do pais. De acordo com esse documento,

Os jogos constituem uma forma interessante de propor problemas, pois permitem
que estes sejam apresentados de modo atrativo e favorecem a criatividade na ela-
boragdo de estratégias de resolugdo e busca de solugdes. Propiciam a simulacdo de
situagdes problema que exigem solugdes vivas e imediatas, o que estimula o pla-
nejamento das agdes; possibilitam a construgdo de uma atitude positiva perante os
erros, uma vez que as situagdes sucedem-se rapidamente e podem ser corrigidas de
forma natural, no decorrer da agdo, sem deixar marcas negativas. Na situacdo de
jogo, muitas vezes, o critério de certo ou errado ¢ decidido pelo grupo. Assim, a pra-
tica do debate permite o exercicio da argumentagdo e a organizagdo do pensamento
(Brasil, 1998, p.46).

Nos jogos de estratégia (busca de procedimentos para ganhar) parte-se da realizagao
de exemplos praticos (e ndo da repeti¢do de modelos de procedimentos criados por
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outros) que levam ao desenvolvimento de habilidades especificas para a resolugio
de problemas e os modos tipicos do pensamento matematico. (Brasil, 1998, p.47).

Diante do exposto, percebe-se que as orientagdes apresentadas nos Pardmetros Curriculares
Nacionais corroboram as discussdes realizadas anteriormente, ao evidenciar que os jogos, quando
utilizados de forma intencional no contexto educacional, constituem um importante recurso dida-
tico. Eles favorecem ndo apenas a resolucdo de problemas e o desenvolvimento de estratégias, mas
também a argumentagdo, a reflexao e a organiza¢ao do pensamento matematico. Assim, os PCNs
refor¢am a relevancia dos jogos como praticas pedagdgicas que contribuem para uma aprendizagem

mais significativa, participativa e alinhada as necessidades do processo de ensino e aprendizagem.

A Base Nacional Comum Curricular (BNCC)

A Base Nacional Comum Curricular (BNCC) ¢ um documento normativo que define as
aprendizagens essenciais que todos os estudantes da Educagao Bésica devem desenvolver ao longo
da Educagao Infantil, do Ensino Fundamental e do Ensino Médio. Seu objetivo ¢ garantir equidade
e qualidade na educagdo, orientando os curriculos dos sistemas e redes de ensino em todo o pais,
ao mesmo tempo em que respeita as diversidades regionais, culturais e locais. A BNCC organiza o
ensino a partir de competéncias e habilidades, promovendo uma formagao integral do estudante, que
envolve ndo apenas conhecimentos académicos, mas também aspectos sociais, emocionais, éticos

e culturais. Segundo o documento

[...] recursos didaticos como malhas quadriculadas, abacos, jogos, livros, videos,
calculadoras, planilhas eletronicas e softwares de geometria dindmica tém um pa-
pel essencial para a compreensao e utilizacdo das no¢des matematicas. Entretanto,
esses materiais precisam estar integrados a situagdes que levem a reflexao e a siste-
matizacao, para que se inicie um processo de formalizacdo. (Brasil, 2018, p.276).

Ou seja, 0 jogo ¢ apresentado como uma ferramenta importante para o ensino da matematica.

Mas alerta para o uso adequado do mesmo, de forma integrada aos objetivos do ensino.

Além disso, sobre o Ensino fundamental, a BNCC apresenta a seguinte argumentacao,

O Ensino Fundamental deve ter compromisso com o desenvolvimento do letra-
mento matematico, definido como as competéncias e habilidades de raciocinar,
representar, comunicar e argumentar matematicamente, de modo a favorecer o es-
tabelecimento de conjecturas, a formulacdo e a resolugdo de problemas em uma
variedade de contextos, utilizando conceitos, procedimentos, fatos e ferramentas
matematicas. E também o letramento matemético que assegura aos alunos reconhe-
cer que os conhecimentos matematicos sdo fundamentais para a compreensao ¢ a
atuagdo no mundo e perceber o carater de jogo intelectual da matematica, como
aspecto que favorece o desenvolvimento do raciocinio légico e critico, estimula a
investigagdo e pode ser prazeroso (frui¢ao). (Brasil, 2018, p.266).
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E dentre as competéncias especificas de matematica para o ensino fundamental, tem-se

Desenvolver o raciocinio ldgico, o espirito de investigacdo e a capacidade de pro-
duzir argumentos convincentes, recorrendo aos conhecimentos matematicos para
compreender e atuar no mundo. (Brasil, 2018, p.267).

