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RESUMO

Avancos recentes na engenharia de dispositivos 6pticos na escala nanométrica
levaram a rapida consolidagao de uma nova, promissora area da éptica classica,
denominada Optica de Transformacao. Esse interessante campo da optica in-
troduz ferramentas da geometria diferencial, amplamente utilizadas no estudo
de propagacao da luz ao redor de campos gravitacionais, no estudo de propa-
gacao da luz em materiais anisotropicos. A ideia central dessa abordagem se
baseia na associacao de geometrias intrinsecas a meios anisotropicos, estabe-
lecendo uma conexao univoca entre geometria e transformagoes induzidas por
materiais de impedéancias combinadas. Isso permite a aplicacao de conceitos
bem estabelecidos no estudo de propagacao de ondas em geometrias curvas
ao estudo de materiais a anisotropicos, abrindo uma promissora linha de pes-
quisa que permite conectar fendémenos aparentemente distintos. O objetivo
desse trabalho é o de apresentar ao leitor as ideias basicas da optica de trans-
formacao, ilustrando com exemplos concretos a forma como esses conceitos
podem ser implementados de forma simples na projecao de dispositivos de

invisibilidade.

Palavras-Chave: Propagacao de Campos Classicos, Optica de Trans-

formacao, Geometria Diferencial, Dispositivos de Invisibilidade.



ABSTRACT

Recent advances in the designing of optical devices at a nanometer scale have
led to the rapid establishment of a new, promising area of classical optics,
known as transformation optics. This interesting field of optics is based on
the application of classical tools from differential geometry — largely employed
on the study of light propagation around gravitational fields — to investigate
light propagation into anisotropic materials. The central idea of this approach
is to assign anisotropic media an intrinsic geometry, thus establishing a uni-
que connection between geometry and transformations induced by impedance-
matched materials. This allows for the application of well-known concepts
from the study of light propagation in curved geometries to investigate ani-
sotropic materials, opening a promising new line of research that connects
phenomena of seemingly different natures. The goal of this work is to present
the reader the basic ideas of transformation optics, showing with concrete
examples how these concepts can be implemented in a simple way in the de-

signing of invisibility devices.

Keywords: Classical Field Propagation, Transformation Optics,

Differential Geometry, Invisibility Devices.
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Introducao e Objetivo

O campo da optica de transformagao se destaca como uma &area pioneira na modela-
gem de caminhos 6pticos controléveis em materiais [1] [2]. Essa abordagem é de extrema
importancia, pois com a utilizacao dos metamateriais, podemos projetar dispositivos com
propriedades Opticas personalizadas [3]. Obtemos essas propriedades introduzindo aniso-
tropias no material de forma que o caminho 6tico é alterado durante a propagacao e pode
ser descrito pela formulacao da 6ptica de transformacao.

Além disso, a utilizacao da 6ptica de transformacao junto dos metamateriais abre ca-
minhos para a criacao de analogias que buscam compreender a natureza da gravidade.
Isso ocorre devido as analogias entre as abordagens que descrevem a propagacao da luz
em campos gravitacionais e aquelas que modelam o caminho 6tico em metamateriais.
Dessa forma, proporciona-se a oportunidade de criar um estudo laboratorial sobre efeitos
gravitacionais que nao sao observados ou de aprofundar o estudo daqueles que ja foram

observados.

1 Optica de transformacio

O principio de Fermat estabelece uma base para um estudo da propagacao da luz em
um meio independentemente de sua geometria. Se conseguirmos relacionar o indice de
refracdo com a geometria do espaco, podemos interpretar a trajetoria da luz como uma
geodésica. A optica de transformagao tem por objetivo criar essa ponte entre geometria
e pardmetros constitutivos do material [4].

Veremos que considerando as equagoes de Maxwell em um espaco arbitrario, podemos
criar uma conexao solida entre a geometria e os parametros constitutivos do material, mais
precisamente o tensor de permissividade elétrica e o tensor de permeabilidade magnética.
Com isso, podemos utilizar transformacoes de coordenadas para encontrar os parametros
constitutivos, e assim desenvolver o material com propriedades de interesse.

A geometria diferencial fornece as ferramentas matematicas necessérias para descrever
esses sistemas em geometrias arbitrarias. E, ao mapear um sistema 6tico para um espaco

virtual com uma geometria especifica, podemos utilizar de transformacoes de coordenadas



nesse espaco virtual para atingir o efeito desejado.

Essa abordagem tem implicagoes importantes em diversas areas, desde o desenvolvi-
mento de dispositivos 6pticos como lentes planas, mantos de invisibilidade e lentes de
indice de refragao negativo [5] [6]. Também podemos utilizé-la para melhor compreender
a natureza do campo gravitacional, permitindo uma compreensao mais ampla da estru-
tura do universo[7]. Essa analogia pode ser feita utilizando as relagdes que obtemos para
a geometria do espago-tempo, aplicando-as para desenvolver materiais 6ticos que simulem

esses efeitos.

2 Objetivo

Este trabalho tem como objetivo introduzir o leitor aos conceitos e as ferramentas
matematicas bésicas e necesséarias para o entendimento da o6ptica de transformacgao, bem
como as implicagoes no desenvolvimento de novos materiais. Apresentaremos calculos de
propriedades 6pticas e discutiremos alguns resultados relevantes.

Nos capitulos seguintes, apresentaremos uma revisao sucinta das equacoes bésicas do
eletromagnetismo no vacuo e em meios materiais anisotropicos. A seguir, serao abordados
conceitos basicos de geometria diferencial, necessérios para o estudo da éptica de transfor-
macao. Mostramos entao que uma analogia pode ser feita entre a propagacao de campos
em materiais anisotropicos e em espacos curvos dotados de uma geometria intrinseca.

Finalmente, consideraremos o caso de uma transformacao em uma geometria cilindrica,
que permite estudar de forma simples e claro de como os raios luminosos podem ser mani-
pulados no contexto da 6ptica de transformacao, de modo a criar regioes de “invisibilidade”
nas quais raios luminosos sao desviados, permitindo ocultacao de objetos inseridos nessas

regioes.



Equacoes de Maxwell no vacuo

Podemos afirmar que um dos pontos mais relevantes da fisica teérica do século XIX foi
a uniao da teoria elétrica com a magnética, levando a leis de propagacao de ondas eletro-
magnéticas que permitiram reconhecer a luz como um caso particular dessa manifestagao.
Essa uniao nasce quando James C. Maxwell observa uma inconsisténcia matematica na lei
de Ampére e procura corrigi-la utilizando o principio basico de conservacao de carga. Co-
megaremos introduzindo o conjunto de equagoes que descrevem a eletrodinamica cléssica

conhecidas como equagoes de Maxwell.

1 Lei de Gauss

A primeira equagao que iremos discutir se baseia na Lei de Gauss, que é uma analise
do fluxo de campo elétrico criado por uma carga ou distribuicao de cargas estacionaria.
Suponhamos que existe uma distribuigao localizada de cargas no espaco; a qual podemos
envolver com uma superficie gaussiana “S”. A Lei de Gauss afirma que a variagao do fluxo
do campo elétrico em um ponto do espaco é diretamente proporcional a da densidade de
carga contida nesse ponto [8]. Para relacionar essas grandezas, devemos calcular a variagao
de fluxo do campo elétrico, que sera dada, segundo a Lei de Gauss, por: d®, = f—g; em
que dq é um elemento infinitesimal de carga, d® é o fluxo e ¢, a permissividade do véacuo.

O fluxo total pode ser obtido pela soma de todas as contribui¢oes infinitesimais de fluxo.

Entao, integrando sobre toda a superficie, obtemos a lei de Gauss em sua forma integral:

— Qint

€0

o, = ng(’r) -da (1)

em que ;,; ¢ a carga total no interior da superficie gaussiana, a qual pode ser escrita

como

Qint = /p(r)dV, (2)

onde p(r) representa a densidade de carga no ponto r. Essa forma da lei de Gauss
é chamada de forma integral. Para nossos estudos, essa forma nao serd diretamente

utilizada, mas podemos utilizar o teorema do divergente para transformé-la na forma



diferencial, que seréd de maior utilidade no que segue.
O teorema do divergente estabelece que podemos associar a integral de volume do
divergente de um campo vetorial & integral de fluxo desse mesmo campo por uma superficie

fechada. De forma mais precisa, podemos escrever

ng(r) -da — /VV-E(T) qv (3)

Usando esse resultado em (1), podemos concluir que

/ V.-E(r)dv= Cint (4)
1% €0

Agora, sabemos que essa expressao tem que ser valida para qualquer volume arbitrario.
Entao, podemos substituir a expressao para a carga total na relagao anterior e retirar
as integrais, visto que as quantidades no integrando devem necessariamente coincidir.

Obtemos assim a lei de Gauss em sua forma diferencial:

Essa relacao nos diz que as cargas atuam como fontes de linhas de campo elétrico.

2 Lei de Ampeére

A Lei de Ampére, originalmente baseada em observacoes experimentais, pode ser de-
duzida a partir da Lei de Biot-Savart, que estabelece a criacao de um campo magnético
pela presenca de uma correte elétrica.