Ja no Ensino Médio, a BNCC apresenta o seguinte texto,

[...] os estudantes devem desenvolver habilidades relativas aos processos de inves-
tigacdo, de construgdo de modelos e de resolugdo de problemas. Para tanto, eles
devem mobilizar seu modo proprio de raciocinar, representar, comunicar, argu-
mentar e, com base em discussdes e validagdes conjuntas, aprender conceitos e
desenvolver representagdes e procedimentos cada vez mais sofisticados. [...] em
muitas situagdes sao também mobilizadas habilidades relativas a representagdo e a
comunicagdo para expressar as generalizagdes, bem como a construgdo de uma ar-
gumentagdo consistente para justificar o raciocinio utilizado. (Brasil, 2018, p.529).

Dessa forma, as orientagdes da BNCC, tanto para o Ensino Fundamental quanto para o En-
sino Médio, estdo alinhadas ao que foi discutido nas se¢des anteriores deste trabalho. O documento
destaca a importancia da investigacdo matematica, da resolu¢ao de problemas e do desenvolvimento
do raciocinio logico, aspectos que podem ser fortalecidos por meio do uso de jogos no ensino da
Matematica. Assim, a BNCC reforca que praticas pedagogicas que valorizam a investigagao € o uso

de jogos contribuem para uma aprendizagem mais significativa, participativa e contextualizada.

4.4 O Jogo Hex: Possibilidades na Sala de Aula

Conforme apresentado no Capitulo 3 e nas Sec¢des 4.1 € 4.2, 0 jogo Hex ¢ um jogo de regras
e estratégia que possui uma forte relagdo com o Teorema do Ponto Fixo de Brouwer, um resultado
fundamental da Topologia. Embora a explora¢do formal dessa conex@o no contexto da Educagao
Basica seja, sem duvida, avangada demais, o Hex oferece diversas possibilidades pedagogicas aces-

siveis e igualmente ricas.

Entre os conceitos envolvidos no jogo, destaca-se a conexidade por caminhos, uma nogao
topoldgica que pode ser trabalhada de maneira intuitiva e visual, sem a necessidade de formalis-
mos rigorosos. Além disso, o Hex constitui uma ferramenta eficiente para o desenvolvimento do

pensamento abstrato, da capacidade de argumentacao e do raciocinio estratégico dos alunos.

Um dos aspectos mais relevantes que podem ser explorados por meio do Hex ¢ o Teorema
de Hex, apresentado no Capitulo 3. A partir da experiéncia pratica de “jogar pelo jogar”, os alu-
nos podem perceber que o jogo nao admite empates e serem motivados a buscar uma justificativa
intuitiva para essa propriedade. A partir dessa constatagdo inicial, torna-se viavel iniciar uma in-

vestigagdo matematica mais formal, conduzindo os estudantes a constru¢do de uma demonstragao,
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como a apresentada neste trabalho. Trata-se de uma prova acessivel, que pode ser compreendida
sem grande complexidade técnica e que se baseia na mesma construgdo realizada na demonstragao
do Teorema 3.1, para garantir a existéncia de caminhos nos quais haja casas azuis de um lado e

vermelhas de outro, conforme as Figuras 16 e 17.