Comegaremos escrevendo a lei de Biot-Savart de maneira geral 9]

B(r) — @ / J(TI) X (T B Ir/)dvl7 (6)

 4n lr —r']3

onde pg é a chamada permeabilidade magnética do vacuo, e J(r’) define a densidade

de corrente no ponto r’. Essa quantidade mede o transporte de portadores de carga no



!
. . r—rT
espaco. Vamos prlmelramente notar que podemos escrever —|( /|l como
r—rT

(r—1') 1

—=-V|— 7

|r — /|3 |r — /| (")
em que o operador “V” se refere ao gradiente em relagdo a r. Agora podemos utilizar a

identidade
VX (fV)=VfxV+fVxV, (8)

onde f e V s@o campos escalares e vetorial, respectivamente, para reescrever (6) em uma
forma mais conveniente. Como o operador V nao atua nas coordenadas 7/, utilizando a
relagdo acima concluimos que V x J(7') = 0. Assim, obtemos

Jr) x(r—r) o ( JI(r') ) (9)

|r — 7|3 lr — 7/

Substituindo a relagao (9), obtemos

B(r) =V x @/< J(r') )dV’. (10)

47 lr — /|

A equac@o (10) nos garante imediatamente a condigdo V - B = 0, que tem como con-
sequéncia a interpretagdo da nao existéncia de monopolos magnéticos [8]. Ainda dessa
condi¢ao, podemos introduzir a ideia de um potencial vetor, A, a partir do qual o campo

magnético pode ser escrito como
B(r) =V x A(r), (11)

sendo o potencial vetor definido na forma

A(r) = @/( J(r') )dV’ (12)

C 4n lr — /|

Se calcularmos agora o rotacional de B, obtemos

V x B(r) =V x [V X @/ ( J(r') ) dv’} (13)

A lr — /|




Fazendo uso da identidade
Vx(VxF)=V(V-F)-VF, (14)
valida para qualquer campo vetorial F', e simplificando, obtemos

V x B(r) =V M—;/J(r’) v (ﬁ) dv’} Ve (Z—;)T/ ‘j(_rglldv’) (15)

_1
|7 —7]

Usando agora a relagao V2 < ) = —47wd(r — r'), e substituindo na expressao (15)

obtemos

V x B(r) =V {@/J(r’) .V ( ! ) dV’} + o J (7) (16)

4 lr — /|

E facil ver que V <ﬁ> = -V (ﬁ) (onde V' atua nas coordenadas fonte 7).
Substituindo esse resultado, e resolvendo a integral restante por partes (considerando que
a integracdo é em todo espago) obtemos
1 v J(r
/J(r/) vt Nav = - [0 (17)
=7 7]
onde usamos a identidade V - (fV) = Vf -V 4+ fV .-V assim como o fato de que
a distribuigdo de cargas deve se anular no infinito [8]. Agora, utilizando a equacao da
continuidade para correntes estacionérias, V' - J(r’) = 0, obtemos a forma diferencial da

Lei de Biot-Savart, valida no regime da magnetostatica:
V x B(r) = poJ(r) (18)

Ressaltamos que essa equacgao s6 ¢é valida para a magnetostatica, pois a equacao da con-

tinuidade assume que % = 0 o que s6 é valido para correntes estacionarias, onde nao

hé actimulo de cargas no espaco. Podemos generalizar esse resultado se considerarmos a
equacao da continuidade:
9p

. il 1
VoI Sh=0 (19)

Essa equagao estabelece que a variagao de cargas em pontos do espago ocorre devido ao

fluxo de cargas pela vizinhanca do ponto, estabelecendo assim a lei da conservacao de



cargas. Agora, se substituirmos p dado pela equagao de Gauss (5), obtemos

860V'E
+—:

A\ |
ot

0 (20)

Podemos definir uma nova densidade de corrente I que é dada por

J(r,t)+ 60% =1I(r,t) (21)

de forma que agora a lei de Ampére em termos de I pode ser escrita na sua forma mais
geral como:

V x B(r,t) = pol(r,t) (22)

Substituindo agora B(r) = V x A(r), e novamente utilizando a identidade vetorial

dada por (14), obtemos:
Vx(VxA)=V(V-A)-VA (23)

Notamos que potencial vetor, definido a partir da relacago B = V x A, é dotado da
chamada liberdade de calibre, por ser essa invariante frente & transformacao A — A+ V),
sendo ¢ um campo escalar arbitrario. Em particular, podemos escolher 1) de modo que
V- A = 0 (calibre de Lorenz). Dessa forma, o potencial vetor passa a obedecer a seguinte

equacao de Poisson:

VA = —pgJ(r) (24)

Determinando o potencial vetor por meio dessa relagao, conseguimos determinar comple-

tamente o campo magnético apenas tomando o rotacional desse potencial.

3 Lei de inducao de Faraday

A equagao (5) descreve o modulo e o sentido do campo elétrico e ndo contém nenhuma
informagao sobre sua direcao, de modo que nao podemos determinar totalmente o campo
elétrico gerado por uma distribuicao de cargas com ela [8]. Porém, um resultado do calculo
vetorial estabelece que, se obtivermos o divergente e o rotacional de um campo vetorial
em todo o espago, conseguiremos determina-los de forma tnica [9].

Comecaremos estudando o trabalho realizado por um campo elétrico, gerado por uma



distribuicao arbitraria de cargas, ao mover uma carga teste ao longo de um caminho

fechado I'. Esse trabalho sera dado por

W:fﬂﬂdr (25)

em que F(r) é a forga elétrica, definida por F(r) = ¢E(r) sendo g a carga teste. Substi-

tuindo acima, obtemos:

W = qjéE(’r) -dr (26)

Podemos utilizar o teorema de Stokes, que relaciona a integral de linha de um campo
vetorial em um caminho fechado a uma integral de superficie do rotacional desse campo.

Dessa forma, podemos concluir que o trabalho pode ser representado na forma

gz/VxE@ym (27)

em que € = % é a chamada forca eletromotriz.
Por outro lado, Faraday notou experimentalmente que a forga eletromotriz gerada por

uma indugao magnética é dada por
£=——-" (28)

onde ®,, representa o fluxo do campo magnético sobre a superficie na qual a forca ele-
tromotriz é induzida. Sabemos que o fluxo magnético ®,, em uma superficie aberta A é

dado por
o, = / B(r,t) - da (29)
A

Levando em consideracao que os fluxos obtidos experimentalmente sao idénticos e que A

pode ser escolhida arbitrariamente, podemos concluir que

d
/AVxE(r,t)-da:—E/AB(r,t)-da (30)

Usando a regra de Leibniz para diferenciagao sob o sinal de integral e assumindo uma

superficie A é fixa no tempo, podemos escrever

VxEmﬂ:—g%ﬁz (31)



Para o caso eletrostatico, nao h4 movimentagao de cargas para gerar uma corrente e,

por consequéncia, nao ha um campo magnético. Dessa forma podemos escrever:

V x E(r) =0, (32)

que é valida no dominio da eletrostatica. Sabemos do célculo vetorial que, se o rotacional
de um campo vetorial é nulo, esse campo é conservativo. Portanto, ele pode ser descrito
como o negativo do gradiente de um campo escalar [8]. Isso nos permite escrever o campo
E como sendo:

E(r) = —=Vy(r) (33)

onde (7) é o potencial elétrico.

Tomando o divergente do campo eletroestatico, obtemos:

V- -E(r)=V - -Vop(r) (34)

Logo, temos V - Vo(r) = V2p(r) o que resulta, utilizando a lei de Gauss, que:

T
V() = -0 (35)
€0
. A equagao acima é conhecida como equacao de Poisson. Para o caso em que 2 Eg) =0
chegamos na equacao de Laplace:
Vip(r) =0 (36)

Podemos notar esse resultado é consequéncia direta da condi¢ao de sabermos o rotaci-
onal e o divergente do campo. Entao, ao determinarmos o potencial elétrico, podemos

determinar totalmente o campo eletrostatico.

4 Resumo do Capitulo

Neste capitulo, foram desenvolvidas as equagoes basicas do eletromagnetismo, que sin-
tetizam as Leis que regem eletromagnetismo. No entanto, essas equagoes nao estao em
sua forma mais geral, pois estamos considerando que o meio € isotropico. Assim, deixamos
de incluir fené6menos como a magnetizacao e a polarizagao, que serao essenciais para as

discussoes futuras. Podemos resumir as equagoes de Maxwell no vacuo discutidas nesse

10



capitulo como

V. E(r) = pi’” (37)
V. B(r)=0 (38)
_ 0B(r,t)
V x B(r,1) = —— = (39)
V x B(r,t) = poI(r,t) (40)

No proximo capitulo, faremos a transicao das equagoes de Maxwell de um meio iso-
tropico para um meio anisotrépico, assim englobando todos os aspectos necessérios para

tratar do magnetismo em materiais.

11



Equacoes de Maxwell em meios

materiais

Agora que sabemos como as equagoes de Maxwell se comportam no vacuo, estamos
prontos para tratar dos meios materiais. Tais meios nao podem ser descritos pelas equa-
¢oes anteriores, pois elas desconsideram efeitos adicionais que ocorrem devido a pre-
senga de multiplas particulas carregadas, provenientes da estrutura atémica/molecular
dos meios materiais. Devido a esse grande ntimero de particulas dentro de um material,
o comportamento das quantidades E e B pode variar de ponto a ponto. Isso nos leva a
necessidade de descrevé-las em termos de valores médios [10], que fornecem uma descrigao

adequada do comportamento macroscopico do eletromagnetismo nesses meios.

1 Eletrostatica em meios materiais

Estudamos no capitulo anterior a criacao de um campo elétrico devido a presenca de
uma distribuicao de cargas livres. Porém, em um meio material, h4 uma interacao entre
essas cargas e as chamadas cargas ligadas, que sao aquelas inerentes a estrutura atomica
do material. Isso pode gerar duas caracteristicas nos materiais: a condutividade elétrica
e a isolagao elétrica, o que nos leva a classificar, do ponto de vista do eletromagnetismo
classico, os materiais em dois tipos basicos: os condutores e os dielétricos. Cada um desses
meios terd uma resposta diferente a aplicacao de um campo elétrico externo.

Quando aplicamos um campo elétrico externo em um condutor, as cargas irao se orga-
nizar de forma a cancelar o campo externo no interior do material, gerando assim uma
corrente elétrica transiente no sentido oposto ao campo aplicado. Isso ocorre porque os
condutores possuem um excesso de cargas livres. Nos dielétricos, a resposta a aplicacao de
um campo externo resulta na re-orientacao de dipolos elétricos e magnéticos, que também
buscam blindar os campos em seu interior, sem gerar corrente elétrica nesse processo [8].

Para tratar da eletrostatica em condutores, devemos considerar que todas as cargas
livres irao se distribuir de forma que o campo elétrico interno no condutor se anule, dessa

forma minimizando a energia eletrostatica no interior do material. Isso se deve a presenca
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de um numero suficiente de cargas livres capazes de migrar para a superficie do condutor,
assim blindando completamente um campo externo aplicado. Podemos notar, devido
a essa propriedade, que a diferenca entre o campo macroscopico e o microscopico existe
apenas na superficie do condutor. Pois, na média, as flutuagoes do campo macroscopico no
interior do material sao nulas e o campo liquido se torna o campo gerado pela distribuicao
de cargas superficiais do material [10]. Logo, para condutores, na auséncia de cargas livres

no interior do material, o campo elétrico satisfaz:

V.-E=0, (1)

V x E=0. (2)

Para dielétricos, por outro lado, consideramos que a carga total é neutra, devido ao fato
de que as cargas estao ligadas na forma de dipolos ou multipolos, resultando em carga
liquida nula. No entanto, sabemos experimentalmente que tais objetos ainda sentem
a acao de um campo elétrico externo aplicado. Isso ocorre por meio da separagao de
cargas devido a aplicacao do campo, sendo esse fendémeno conhecido como polarizacao.
A polarizacao P se refere a existéncia de pequenos momentos de dipolos por unidade de
volume do dielétrico. Essa grandeza é definida como a densidade de momento dipolar p
em um volume V', na forma:

Ap

P=dmav 9

A polarizacao nos ajuda a entender melhor o campo elétrico criado dentro de um di-
elétrico, pois podemos relacioné-la ao potencial eletrostatico através do potencial de um

dipolo ideal. Podemos calcular o potencial de um dipolo no vacuo pela equacao:

1 p(r)-(r—7)
2" = e (r— )

(4)

sendo 7’ a posicao do dipolo ideal, definido como cargas opostas de mesma magnitude ¢,
separadas por uma distancia d, de modo que p = qd. Se considerarmos uma distribuigao
continua de dipolos, podemos substituir na equacao acima a densidade de dipolos dada
por (3). Recorrendo ao principio da superposi¢ao linear, obtemos entao

r—r'3
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Mas, usando a relac¢ao (7), essa expressao pode ser reescrita na forma

o(r) = 47360 /V P -V (ﬁ) v (6)

Utilizando de integracao por partes e o teorema da divergéncia, obtemos que o potencial

dipolar é dado por

or) = — M L p@)-da’ - /V ;(V'.P(r'))dvi. (7)

- 41eg |r — /| |r — 7|

Da equacao acima, concluimos que a primeira integral é o potencial gerado por uma
distribuicao de “cargas” superficial oy,(r") = P(r') - %/, em que n é o vetor normal a
superficie de integracao, e a segunda é o potencial gerado por uma densidade volumétrica
dada por pyg(r') = —V'- P(r'). Para continuar, consideraremos que oy, = 0, o que pode
ser feito se considerarmos que as integrais acima se estendem ao infinito, onde o vetor de
polarizacao se anula.

Queremos agora aplicar a lei de Gauss para descrever o campo elétrico no interior do
material. Para isso, podemos redefinir a densidade de cargas na equacao (37) em termos

de densidades de cargas ligadas e livres:

p<lr‘) = plivre(r) + plig(r) (8)

Usando a relagao para a densidade de cargas volumétricas ligadas, temos

V. E(r) = i(p V. P(r) (9)

A partir dessa relacao, definimos um novo campo chamado deslocamento elétrico, que é
dado por
D(r) =e¢E(r)+ P(r). (10)

Com isso, a lei de Gauss para meios materiais se torna
AV D(’l") = Plivre- (11)

Para alguns materiais, temos que a polarizacao é diretamente proporcional ao campo
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aplicado, sendo essa relacao a seguinte:
P = EOXGE> (12)

em que Y. define a chamada de suscetibilidade elétrica. Essa grandeza mede a resposta
elétrica do material & aplicacdo de um campo. A proporcionalidade entre polarizacao
e campo implica que os dipolos elétricos no meio irao orientar-se na dire¢ao do campo,
em uma tentativa de blindar o campo total no interior do material [9]. Diferentemente
dos meios condutores, essa blindagem nao é completa, pois as cargas ligadas sao capazes
apenas de reorientar-se na presenca do campo. Considerando novamente a equagao (10),

podemos substituir a polarizagao pela relagao (12), obtendo assim:
D=cFE (13)

em que € = g9(1+ x.) é a chamada permissividade elétrica do material. Os materiais que
seguem essa relagao linear entre D e E sao chamados de dielétricos lineares. Com isso,

temos que a forma macroscopica das equagoes de Maxwell para a eletrostatica sao
V-D= Plivre, (14>

V x E =0. (15)

Devemos tomar cuidado com essas equagoes, pois, embora alguns materiais nao sejam
condutores nas condi¢oes normais de temperatura e pressao, eles ainda podem ser ioniza-
dos por algum efeito externo, assim gerando uma quantidade de cargas livres que devem

ser consideradas ao se aplicar a lei de Gauss [9].

2 Magnetismo em meios materiais

Por meio da mecénica quantica, sabe-se que todos os materiais possuem dipolos magné-
ticos intrinsecos, originados pelos spins dos 4tomos que compoem esses materiais. Porém,
devido a organizagao desses spins, muitos materiais nao possuem propriedades magnéticas
macroscopicas [9]. Entretanto, quando um material é submetido a um campo magnético

externo, os spins podem re-orientar-se e assumir configuragoes especificas. Esse processo



¢é conhecido como magnetizacao. Para materiais paramagnéticos, a magnetizagao faz com
que os dipolos magnéticos sofram um torque que tende a alinhé-los na dire¢cao do campo
magnético. Para os diamagnéticos, a inducao magnética faz com que os dipolos se alinhem
antiparalelamente ao campo. Podemos definir a magnetizagao macroscopica como sendo
a soma dos momentos de dipolos magnéticos médios por unidade de volume da seguinte

forma

M = Z N;(m;) (16)

em que (m;) ¢ o momento de dipolo médio da molécula i, N; é o ntimero de moléculas
por unidade de volume.

De forma anéloga ao caso eletrostético, podemos calcular o potencial vetor gerado por
um dipolo magnético ideal. O potencial gerado por um dipolo magnético ideal é dado por

o m(r') x (r—17')
C4n |r — 7|3

A(r) (17)
Assumindo que, para uma distribuicao continua, cada momento de dipolo médio pode ser

aproximado por um momento de dipolo ideal, podemos escrever a magnetiza¢cao como

Am

M = lim — (18)
AV —0 AV

Assim, usando o principio da superposicao linear, podemos reescrever o potencial como

sendo

o [ M) x(r—7)
A(r) = 4W/V P (19)

Podemos usar agora a relagao (7), de forma a obter

Z_;/VMW) x(r—r) dv’:Z—;/VM(r’) xV’( L ) v’ (20)

r —7'? jr — 7|

Resolvendo a integral por partes, e considerando que a magnetizacao ¢ bem localizada,

obtemos da integracao que o potencial é dado por

A(r) = @/v {Vx—wdv’—/vv x (M("",) ) dv']. (21)

4n lr — 7/ lr — /|

A segunda integral acima pode ser manipulada por meio do teorema do divergente [§|
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para um campo vetorial. Com isso, podemos reescrever o potencial vetor como

A(r) = %A Mg ﬁM(r') X da’—/‘/ﬁ(V’ < M@END| . (22)

Analogamente ao caso eletrostéatico, podemos associar o potencial magnetostitico em
um material & uma distribuicao de correntes superficiais e & distribuicao de correntes
volumétricas. Para isso, definimos as grandezas Ky (r') = M (r') x n, onde n é o vetor
normal a superficie de integragao, e Jy(r') = V' x M (r’). Reconhecemos a grandeza K,
como a corrente superficial ligada, sendo Jj; a corrente volumétrica ligada. Considerando
que a magnetizacao é suficientemente localizada, podemos considerar que uma integragao
em todo o espacgo geraria um potencial nulo para as correntes superficiais, de forma que
o potencial apenas dependa das correntes volumétricas. Assim, o potencial pode ser

reescrito como
o [V X M(r')
CdArn e — 1|

A(r) av’ (23)

Vemos que, para o caso em que nao hd uma movimentagao de cargas livres, ainda
obtemos uma contribuicao para o potencial, proveniente da corrente de magnetizacao.
Assim, podemos redefinir a corrente total como a combinacao das correntes de cargas

livres e as correntes de Magnetizagao, na forma:
Jr(r) = Jiivre(r) + I (1), (24)
Substituindo a corrente total na lei de Ampére, obtemos
V x B(r) = podr(r) (25)

Novamente, de maneira analoga caso eletrostatico, podemos introduzir um campo au-

xiliar H (r) para reescrever a lei de Ampére. Para isso, consideramos

B
V x M(r) = Jlire(r) + VX M (26)
0
Reorganizando essa expressao, temos
B(r
V x ( ,u( ) — M(T)) = /JJOJliv're('r> (27)
0

17



Podemos definir entao o campo auxiliar como sendo

H(r)= — M (r) (28)