De acordo com (Salvanés, 2021), ja foi demonstrado que, em qualquer tabuleiro de Hex, o
primeiro jogador possui uma estratégia vencedora, embora tal estratégia nao seja conhecida expli-
citamente para tabuleiros maiores que 10 x 10. Assim, ¢ possivel utilizar tabuleiros menores como
ferramenta didatica, incentivando os alunos a investigar e tentar descobrir estratégias vencedoras,
explorando conceitos como simetria e a vantagem de iniciar pelo centro do tabuleiro, conforme
discutido em (Nunes, 2009).

Dessa forma, o jogo Hex pode ser utilizado ndo apenas para trabalhar contetdos matemati-
cos especificos, mas também para proporcionar aos alunos um ambiente de investigacdo, no qual

possam desenvolver o pensamento matematico € o prazer pela matematica.
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CONCLUSAO

Ao longo deste trabalho, estudamos o Teorema do Ponto Fixo de Brouwer sob diferentes
perspectivas, evidenciando tanto sua relevancia tedrica quanto suas conexoes com outras areas da
matematica. A abordagem historica teve como objetivo apresentar figuras relevantes para os temas
abordados ao longo do trabalho, em especial no que diz respeito a relagdo entre o teorema € o0 jogo
Hex.

Em seguida, apresentamos demonstra¢des do Teorema do Ponto Fixo de Brouwer em con-
textos progressivamente mais gerais, iniciando pela reta real, passando pela bola unitéria fechada do
R" e culminando no caso de conjuntos convexos e compactos. Esse percurso permitiu destacar os
aspectos geométricos e topologicos envolvidos no teorema, bem como a importancia de ferramentas

como a continuidade, a compacidade e a convexidade.

Um dos pontos centrais do trabalho foi o estudo do jogo Hex e do Teorema de Hex, mos-
trando que um resultado aparentemente simples, oriundo de um jogo de tabuleiro, possui profunda
relacdo com um dos teoremas fundamentais da topologia. A demonstracio da equivaléncia entre o
Teorema de Hex e o Teorema do Ponto Fixo de Brouwer evidencia de forma clara como problemas

combinatorios podem capturar ideias topoldgicas sofisticadas, reforcando a unidade da matematica.

Por fim, discutimos as contribuigdes dos jogos para a aprendizagem matematica, destacando
o potencial pedagdgico do jogo Hex. Essa abordagem sugere que jogos podem servir como ins-
trumentos eficazes para promover a investigacao, o raciocinio 16gico e a compreensdo conceitual,

aproximando os estudantes de ideias matematicas profundas de maneira acessivel e motivadora.

Dessa forma, espera-se que este trabalho contribua tanto para a compreensdo matematica
dos teoremas de ponto fixo quanto para reflexdes sobre o ensino da matematica, mostrando que

rigor, criatividade e ludicidade podem caminhar juntos na construgdo do conhecimento.
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APENDICE A

Neste capitulo apresentaremos algumas nog¢des importantes de espagos métricos, que fo-
ram utilizadas no decorrer deste trabalho. Adotaremos como referéncias principais (DOMINGUES,
1982) e (Lima, Elon L., 2020).

A.1 Nogoes Basicas de Espacos Métricos

Definicdo A.1. Seja M um conjunto ndo vazio. Dizemos que a aplicagdo d : M xM — R, é uma

métrica sobre M se para quaisquer x,y,z € M forem satisfeitas as seguintes condi¢oes:
i) dix,y) =0 = x=Yy;
ii) d(x,y) =d(y,x) (simetria);
iii) d(x,y) <d(x,z) +d(z,y) (desigualdade triangular).

Nestas condi¢oes d(x,y) é a distanciade x ay, e o par (M,d) é chamado de espago métrico.

Exemplo A.1. Sejam x = (x1,X5,*+,%,,),y = (¥1,Y2,-,¥,) € R". A aplicagdo

d(x,y) =y (r1 =y1)2 + (X = 2)2 + -+ (X, = )
é uma meétrica em R" chamada métrica euclidiana.