Para materiais em que a magnetizagao responde linearmente & aplicacao de um campo

magnético externo, podemos relacionar as grandezas acima pela seguinte expressao
M(r) = xmH(r), (29)

em que Y, define a susceptibilidade magnética do material. Essa quantidade mede a
resposta do material ao campo aplicado. Substituindo essa relagao na equagao para
o campo magnético, obtemos uma expressao semelhante a obtida para o deslocamento
elétrico:

B(r) = puH(r) (30)

em que definimos p = po(1 + x.m) como sendo a permeabilidade magnética do material.
Dessa forma, podemos reescrever as equagoes do magnetismo em meios materiais em

termos do campo auxiliar H como sendo
V x H(r) = Jjre(r) (31)

V- B(r)=0 (32)

3 Ondas eletromagnéticas em materiais isotrépicos

Na se¢ao anterior, definimos as grandezas macroscopicas D e B, e mostramos como
elas se relacionam com seus anélogos microscopicos. Essas relagoes sao descritas pelas
equagdes constitutivas (13) e (30)

Antes de derivarmos a equagao de propagacao de uma onda eletromagnética em um
meio, devemos reescrever as equacoes de Maxwell em termos de D e H. Dessa forma, as

equacoes de Maxwell para materiais lineares se tornam

V.-D= Plivre (33)
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VXE= o (34)
V x H = L. (35)
V-B=0 (36)
Note que I}, ¢ definida por
Livre = Jlivre + 88_? (37)

Agora que transformamos as equagoes de Maxwell, iremos considerar o caso em que
Privre = 0 € Jipre = 0. Esse caso representa a situagao onde nao ha fontes livres, podendo
ser estendida a propagacgao no vacuo mediante as substituigoes € — €y € p — pp.

Matematicamente, as equagoes acima descrever um sistema de quatro equacoes dife-
renciais e duas incognitas, sendo essas incognitas relacionadas por rotacionais. Com essa
informacgao, podemos calcular o rotacional de alguma dessas quantidades para conseguir-

mos acoplar duas equagoes em uma. Faremos isso para o campo elétrico:

VX(VXE):VX(—%—I:> (38)

Utilizando a propriedade (23) dos rotacionais, obtemos

Vx(VxE)=V(V-E)-V’E (39)
que implica em
9 0B

Usando a Lei de Gauss, podemos concluir que essa expressao se reduz a seguinte forma
2 a
V°E = E(V x B) (41)

Por outro lado, sabemos da lei de Ampére que

V x B =u(V xH)=Ij. (42)
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Combinando esses resultados, obtemos

V2E = u%(v x H) (43)

Para o caso que estamos estudando, temos que V x H = %—?. Logo, nossa equacao para

a propagacao do campo elétrico se torna

’E
ot?

VE = ep (44)

Essa equagao mostra que o campo elétrico se propaga como uma onda no interior de

1
VEE®

essa velocidade com o indice de refragao do material pela relagao

materiais lineares, de velocidade definida por v = Notemos que podemos associar

(45)

c
V= —
n

e

s Caso queiramos descobrir

em que n é o indice de refracao, sendo dado por n =
uma equagao para o campo magnético, podemos proceder da mesma forma, porém con-
siderando agora para o rotacional do campo magnético. Se isso for feito, chegaremos a
uma equacao idéntica, trocando apenas E por B. Isso mostra que o sistema de equa-
coes de Maxwell pode ser reduzido de quatro equagoes de primeira ordem acopladas para
duas equacoes desacopladas de segunda ordem. Resulta dessas equacoes que os campos
se propagam como ondas de mesma velocidade. Além disso, é facil de verificar, através
das Leis de Faraday, Gauss, e auséncia de monopolos, que os campos sao mutuamente
perpendiculares, sendo também ortogonais & direcao de propagagao.

Com a equagao (44), conseguimos descrever o comportamento de uma onda eletromag-
nética no interior de um material. Em um caso mais geral, podemos notar que essas ondas
nao necessariamente devem se propagar com a mesma velocidade em todas as direcoes.
Isso ocorre porque, caso haja mudanca no indice de refracao em alguma das diregoes de

propagagao no material, segue da relacao (45) que a velocidade nessa dire¢do mudara.

Podemos notar também que para o vacuo, a relagdo (45) se resume a relagao
v=c (46)

Com posse dessas equacoes, conseguimos determinar exatamente a velocidade que a onda
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eletromagnética ira se propagar em qualquer meio linear. Além disso, sabemos que essas
ondas devem ter, para meios homogéneos e isotropicos, a mesma velocidade em qualquer
direcao e em qualquer ponto do espaco.

Veja que as equagoes desenvolvidas acima consideram o meio isotrépico e homogéneo,
de forma que as quantidades € e p sao constantes com a posicao e, sendo escalares,
independem da dire¢ao de propagagao. Para um meio anisotrépico e inomogéneo [1| con-
siderarmos que as suscetibilidades sao descritas por matrizes. Dessa forma, é conveniente
expressar tanto o deslocamento dielétrico quanto a indugao magnética em termos de ma-
trizes € e u, respectivamente. Dessa forma, podemos generalizar as relagoes constitutivas

na forma:

1. D= EQE?E
(47)

em que € = 1+ Xe e g =1+ Xm. Como veremos adiante, podemos usar as relagoes
acima para conectar as propriedades de meios anisotropicos com aquelas de um espaco
curvo qualquer. Notamos também que as relagoes acima implicam que os campos em
materiais anisotrépicos nao sao necessariamente paralelos aos campos externos que os
induzem, refletindo a anisotropia intrinseca da distribuicao de cargas e correntes ligadas

do material.
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Introducao & Geometria Diferencial

Agora que estamos familiarizados com os conceitos do eletromagnetismo em materi-
ais, iremos introduzir os conceitos de geometria diferencial que nos ajudarao a criar uma
analogia entre espagos curvos e a presenca de anisotropia 6ptica em materiais dielétricos.
Para facilitar a abordagem, iniciaremos com a definigao de grandezas e convengoes ado-
tadas com frequéncia no contexto da geometria diferencial. Comecaremos introduzindo a
convencao de somatorio de Finstein, que facilitara nossa notacao a medida que avancamos

no desenvolvimento da formulagao teérica. Essa notagao estabelece que:

e Indices que aparecem uma tnica vez em um termo podem assumir valores de 1 a 3

(coordenadas espaciais).
e Indices que se repetem em um termo sao entendidos como uma soma de 1 a 3.

A titulo de ilustragao, podemos considerar a seguintes expressoes:

3
Z Aii = Aii = Aiq + Agg + Ass,

=1

3
ZAle - A,LBZ = AlBl + A232 + A3B3.
=1

Devemos observar que, quando realizamos uma soma sobre objetos diferentes, devemos
garantir que os indices estejam de acordo com o exemplificado, um sobrescrito e outro
subscrito.

Definimos a delta de Kronecker ¢;; como

1 sei=7,
0ij = (1)
0 sei##j.

Da mesma maneira, definimos o chamado simbolo de Levi-Civita [ijk] para 3 dimensoes
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como sendo

(

+1 se (4,4, k) é uma permutagao par de (1,2,3),

[ijk] =< -1 se (1,7, k) ¢ uma permutacao impar de (1,2, 3), (2)

0 se quaisquer indices se repetem.
\

esses dois objetos sao essenciais para manter a coeréncia da conven¢ao da soma. Dessa
forma, conseguimos escrever varias propriedades vetoriais em termos desses dois objetos

de forma simples e compacta.

1 Transformacao de Coordenadas

Nos capitulos anteriores, nos utilizamos de vetores para descrever as quantidades do
eletromagnetismo, atribuindo a essas quantidades um moédulo e uma direcao. Porém,
nada foi dito sobre quais sistemas de coordenadas foram utilizados para descrever esses
vetores. E assumido que tais quantidades devem, necessariamente, ser invariantes frente
a mudanca de referencial. Isso implica que, independente do sistema escolhido, deve
ser sempre possivel transcrevé-lo para outro sistema de coordenadas, de modo a manter
invariantes as equagoes do eletromagnetismo. Sabemos da algebra linear que, dado um

vetor & podemos aplicar nesse vetor uma transformacao linear, tal que o vetor a’

seja
dado por

=Tz (3)

onde T é a matriz transformagao que representa a transformacao linear. Devemos observar
que o vetor & possui uma base associada. Uma possivel interpretacao da transformacao
acima consiste em considerar que os vetores da base sao afetados pela transformacao
linear. Entao, quanto aplicamos uma transformacgao em um vetor, estamos aplicando
uma transformagao em sua base. Uma maneira de encontrar a matriz de transformagao é
considerando 2 conjuntos de bases, e; e €}, sendo essas as bases original e transformada,
respectivamente. Como os vetores dessas bases sao linearmente independentes, podemos

escrever cada componente da base transformada como sendo combinagoes lineares dos
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vetores da base original da seguinte forma:

e, = FFey, (4)

2

em que FF sio componentes da transformacao. No caso de bases cartesianas, essas com-
ponentes sao constantes. Da mesma maneira, podemos escrever as componentes da base

sem linha (original) em termos da base linha (transformada) como
_ k _/
e; = Gie,. (5)
Podemos notar a seguinte relagao
e = Flej, = F(Gle;) = e;. (6)

Dessa forma, concluimos que a matriz G tem que ser necessariamente a inversa da matriz
F'. pois quando ¢ feito a contragao em k obtemos a delta de Kronecker.
Note que o vetor transformado @’ pode ser expresso na base original. Suas componentes

7' nessa base podem ser obtidas considerando-se
x' =r'e) = 2'FFey, (7)
de onde identificamos a expansio & = i¥e;, com coeficientes ¥ dados por
ik = Fha, (8)