Exemplo A.2. Dados os espagos métricos (M,dy), (M>,d5),--,(M,,,d,), podemos definir as mé-
tricas D,D,,,,Dy: M xM — R _, em que M = M| x M, x---xM,, por

D(x,y) = \/dl (xl’yl)2 +d2(x2,y2)2 e +dn(xn’yn)2’

D, (x,y) = max{d; (x,y1),d5(x2,y2), ", d,, (X, ¥,) }

D (x,y) =d;(x1,y1) +dr(x2,y5) + - +d, (x,,,¥,,),

para todos x,y € M.

Proposicao A.1. Sejam (M,,d,),(M>,d5),---,(M,,d,) espacos métricos. Entdo para todos x,y €
M, em que M = M| xM, x ---xM,, vale

D, (x,y) £D(x,y) <D(x,y) <nD,,(x,y).



Demonstracdo. Com efeito,

D, (x,y) = max{d; (x1,y1),d2(x2,¥2)+ 1 dy (X, ) }

< D(x,y) = {dy (x1.31)2 +dy (2,52)2 ++ + by (X, 3,)
< Dg(x,y) =dy(x1,y1) +da(x2,y2) + -+ +dyy (X, V)
<n-max{d; (x;,y1),dr(x2,¥2),**,d,(x,,,y,,)} =nD,,(x,y),Yx,y € M.

]
Observacao .1. E vdlido notar que em um espago vetorial normado V a norma |-| : V. — R induz
amétricad : VxV — R, dada por d(x,y) = ||x—y||.
Proposicdo A.2. Seja (M,d) um espaco métrico. Entdo |d(x,z) —d(y,z)| <d(x,y),Yx,y,z € M.
Demonstragdo. Segue-se da desigualdade triangular que
d(x,z) <d(x,y) +d(y,z) e d(y,z) <d(y,x)+d(x,2),Yx,y,z € M.
Dai vale que
d(x,z) —d(y,z) <d(x,y) e d(y,z)—d(x,z) <d(x,y),Yx,y,z € M.
Portanto,
d(x,z) —d(y,2)| <d(x,y),Vx,y,z € M.
O

Definicdo A.2. Seja (M,d) um espago métrico e xo € M. Dado r > 0, chamamos de bola aberta

em M de centro em x e raio r, e denotamos por B(x,r), o seguinte subconjunto de M,
B(xg,r) = {x € M;d(xy,x) <r}.

Definicdo A.3. Seja (M,d) um espago métrico e xo, € M. Dado r > 0, chamamos de bola fechada

em M de centro em x e raio r, e denotamos por B[x,r], o seguinte subconjunto de M,
Blxg,r] = {x € M;d(xg,x) <r}.

Definicdo A.4. Seja (M,d) um espago métrico e xo € M. Dado r > 0, chamamos de esfera em M

de centro em x e raio r, e denotamos por S(x,r), o seguinte subconjunto de M,
S(xg,7) = {x € M;d(xg,x) =r}.

Definicao A.5. Seja M um espaco métrico e A C M. Dizemos que A é aberto se Vx € A existir € >0
tal que B(x,g) C A.
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Definicao A.6. Seja M um espa¢o métrico e A C M. Dizemos que a € M é um ponto de aderéncia
de A quando Ve >0, B(a,&) NA # @. O conjunto dos pontos de aderéncia de A, denotado por A, é
chamado de fecho de A.

Observe que, por defini¢do, A C A.Dado a € A, temos que a € B(a,e)NA,YVe > 0.

Definicdo A.7. Seja M um espaco métrico e A C M. Dizemos que A é fechado quando A = A.

A.2  Sequéncias em Espagos Métricos

Definicdo A.8. Seja (M,d) um espago métrico. Toda aplicagdo x : N — M é chamada sequéncia
de elementos de M e é denotada por (x1,X5,++,X,,+*), (X,,) neN OU Simplesmente por (x,,). Neste

caso, escrevemos ainda que a sequéncia (x,) C M.

Definicao A.9. Seja (M,d) um espago métrico e (x,,) ,en € M. Dado um subconjunto infinito N de
N, chamamos arestri¢do de x : N — M a Ny de subsequéncia de (x,,), e denotamos por (x,, ), N, »

ou (X, ) keN ou simplesmente (x,, ).

Definicao A.10. Seja (M,d) um espago métrico. Dizemos que p € M é o limite de uma sequéncia

quando para todo € > 0, existe ng € N tal que
n>ny=x, €B(p,¢)

ou equivalentemente

n>ny=d(x,,p) <e&,

e escrevemos lim x,, = p. Neste caso, dizemos que (x,)) é convergente.
n—oo N n

Considere M um espago métrico e A € M. Observe que pela Definigdo A.6, existe uma

sequéncia de (x,) C A tal que lim x,, = a se, ¢ somente se, a € A.

Proposicdo A.3. Seja M um espago métrico e (x,,) C M uma sequéncia convergente para a € M.

Entdo toda subsequéncia (x,, )reN converge para a.

Demonstragdo. Com efeito, dado ¢ > 0 existe ny € N tal que n > n( implica d(x,,,a) < €. Desta
forma, existe ko € N tal que ny > n. Dai, para todo k > k( temos ny > ng, daid(x,, ,a) < . Portanto

(X, )keN converge para d. =

Definicdo A.11. Seja M um espago métrico. Dizemos que uma sequéncia (x,,) C M é de Cauchy

quando Y& > 0 existe ny € N tal que m,n > ngy implica que d(x,,,d,,) < €.
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Proposicao A.4. Toda sequéncia de Cauchy é limitada.

Demonstragdo. Seja M um espaco métrico e (x,,) C M uma sequéncia de Cauchy. Entdo existe ng €
N tal que m,n > ng implicam que d(x,,,x,) < 1. Fixe n > ngy. Dai Ym > ng temos que d(x,,,,x,,) < 1.

Tome & = max {d (x,x,),d (x2,%,),,d (X,,.x,),1}. Dai
X, € Blx,,&],Ym € N.

Portanto (x,,) ¢ limitada. O

A.3 Espacos Métricos Compactos

Definicao A.12. Seja M um espago métrico. Dizemos que M é compacto quando toda sequéncia

(x,) € M possui uma subsequéncia (X, ) que converge para um ponto de M.

Exemplo A.3. O conjunto dos numeros racionais ndo é compacto. Por exemplo, a sequéncia (x,,) C

Q definida por
L]
X, = ) —
];) k!

converge para e € R — Q. Logo toda subsequéncia de (x,)) também converge para e, que ndo

pertence ao conjunto Q.

Proposiciao A.S. Seja M um espagco métrico. Se K ¢ M é compacto, entdo K é fechado.

Demonstragdo. Suponha que K —K # . Seja entdo a € K — K. Dai existe (x,,) C K tal que limx,, = a.
Como K ¢ compacto toda existe uma subsequéncia (x,, ) que converge para um ponto de K. Como
toda subsequéncia se (x,,) também converge para a, pela Proposi¢do A.3, temos que (x,, ) converge
para a. Dai a € K. Um absurdo. Portanto, K = K, isto ¢, K ¢ fechado. O

Proposicao A.6. Seja M um espaco métrico. Se K ¢ M é compacto, entdo K é limitado.

Demonstragdo. Suponha que K nio seja limitado. Dado a € K, temos que para cada n € N, existe
x, € K tal que x,, ¢ B(a,n). Desta forma, obtém-se uma sequéncia (x,,) C K. Como K ¢ compacto,
segue-se que esta sequéncia possui uma subsequéncia (x,, )xeN convergente para algum ponto b €
K. Segue-se da defini¢do da sequéncia, que d(x,, ,a) > n; para todo k € N. Além disso, como

d(b,a) > 0, existe ky € N tal que n; > g, implica que d(xnk,b) < d(b,a). Desta forma, tomando
k > kg satisfazendo n;, > 2d(b,a) temos pela desigualdade triangular que

ng < d(xnk,a) < d(xnk,b) +d(b,a) <2d(b,a) < ny,

um absurdo. Portanto, K ¢ limitado. ]
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A.4 Continuidade de Funcoes

Defini¢do A.13. Sejam M,N espacos métricos ef : M — N. Dizemos que f é continua em a € M,
quando para todo € > 0, existir § > 0, tal que se x € M satisfizer d(x,a) < 8, entdod (f (x),f (a)) < &.