Notamos entao que as componentes se transformam de forma inversa aos vetores da base,

pela mesma transformacao. Diferenciado a expressao acima em relagao a x’ e usando

ox’

= 5§, podemos representar os coeficientes F}* na forma:

oxJ
O
P = (9)
. 0x7 0o oOx*
Usando ainda ¢} = concluimos que G¥ = ——. Note que essas relagoes valem

oxk oz’
para sistemas cartesianos.

oxt

De forma geral, a transformagao entre sistemas de coordenadas nao segue uma lei linear
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como visto acima. Além disso, a lei de transformacao depende do ponto particular que
esta sendo transformado. Nesse caso, a transformacao entre coordenadas 27 e &' segue
uma lei geral da forma 27 = 27(z', 7%, 7%). Nesse caso, podemos generalizar o resultado
acima através da matriz Jacobiana dessa transformacao, cujos elementos sao definidos da

seguinte forma: '
¥
Ji= or (10)

07
O Jacobiano nos informa a relacao entre um vetor em dois sistemas de coordenados
distintos, em que as fungoes das coordenadas podem ser derivadas. Para verificar isso

¢ simples, suponha que R é um vetor que dependa das coordenadas z' e que podemos

escrever x; = x;(77). Entao pela regra da cadeia temos

OR 01'0R
95~ o5 ot (11)
que é exatamente
OR JOR
05~ iw (12)

O Jacobiano obedece a todas as regras que definimos para transformacgoes, podendo ser

identificado como uma generalizacao da matriz de transformagao de bases.

2 Tensor métrico

Na secao anterior, descrevemos como um sistema de coordenadas se transforma, e mos-
tramos como a transformacao entre sistemas pode ser generalizado através da matriz
Jacobiana. Porém, apenas isso nao nos fornece informacgoes suficientes acerca do espago
que queremos estudar, em particular sobre suas propriedades geométricas. Precisamos
entao descobrir como acessar as propriedades inerentes ao espaco. Para tal, introduzimos
o conceito de métrica, a partir da qual podemos extrair toda informacao sobre a geometria
do espaco que queremos estudar. Podemos defini-la de maneira simples considerando que
a medida de distancias é algo inerente & qualquer espaco. Assim, podemos adotar um

elemento de distancia ds em um sistema euclidiano como sendo

ds® = 6;;dz"dx’. (13)



Como sabemos a medida de distancia deve ser invariante frente a mudangas de sistema
de coordenadas, podemos igualar essa quantidade aquela obtida apds a aplicagao de uma

mudanca de coordenadas:
ds? = 0y JiJ) dakda = gyda®.da! (14)

Aqui, definimos como métrica o objeto gy = 6;;JiJ; = JiJi. Essa grandeza nos informa
a maneira como a medida de distancia varia quando mudamos de um sistema coordenado
para outro. Podemos observar também que a equagao (14) pode ser reescrita como o
modulo quadrado de um vetor V. Assim, podemos também expressar a métrica em

termos dos eixos coordenados. Para isso, consideramos a relacao
|A|2 = AZAJBZ‘ $€j. (15)

Note que os eixos e; acima nao precisam ser ortogonais ou normalizados, como é o caso
cartesiano. Dessa forma conseguimos associar a métrica ao vetores de base do espago

através da seguinte relagao:

e - € = gij (16)

dessa forma conseguimos definir uma meétrica inclusive para sistemas que nao sao orto-
gonais. Note que, no caso cartesiano, a métrica tem a forma euclidiana g;; = 9;;. E facil

verificar que a métrica deve obedecer algumas regras importantes, sendo elas:
e Simetria: g;; = gji.
e Possuir inversa: g”g;; = 47

O tensor métrico possui propriedades fundamentais que sao frequentemente utilizadas
na geometria diferencial. Uma delas é a capacidade de converter indices covariantes

(indices inferiores) em contravariantes (indices superiores), conforme
L a0 A
A= gY A (17)

Assim, o mesmo vetor A pode ser representado nas formas covariante e contravariante,
estando essas formas (ditas duais) conectadas pela métrica do espago. Outra propriedade

importante, derivada do conceito de comprimento de arco, é a definicao de um elemento
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de volume, dado por

dv = \/gd’z, (18)

onde g = det(g;;) é o determinante do tensor métrico. Essa propriedade segue diretamente
da relagdo g;; = JI'.JJ, a qual implica g = det(.J)?.

Por fim, temos de enunciar um teorema importante da geometria diferencial, chamado
Teorema da Ezisténcia de Coordenadas Normais de Riemann [11] que pode ser enunciado

da seguinte forma:

Teorema 1. Dado um espago vetorial, podemos sempre definir nas proximidades de um
ponto P, um sistema de coordenas que se diferencia da métrica euclidiana apenas por uma

fungao escalar f(z*). Isso é

Gij = f@k) 0ij (19)

Tais coordenadas sao chamadas de coordenadas normats de Riemann em torno do

ponto p.

O teorema (1) garante que em torno de qualquer ponto de um espago podemos escrever
a métrica como uma métrica diagonal. Note que o espaco difere do espaco cartesiano
apenas por uma funcio f(z*), como consequéncia podemos definir todas as propriedades

do espaco em torno desse ponto apenas sabendo quem é f(x*).

3 Derivada covariante e coeficientes de conexao

Para um sistema nao cartesiano, sistemas de coordenadas associados a pontos diferen-
tes do espaco em geral serao distintos, pois estao relacionados a uma particular lei de
transformacao. Entao, para um vetor A escrito nessa base, o diferencial em relagao a
coordenada z* &

0A

Uma vez que os vetores da base sao func¢oes da posicao, podemos expressar a derivada

parcial do vetor A na forma

0A  0(A'e) eOAi L4 Oe;
ok Oz, Oxk oxk’

(21)

Se quisermos apenas saber qual é a variacao das componentes de A, basta fazermos o
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produto interno com a base covariante e/. Dessa forma, obtemos

OAI 0AI i oe; )
ork Oz +4 oxk €, (22)

k. el = ging® = 6/. Definimos agora a quantidade

onde usamos €; - €/ = (e; - e;)e
ik — axk

simbolo de derivada parcial por “V”, obtemos

- e’. Reescrevendo a expressao acima em termos dessa grandeza, e trocando o

AT .

Vi Al = Ok + A'TY,, (23)
em que ng ¢ chamado de coeficiente da conexao, ou simbolos de Christoffel do segundo
tipo. Os coeficientes de conexao sao objetos nos informam o quanto um vetor é “inclinado”
ou “curvado” quando é transportado paralelamente em uma determinada dire¢cao no espaco
curvo. Isso porque o segundo termo acima pode ser interpretado como a variacao do vetor
A quando este é transportado paralelamente (isto ¢, mantendo sua forma original) do
ponto inicial ao ponto vizinho, onde o sistema de eixos sofre uma mudanca.

A equagao (23) é a forma mais utilizada para se calcular a derivada covariante. Porém
torna-se claro que encontrar os coeficientes da conexao pode ser trabalhoso, dependendo do
tipo de vetores de base que estamos utilizando. Para resolver esse problema, introduzimos
a chamada conexao de Levi-Civita, que é definida para uma conexao que é simétrica nos

indices i e k. Por defini¢do, a conexao de Levi-Civita [12] ¢ dada por

(24)

L 5 (8%‘ n Agu 39%)'

M = ko
ik 29 ork  Oxt ox!

Essa conexao é extremamente importante, pois ela garante que a derivada covariante da
métrica seja nula. Isso garante que o modulo do vetor e seus dngulos sao preservados. A
partir de agora, iremos assumir que para os espagos que estamos tratando obedecem a

€ssa conexao.

4 Geodésica e Transporte paralelo

Agora que sabemos como calcular a métrica e vimos que para espagos curvos precismos

de uma conexao que define como nossos vetores variam entre pontos vizinhos, é nor-
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mal também perguntarmos como um vetor varia quando percorre um caminho no espago
curvo. Uma forma direta de se fazer isso é considerando um principio variacional, onde
o caminho percorrido é minimizado com relacao a geometria curva do espaco. Devido as
caracteristicas geométricas do nosso problema, podemos considerar uma fungao lagran-
giana equivalente, aplicando assim o principio de minima acao. O caminho total a ser

percorrido pode ser escrito na forma

ds dx; dz;

Vemos dai que é natural escolhermos a seguinte lagrangiana |1]

_ds

= = = Vgyi'dl (26)

L

em que 2 é definido como dd—”ii. Substituindo (26) na equagao de Euler-Lagrange,

oL d (0L

obtemos a chamada equacao da geodésica que possui a forma

d?xt ., da? daF

e patadipatetip 2
ds? L ds ds 0 (28)

A equagao (28) mostra como as componentes de um vetor mudam quando percorrem um
caminho parametrizado em um espaco curvo. Para o caso da luz, essa equagao descreve
como o meio material ird4 alterar o caminho da luz de acordo com a propagacao dela
lo meio. Outra f de i fo ¢ d da’

pelo meio. utra forma de Interpretar essa equagao € notando que - € exatamente
a componente de um vetor unitario tangente parametrizado pelo comprimento de arco.
Podemos simplificar essa equacao escrevendo

dx’ ,

—=A (29)

ds
substituindo (29) em (28), obtemos

dA’

E§+%mm:o (30)
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Podemos manipular essa equacao, através do uso de regra da cadeia, para obter o seguinte

resultado:
OA! o
Al (% + F;-ZAJ) =0, (31)
que pode ser reescrito na forma
AV, AT = 0. (32)

Com esse resultado vemos que, para um vetor que segue uma geodésica, a variacao desse
vetor na direcao do caminho é nula. Chamamos esse fenémeno de transporte paralelo.
Isso significa que a variacao do vetor é paralela e igual em todos os pontos do o caminho

percorrido.