Exemplo A.4. Sejam M e N espagos métricos e f : M — N uma contra¢do. Entdo f é continua.

Demonstra¢do. Como f ¢ contracdo, existe K > 0 tal que d(f (x),f(y)) < Kd(x,y),VYx,y € M. Dai
£

dado a € M qualquer, segue-se que para todo € > 0 pode-se escolher § = e

> (0. Assim, para todos

X € M tais que d(x,a) < & temos que

&

d(f (x),f(a)) < Kd(x,a) < KK

=¢.
Portanto, f € continua em a. [

Exemplo A.5. Seja (M,d) um espagco métrico. A métrica d é uma fun¢do continua.

Demonstra¢do. Sejam x = (x1,X5),y = (y1,y2) € M x M. Considerando a métrica D, para M x M,

temos que Ve > 0, pode-se escolher § = ¢, dai se D, (x,y) < &, segue-se da Proposi¢do A.2 que

|d(X1,x2) —d(yl,)’2)| = |d(X1,X2) —d(xl,yz) +d(xl,y2) —d(Y1,YQ)|
<ld(xy,xp) —d(xy,y2) | +1d(x1,y) —d(y1,y2)l
<d(xp,y;) +d(x1,y;1) = Ds(x,y) < &.

Portanto d € continua. O]

Teorema A.1. Sejam M,N espacos métricos e f : M — N. Sdo equivalente:

i) f écontinuaemaeM,;

ii) Para toda sequéncia (x,)) C M, se r}Lngo X, = a, entdo nll_)ngo f(x,) =f(a).

Demonstragdo. (i) = (ii) Se f é continua em a, entdo para cada m € N, existe §,,, > 0 tal que se

x €M comd(x,a) < §,,, entdo
1
d(f(x),f(a)) < et

Seja (x,,) € M convergindo para a, entdo existe ny € N tal que n > ng implica que d(x,,a) < §,,.

Tomando m > ng, temos que
1
d(x,,a) <8, =d(f(x,).f(a)) < pt
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portanto r}ggo f(x,) =f(a).
(ii) = (i) Considere que para toda sequéncia (x,,) C M, se nll_)rlolo X,, = a, entdo
lim £ (x,,) = f ().

Suponha que f seja descontinua em a. Dai existe ¢ > 0 tal que Vn > 0, existe x,, € M satisfazendo

1
d(x,,a) < - e d(f(x,).f(a)>c¢.
Ora a sequéncia (x,,) C M construida satisfaz ’}Lngo X, = a, porém ndo satisfaz nh_)ngo f(x,) =f(a),uma
contradi¢do. Portanto f ¢ continua. [
Sejam N;,N, e M espagos métricos e f : M — N x N, dada por f (x) = (f; (x),f>(x)), em
quef; : M — Ny ef> : M — N,. Dizemos que f; ¢ f,, sdo as fungdes coordenadas de f.
Proposicao A.7. A aplicagdo f : M — N xN, é continua em a € M, se e somente se, cada compo-

nente f e f> sdo continuas em a.

Demonstragdo. Considere em a métrica D,, (x,y) = max {d; (x;,y1),d>(x2,y5)} em N; xN,, em que
dy e d,, sdo as métricas em N; e N,, respectivamente..

(=) Seja f continua em a € M. Entdo para todo &£ > 0, existe § > 0 tal que d(x,a) < &
implica que
Dm (f(x)’f(a)) = Dm ((fl (x)afz(-x)) s (fl (a)afz(a))) <eé.

Dai dado x € M satisfazendo d(x,a) < 8 temos

dy (fi (x).fi(a)) <D, (f(x),f(a)) <&

d> (f>(x),f>(a)) <D, (f(x),f(a)) < &.