5 Curvatura

Tendo estudado a defini¢ao e sentido geométrico dos simbolos de conexao, iremos intro-
duzir um novo objeto que depende exclusivamente dessas grandezas. O tensor de Riemann
é fundamental na geometria diferencial, sendo o responsével por caracterizar a curvatura
do espago de interesse [13]. Uma maneira facil de definir o tensor de Riemann ¢é utilizando
a relacao

[vk, Vl]vi = Rj’klvj (33)

em que [Vi, V] é o comudador entre as derivadas covariantes associadas a conexao de

Levi-Civita. Explicitamente, podemos expressar o tensor R;kl como

i 0 F7I;cl 3F§z

jkl:%_%—i_rémﬁ_ ke L 1 (34)

km= jl-

O tensor de Riemann, quando expresso de forma totalmente covariante, obedece as cha-
madas identidades de Bianchi [12], que fornecem informagoes cruciais sobre sua antissime-
trizagao. A primeira identidade de Bianchi refere-se a antissimetrizagao dos trés tltimos

indices do tensor de Riemann, e pode ser escrita na forma

Rpjki + Roktj + Roje = 0. (35)
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A segunda identidade de Bianchi relaciona a antissimetrizagao das derivadas covariantes
do tensor de Riemann, sendo expressa como
i i

jlm

+ ViR, . =0 (36)

jmk —

A partir do tensor de Riemann, podemos obter outro objeto que engloba informacoes
relevantes sobre a curvatura do espago, o chamado tensor de Ricci. Ele pode ser obtido
pela contragao do tensor de Riemann, na seguinte forma

R

gl

= Rj (37)

O tensor de Ricci descreve a curvatura seccional do espaco, dessa forma nos fornecendo
uma caracterizacao local da curvatura do espago. Além disso, podemos introduzir um
ntmero escalar associado ao tensor de Ricci, conhecido como o escalar de Ricci. Ele é

obtido pela contracao total do tensor de Ricci, da seguinte forma
Rj;=R (38)

Dessa maneira, o escalar de Ricci sintetiza informagoes sobre a curvatura facilitando o

estudo das propriedades geométricas do espaco.

6 Mapeamento conforme

Na geometria diferencial, podemos definir um subconjunto de espagos curvos que pos-
suem seu tensor de curvatura definido apenas por uma fungao escalar de acordo com o
teorema (1)

A importéancia disso é o fato de essa propriedade garantir que o tensor de curvatura
ir4 apenas depender dessa funcao escalar f(z'). A consequéncia de utilizar um subespaco
que obedeca essa condicao é o fato de que agora o modulo dos vetores nao serd mais
conservado, porém o angulo entre dois vetores sera. Espacos que obedecem a esse principio
sao chamados de conformalmente planos, pois diferem do espaco plano apenas por uma
transformacao conformal. A utilidade desses mapas vem primeiramente do teorema de

Riemann, e segundo do fato de que eles nos permitem calcular facilmente as componentes
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do tensor de Riemann em qualquer dimensao, utilizando

;kl:;(aafd_ 0 0l 9 0l 0 0f )

Oxd Ok L 9gd O o Oz Ol IF

da*
f(of of of [ of of
7 laxf <8x15m axkéi’> T o (a git axl‘sﬂ”“> (39)

o2 f
- S (@,ﬁ(sjl - 5i15jk)] .

Por fim, para os nossos estudos estaremos interessados em criar mapas que podem ser
escritos por transformacgoes conformais, pois facilitara obtencao dos parametros opticos
e permitird uma analogia simples entre o espaco fisico e o espago virtual em que iremos

trabalhar.

7 Reescrevendo os operadores diferenciais

Apos discutirmos os conceitos basicos de geométrica diferencial, podemos agora uti-
lizar de algumas relagoes obtidas para reescrever os operadores diferenciais usualmente
definidos em coordenadas cartesianas. Primeiramente, iremos reescrever o divergente,
e em seguida o rotacional, terminando com a definicdo do Laplaciano em coordenadas

quaisquer.

7.1 Divergente

HA?
Ox?

O divergente na convenc¢ao da soma pode ser escrito como V- A = ; se consideramos
um sistema de coordenadas qualquer, essa expressao pode ser relacionada com a derivada
covariante como

VA = —— + AT (40)

Sabemos que a derivada covariante de um vetor qualquer em um espaco que obedece a

conexao de Levi-Civita pode ser escrita como

;0N 9 0gi;  Ogi
AT = i —
Vil =5 A [2 (axa ot T ow )| (41)
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onde usamos explicitamente a forma dos coeficientes de conexao dadas por (24). Podemos

notar que, se trocarmos os indices mudos e utilizarmos a simetria da métrica, obtemos

p (891; B 39ij) _ 0 (42)

ord  Oxl

De forma que para uma conexao de Levi-Civita obtemos

. (‘314J (1 00,
Utilizando o resultado de que ¢ g‘(ﬁj = }%‘g, obtemos
A Al 0
V; Al = 8 V9 (44)

\/_ oxt

A equacao acima pode ser reescrita utilizando a regra da cadeia, de foma que obtemos

para o divergente a relagao

1 0
V9 0!

Com a expressao acima conseguimos determinar facilmente o divergente em qualquer

V- A= (V/gAY). (45)

sistema de coordenadas em um espaco que obedece a conexao de Levi-Civita.

7.2 Rotacional

Sabemos do calculo vetorial que o rotacional de um campo vetorial é escrito na conven-

¢ao da soma como

8A

ijk 7 7k
VxA=c¢ 83 i

(46)

onde 9% representa o simbolo de Levi-Civita no sistema transformado. Usando as pro-

priedades usuais de transformacao, obtemos:

L.
= :tﬁ[zjk‘], (47)

sendo [ijk] o simbolo de permutagao definido em (2). A escolha do sinal na relagdo

acima estéd vinculada ao sistema transformado obedecer ou ndo o sistema de mao direita.
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Substituindo na equacao para o rotacional, obtemos a forma final como sendo

1
VxA= i—[zjk]%ei. (48)

V9 oxI

7.3 Laplaciano

Antes de definir o Laplaciano, precisamos definir a forma do operador gradiente em
coordenadas generalizadas. Vamos considerar a situagao em que queremos encontrar a
variagao de um campo potencial ao longo de um elemento de caminho. Podemos escrever
entao que

dU = VU - dr. (49)

Em termos das componentes dos campos vetoriais e dos vetores de base, temos
dU = e; - €;(VU)'d2x’ = g;;(VU)"dx’. (50)

Por outro lado, para um escalar U = U(z!, 22, 2%), podemos escrever

dU = %dxj. (51)

Comparando as expressoes acima (validas para dz? arbitrarios), concluimos que

oU i
9 (VU) gi;. (52)

Multiplicando os dois lado pelo inverso da métrica ¢, e usando o fato da métrica ser
simétrica, obtemos que as componentes do vetor gradiente em coordenadas generalizadas
sao

(VU) =g i

(53)

Fazendo uso da relagao acima podemos, finalmente escrever o gradiente como sendo o
objeto
ou

VU = (VU) e; = gij%ei. (54)

A partir da definicao do gradiente obtida acima, e utilizando a forma do divergente,
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equagao (45), ¢ direto obter o Laplaciano, que sera

1 0 oU
V.-VU=VU=— NEE (\/gg”%) (55)

A expressao acima pode ser diretamente generalizada para um campo vetorial A qualquer,

na forma

VQA_\;_ <\/§ Um)' (56)

8 Consideracoes finais

Neste capitulo, revisamos os conceitos basicos da geométrica diferencial para a descri¢ao
de espacos vetoriais em trés dimensoes. Porém, para estudos mais avancados na optica
de transformacao, torna-se necessario um aprofundamento maior dentro desse campo,
fazendo-se uso de propriedades e relagoes que nao foram discutidas nesse breve capitulo.
Esse é o caso, por exemplo, das transformacoes realizadas em espacos de quadrivetores.
A diferenca fundamental nesse caso é que a métrica intrinsica do espa¢o nao mais é eucli-
diana. Além disso, as equacoes de Maxwell, discutidas nos capitulos anteriores, assumem
formas mais compactas em termos do tensor de campo e do quadrivetor densidade de
corrente. Esses topicos estao fora do esbogo do presente trabalho, cujo foco é o estudo da
optica de transformacao no espaco real, no contexto de validade da 6ptica geométrica.

Para facilitar a busca, faremos um resumo das equacgoes importantes que serao utilizadas
no decorrer deste trabalho. Comegaremos com os operadores vetoriais em coordenadas
quaisquer:

1 0 i
= g (Vi)

1 Ay
2. VxA= :|:7[ij]ax] i
1

v )

3. VA=




Além disso, listamos aqui algumas das relagoes fundamentais da geometria diferencial:

A L
L. VkAJ:%—FAFZk

3. Rpjm + Rk + R = 0

4. VR, + ViR, + ViR, =0

Iremos agora utilizar essas relagoes para descrever as leis do eletromagnetismo em um
espaco curvo, comparando a forma dessas equagoes com aquelas obtidas em espacos eu-
clidianos na presenca de meios anisotropicos. Com isso, vamos estabelecer uma analogia

entre essas duas abordagens, aparentemente distintas.
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Relacao entre eletromagnetismo em
geometrias curvas e meios

anisotrépicos

Tendo desenvolvido o ferramental necessario para compreender as ideias bésicas da
geometria diferencial, podemos agora reescrever as equagoes de Maxwell no vacuo consi-
derando uma geometria arbitraria, fazendo uso das equagdes (57), introduzidas no capitulo

anterior. Como resultado, obtemos as expressoes

0 \/gplivre

Gy
L. axl(\/gg EJ) £0
O 9
2. [Uk]a—;:—ﬂoa(i\@g”‘fj) o
0 .
Gy —
3. Oazi(\/gg H;)=0

4. [z’jk]ﬁ—H].C = 802(:|:\/§gijEj) +/gJ"
oxd ot

Note que, nessas relacoes, eliminamos o campo magnético em favor do campo auxiliar
H = poB. Além disso, as equagoes sao escritas de modo que os vetores E e H aparecem
em suas versao covariantes. Esse procedimento é essencial para estabelecer a conexao do
espaco curvo em questao com o meio material. Queremos agora associar a geometria do
espaco com as propriedades do meio. Pela discussao introduzida no final do Capitulo 3
sabemos que, em meios anisotropicos, a permissividade elétrica e permeabilidade magné-
tica agem como matrizes que transformam a maneira de propagac¢ao dos campos elétricos
e magnéticos de acordo com a posigdo e com a diregdo. Das equagoes (47), podemos

escrever as seguintes relagoes constitutivas:

Di = €0€ijEj ( )
2
B' = pop” H;

Com base nas equagcoes acima, vemos que as equagoes de Maxwell em um espaco arbitrario

podem ser associadas a um meio anisotrépico, desde que as seguintes conexoes sejam

Q7



estabelecidas:
€9 = +,/99"7 =1+ x"

pl =997 =1+ x3,

(3)

Essas relagoes necessariamente implicam na condicao £ = p. Tal condigdo é chamada
de correspondéncia de impeddncia. Ela nos garante que as propriedades que calculamos
no espaco virtual serao idénticas aquelas observadas no espaco fisico. Essa condigao é de
extrema importancia fisica, pois ela nao ocorre naturalmente na natureza; de modo que
torna-se necessario produzir materiais com esse tipo de propriedade, e estudar quais as
condigOes microscopicas necesséarias para garantir essa condi¢ao em diferentes materiais.
Outro ponto importante é o fato dessa condi¢dao garantir que a impedéancia do material
seja igual a do vacuo. Isso significa que nao haveré reflexoes indesejadas na interface entre
o material e o vacuo [1]. Chegamos a essa conclusao por meio da analise dos determinantes

em (3), onde:

det(e) = det(y/gg™"). (4)

Utilizando o fato de que det(aM) = a®det(M) e det(M ') = (det(M))~" (sendo M
uma matriz 3 X 3 e a um escalar), concluimos que que det(e) = £,/g. Substituindo na
equagao (3) e isolando g“ em termos de € obtemos

el ,uij

' =300 = Taem) (5)

E importante destacar que nao estamos nos referindo a geometria do material, mas sim
a geometria de um espaco abstrato, em que os efeitos da anisotropia do material aparecem
como efeitos geométricos inerentes a esse espaco.

Da equagao (5), podemos adquirir um significado da métrica para a propagagao da luz
no material considerando seus elementos diagonais. Por exemplo, segue da relagao acima

que o elemento g'! é
11

11 €
g det(e (6)

~—

Mas, considerando que no material o tensor de permissividade seja diagonal, com auto-
valores nos eixos principais €, €, e ¢,, obtemos e'! = ¢,. Como vimos que pelo teorema

(1), podemos sempre escolher ¢ tal que ele seja diagonal localmente. Assim, podemos
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escrever o determinante como det(e) = ,¢,¢,. Dessa forma, temos

o=t (7)

EyEx

Como ¢% ¢é diagonal, segue da relacdao acima que o elemento g;; da métrica sera

g11 = €€ (8)

Podemos interpretar um elemento de arco paralelo ao eixo principal e, do sistema carte-
siano (antes da transformagao) como sendo um elemento de caminho dl, percorrido pela
luz na auséncia do material, isto é, no vacuo. Conforme vimos em (14), o elemento de arco
dx percorrido no material est4 relacionado a di, por (di,)? = g11(dz)?. Se os elementos de
arco sao percorridos em um intervalo dt (invariante nos dois sistemas), podemos concluir
que:

2
€T

= gnvi — g11 = 2 9)

<

onde v, é a velocidade da luz no meio. Assim, podemos identificar o elemento g;; com

2

x?

nz, onde n, = v,/c é o indice de refragdo na diregdo do eixo principal = nesse ponto do
material. Logo, n2 = g11 = €,¢,. Da mesma forma, concluimos facilmente que gss = ni =
£+, € g3z = n? = g,6,. Podemos definir uma matriz diagonal n de elementos diagonais
(N, 1y, m2), de modo que g = n?. Como a relagao entre dois tensores é independente do

sistema de eixos, podemos concluir dessa discussao que:

(nij)* = gij- (10)

Vemos entao uma conexao direta entre a métrica do espaco e o indice de refracao
local no material. Essa conexao é de extrema importancia, pois ela que nos permite
manipular as propriedades 6pticas dos materiais da maneira que queiramos, além de
relacionar facilmente as propriedades do material com a geometria de um espago curvo.
Digamos, por exemplo, que temos uma métrica semelhante & de Schwarzschild. Essa
métrica nos diz que pode existir uma configuragao para o qual o indice de refracao pode ser
tal que em torno de certa regiao temos uma distorcao do caminho 6tico que se assemelha
a distor¢ao causada por um buraco negro. Tais objetos sao conhecidos como dispositivos

de invisibilidade [14] [15] [16].



1 Equacao da onda para um espaco curvo

Tendo definido a relacao entre as equagoes de Maxwell em meios anisotropicos e espagos
curvos, iremos agora escrever a equagao de uma onda que se propaga em um espago vazio
que possui uma geometria curva, de forma que poderemos utilizar as mesmas consideracoes
feitas para a dedugao de (44). Porém, trataremos nossas derivadas espaciais como sendo

derivadas covariantes. Utilizando da notacao indicial, podemos escrever:
[V x (V x B)]' = &%, V;V'E™ (11)
Usando a identidade €% ey, = §i67, — 57"715{ , obtemos
[V x (V x E)'=V,;V'E! - V'V,E (12)

Podemos notar que o termo V;V'E’ em situagoes que ng = (0 comutam, de forma que
podemos interpretar o resultado como o gradiente do divergente. Para situacoes mais
gerais em que nao ocorre a comutagao, podemos adicionar e subtrair V'V;E7, de forma
a obter

[V x(Vx E)]'=V;V'E —-V'V\E' + V'V;E! —V'V,E. (13)

Notamos que V;V!E! — ViV, E7 = [V, VY] E’. E interessante nesse estagio utilizarmos a
meétrica para baixar o indice 7, pois assim conseguimos usar a rela¢ao (2) em (58), que é
dada por [V;, V;|E7 = R{;ﬁE’C . Dessa forma, multiplicando ambos os lados da igualdade

pela métrica, obtemos
[V x (V x E)|; = Ri,E* —V'V,E;. (14)

De forma analoga ao que foi feito para a equacao (44), podemos escrever o lado direito
da Lei de Ampeére, apos a aplicagao de 7%V, usando a Lei de Faraday. Em notagao

indicial, obtemos

y 0H O*E"
hyy [ Z22F ) = Z 15
[10€ ]( 5 > H0S0 5 (15)
Para igualar essa expressao a (14), devemos ainda baixar o indice i:
; 0H 0?E;
=) = — 16
HoE; ]< ot ) Hogo 92 (16)
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de forma a obter finalmente a equacao

= V'V,E; — Ry, E*. (17)

1 0*F;

2 atQ
A equagao (17) é a forma de uma onda eletromagnética que se propaga em um espago
curvo e vazio. Podemos ver claramente que, para espacos que nao possuem curvatura, o
segundo termo do lado direito é nulo, e equacao da onda “tradicional” no espago cartesiano
é recuperada. Utilizando a equagao da onda nessa forma se torna mais facil nossa analise
da propagacao da onda em um espacgo curvo, pois as solugoes das equagoes de propagacao

no vacuo podem ser associadas diretamente & propagac¢ao no meio material.

2 Caminho ético em materiais anisotrépicos

Apos generalizar a equacao da onda eletromagnética se propagando em espagos curvos,
vamos agora analisar o comportamento de propagacao em um meio. Suponhamos que
a solugdo da equacao (17) tem forma similar & uma onda plana, de modo que o campo
elétrico (ou magnético) pode ser escrito com a forma E; = A;e®, em que a fase ¢ é uma
funcao do tempo e da posicao, e A; é a amplitude complexa do campo, que também
depende do tempo e da posi¢ao. Calculando a derivada temporal de E;, obtemos

dE;, . (dA; . do
v i v T

. . d
Como queremos uma onda que seja coerente no tempo, podemos assumir que d—f se anula.

Calculando a derivada covariante de E;, obtemos
ViE; = € (Vid; + A Vi) (19)

Podemos ver que V;¢ define um gradiente que associamos ao vetor de propagacao k;,
que aponta na diregao normal as frentes de onda (onde ¢ é constante). De forma geral,

podemos construir a fase ¢ como sendo

¢:/k~driwt (20)
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em que w = g—‘f. O sinal depende de como estamos observando a dire¢ao de propagacao:
(-) para uma onda progressiva e (+) para uma onda regressiva.