Portanto f; e f, sdo continuas em a.

(&) Sejam f] e f, continuas em a € M. Dai, para todo ¢ > 0 existem 8,5, > 0 tais que

d(x,a) <8y =d,(f1(x).f1(a)) <&

d(x,a) < 8y = dy(f(x),fr(a)) < e.
Tome § = min{&,5,} > 0. Dai,

d(x,a) < 8 = D,,(f (x).f(a)) = max{d, (f; (x).f (@)),dy (f2(x).f2(a))} < &.

Portanto, f ¢ continua em a. 0

62



Proposicao A.8. Sejam M e N espagos métricos e uma fung¢do f : M — N continua. Se K C M é

compacto, entdo f(K) é compacto.

Demonstragdo. Seja (y,) C f(K), entdo existe uma sequéncia (x,,) C K tal que y,, =f (x,,) para cada
n € N. Como K ¢ compacto, existe uma subsequéncia (x,, ) que converge para a € K. Como f ¢

continua segue-se que do Teorema A.1 que
Jim y,,, =1lim lim £ (x,, ) = f(a) € f(K).
Portanto, a subsequéncia (y,, ) converge para um ponto f (a) € f (K). [

Proposicao A.9. Sejam M um espago métricoef : M — R continua. Se K C M é compacto, entdo
existem a,b € K tais que f (a) < f(x) <f(b) para todos x € K.

Demonstrac¢do. Segue-se das proposigoes A.8, A.5 e A.6, que f(K) c R ¢ fechado e limitado, isto
¢, existem u = inff (K) e v = supf (K ). Vamos mostrar que u,v € f (K ). Com efeito, paracadan € N,

existem x,,,y,, € f(K) C R tais que
1 1
qun<u+r—l e v—r—l<yn5v.

Desta forma, as sequéncias (x,,), (v,)) C f(K) e convergem respectivamente para u e v. Desta forma,
u,v € f(K). Como f(K) ¢ fechado, segue-se que u,v € f(K). Portanto existem a,b € K tais que
fla)=uef(b) =v. O

A.5 Continuidade Uniforme de Funcoes

Definicao A.14. Seja uma fun¢do f : M — N, em que M e N sdo espagos métricos. Dizemos que f
¢ uniformemente continua quando para todo € > 0 existe 8 > 0, tal que, sejam quais forem x,y € M,
d(x,y) < & implicam d(f (x),f(y)) < €.

Teorema A.2. Seja uma funcdo f : M — N, em que M e N sdo espagos métricos. Se f é continua

e M é compacto, entdo f é uniformemente continua.

Demonstragdo. Suponha que f ndo seja uniformemente continua. Entdo existe g > 0 tal que para

todo n € N, existem x,,,y,, € M tais que

1
d(x,,y,) < o mas d(f (x,,).f (y,)) = &p-
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Como M ¢ compacto, existe uma subsequéncia (x,,, ) que converge para algum p € M. Desta

. £ . :
forma, existe ny € N tal que d(x,, ,p) < 5> para todo ny > ny, . Além disso, existe ny, € N tal que

o I ¢ T
ng > ny, implica que w <7 Tomando ny = max {n; ,n, | € N, temos que n; > ng implica que

£ £

1 £
d(Yp,-p) Sd Yy, Xy,) +d(x,,,p) < a+§ <5tz =&

Portanto (y,, ) tambem converge para p. Como f ¢ continua, segue-se que
lim f(x,, ) =f(p) = im f(y,,)-

k— oo

Desta forma, para uma infinidade de indices n; temos

Af G )of () < A (i ) (P)) +A(F(P)of () < 2+ 22 = &,

O que ¢ um absurdo, pois as sequéncias (x,,) € (y,,) foram escolhidas tais que
1
d(x,,y,) < Pt mas d(f(x,).f(y,)) = &g, Yn € N.

Portanto, f ¢ uniformemente continua. [
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