Agora, vamos construir nossa solucao partindo de duas suposi¢oes. A primeira é: a
variagao do comprimento de onda A nao varia muito para pequenas distancias. A segunda
hipotese é: para distancias na escala do comprimento de onda, a curvatura efetiva é muito

pequena. Matematicamente, podemos resumir as duas condi¢oes como sendo

VA <« 1
(21)

IR\ < 1
A primeira dessas relagoes estabelece que a resolucao espacial tipica é muito maior que
o comprimento de onda, sendo a condicao usual de dominio da o6ptica geométrica em
espacos planos. A segunda condi¢ao pode ser vista como uma extensao que incorpora
efeitos de curvatura local do espaco em questdo. E importante notar que essas equagoes
sao invariantes frente a transformagoes de coordenadas. Dessa forma, se elas sao validas
no espago virtual (antes da transformacao), elas também serdo validas no espago real
(apos a transformacao). Essas relagoes garantem que o limite de anélise seja o limite de
Optica geométrica para geometrias arbitrarias, permitindo caracterizar a propagagao da

luz por meio de raios que descrevem sua trajetéria no espago.

Vamos agora analisar a equacao da onda considerando essas condigoes. Substituindo

E; em (17), obtemos para o divergente
VjVjEi = €i¢ (V]V]Al + 22]€JV]AZ + zAlek] - k]k]Al) . (22)

Para a derivada temporal, assumindo uma onda progressiva, obtemos

0*F; (0% A; 0A;
i i i_ 9, LA 9
. © ( oz~ o Y > (23)

No dominio da 6ptica geométrica, as contribuicoes mais relevantes provém da variacao da
fase, pois ela varia de forma muito mais rapida que a amplitude. Podemos assumir que,

na média, a maior contribuicao para a variacao dos campos é aproximadamente a maior
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contribuigao da variagao da fase [10]. Com isso, conseguimos escrever

ViIV,E;, = —e“kk;A;
O’ E;
ot

24
= —e"PW? A, 2

Nos limites impostos por (21), podemos ignorar o tensor de Ricci. Dessa forma, subs-

tituindo as duas equacgoes acima na equacao da onda, obtemos

2
2 =Kk, (25)

2
A relagdo (25) é chamada de rela¢do de dispersao. Podemos reescreve-la em termos da

métrica abaixando o indice do vetor de onda, obtendo assim

2
2 = gk (26)

c

Agora reescrevemos a frequéncia de propagacao da onda plana como sendo
(,LJ2 = CZQijl{?ilfj. (27)

Segue da equagao (10) que a frequéncia deve se alterar de acordo com o indice de refragao
segundo a seguinte relagao:

w? = *(n")?k;k; (28)

Com a relagao acima, podemos ver que existe uma dependéncia nao-trivial entre a
frequéncia de uma onda incidente e o indice de refracao do material, o que pode gerar
efeitos interessantes como por exemplo a decomposicao de uma luz branca polarizada
durante a propagacao em uma mistura de 4gua e agucar. Nesse caso a mistura age como
um meio anisotrépico que seleciona as frequéncias com base no sentido de polarizacao da
luz, dessa forma muda a frequéncia da luz na saida do tubo dependendo de como a ela é
polarizada antes de entrar no tubo.

Podemos mostrar também que, se a frequéncia da luz é constante durante todo o ca-

minho, necessariamente a seguinte condigao deve ser obedecida:

Vk'k; =K'V k; = 0. (29)
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Essa relag@o é justamente a condi¢ao (32), ou seja, no espago curvo a propagacao lumi-
nosa continua sendo tal que a variagao do vetor de onda obedece a equagao da geodésica,
seguindo assim o principio de Fermat. Esse resultado mostra que, apesar de todas as
consideragoes, ainda estamos obedecendo a o principio fundamental da 6ptica de trans-
formacao.

E importante notar que, no caso de um espaco o mesmo vetor k aparece de duas for-
mas diferentes (covariante e contravariante), que representam duas grandezas distintas.
Quando ele ¢ contravariante (k) ele representa o vetor de propagag¢io, e quando aparece
em sua forma covariante k; estamos falando do gradiente da fase. No espago fisico (trans-
formado) esses dois objetos apontam em diferentes dire¢oes, a ndo ser que o espago seja
plano, ou seja, o material seja isotrépico. Enquanto as componentes k; = V,;¢ sao ortogo-

nais aos planos de fase constante, as componentes k' sao tangentes aos arcos de caminho
dz*  Ow

dt  Ok;

dx' no meio. Isso pode ser visto diretamente da relacao Usando a relagao de

dispersao (26), vemos claramente que:
dz’ cgk; c

SR N B 30
i = e = ot (30)

da onde concluimos que k¢ aponta na direcao do raio luminoso em cada ponto.

3 Transformacoes Gerais

Durante nosso estudo até aqui, tratamos apenas da aplicagao de uma tinica transforma-
¢ao. Porém, problemas de eletromagnetismo sao naturalmente simplificados dependendo
do sistema de coordenadas que escolhemos para descrever a geometria do objeto que esta-
mos estudando. Por exemplo, é mais simples escolher coordenadas esféricas para resolver
um problema de uma esfera carregada ao invés de escolher qualquer outro tipo de coor-
denada. Como vimos na revisao de geometria diferencial, podemos definir uma métrica a
partir de uma transformacao nas coordenadas, de forma que o elemento de caminho seja
mantido. Logo, podemos estender essa definicao para o seguinte caso: dado um elemento

de caminho em uma geometria qualquer, esse elemento se transforma como

(ds)2 = gijdiidij = gijJ,idexkdxl, (31)
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onde agora ' representam as coordenadas em uma nova transformacao, sendo J;f 0s
elementos da Jacobiana que promove a transformacao do sistema (curvo) z‘ ao novo

sistema 7°. Dessa forma, definimos a nova métrica na geometria do problema como sendo
~ i 7J
gkl = giijJl . (32)

Se retomarmos para a definicao dos parametros constitutivos, concluimos que os tensores

de permeabilidade e permissividade serao dados por

it = = V9 g g i (33)
V7
em que v é o determinante da métrica do novo sistema de coordenadas curvilineo, v =
det(g). Assim, conseguimos tratar dos nossos problemas de forma mais geral, pois conse-
guimos imbuir a geometria do material dentro da nossa definicao de espago, dessa forma
conseguindo generalizar a métrica, e por consequéncia o indice de refracao.

Podemos escrever a relagao anterior na forma matricial como sendo

RCEL iy (34)

€T /7 det(d)

Essa forma nos permite entao criar um mapeamento entre a geometria que queremos apli-
car e os parametros constitutivos do material, lembrando que sempre podemos fazer uma
transformacao conforme para obter resultados importantes para cada material localmente.

A equagao (34) é importante para os casos em que SUpomos que Nnosso espago é vazio.
Para o caso em que o espago a ser transformado é ndo vazio (meio material), obtemos que

os parametros constitutivos sao dados por [1]

. _V9dgJt
V7 det(J)

em que €’ é uma permissividade do espaco virtual.

Outro resultado importante que precisamos levar em consideragao é o fato de que es-
tamos interessados nos valores principais do tensor dielétrico, pois a partir deles pode-
mos determinar os indices de refracao do material considerado. Porém, quando estamos
aplicando uma transformacao entre espagos curvos, os valores principais sao em geral

modificados pelas transformacoes nao ortogonais. O calculo dos auto-valores ¢; deve ser
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realizado em uma representacao cartesiana, onde esses valores sao invariantes. Logo, deve-
riamos introduzir uma forma de calcula-los apos realizada a transformacao. Um resultado
da algebra linear que podemos utilizar é relacionado a invariancia dos valores principais
sobre a uma transformacao M’ = T~ MT. Podemos provar isso considerando que, dado

Mwv = mv em que v’ = T 'v, temos que

M'v' = (T'MT)(T 'v). (36)
Simplificando a equagao acima, obtemos

M'v' = (T 'M)v =mv'. (37)

Um tensor misto se transforma seguindo essa mesma regra, pois podemos escrever a
transformagao como sendo Tji/ = f’]}?Jj/ ou, em notacao matricial, TV = J~1TJ. Isso
garante que seus valores principais sejam os mesmos em qualquer sistema de coordenadas.

Com esse resultado, podemos entao utilizar £}, = €% g;; e transformar o tensor dielétrico
em um tensor misto. Dessa forma obtendo os valores principais desse novo tensor que
é invariante sobre transformagoes. Agora que possuimos maneiras de calcular o tensor
de permissividade e encontrar os valores principais para aplicar a transformacao, iremos

comecar a tratar exemplos de aplicacao.
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Aplicactes de Optica de
transformacao

No capitulo anterior, discutimos as implicagoes da utilizacao da 6ptica de transforma-
¢ao, chegando aos resultados para conseguirmos estudar fendémenos 6pticos a partir desse
novo ponto de vista. Seguiremos agora ilustrando alguns exemplos de aplicagoes praticas

das técnicas desenvolvidas no capitulo anterior.

1 Dispositivo de invisibilidade

Podemos construir esse tipo de dispositivo considerando que o material proporciona
uma mudanca de coordenadas no espaco onde a radiagao se propaga. No caso de um
dispositivo de invisibilidade, isso é feito de modo a criar uma regiao onde os pontos
internos sao mapeados em pontos fora dessa regiao no espaco virtual. Esse tipo de ma-
peamento permite que raios luminosos que se propagam no espago fisico (transformado)
sejam descritos por transformacoes que nao permitem a propagacao deles dentro da regiao
especificada, “ocultando” assim um objeto inserido nessa regiao.

Para ilustrar esses efeitos, vamos considerar uma geometria cilindrica, conveniente para
nosso problema. Por simplicidade dos calculos, escolheremos uma transformacao geral,
mas que seja capaz de capturar o fendmeno de invisibilidade. Assim, consideramos a
transformacao

r=r(r)+R, 0=0, 2="2, (1)

onde ! =1/, 22 = 0 e 23 = 2’ sdo as coordenadas radial, polar e longitudinal, respec-
tivamente, em um sistema cilindrico (antes da aplicagao da transformagao optica). Essa
transformacao leva de um sistema cilindrico para outro sistema cilindrico em que existe
um buraco de tamanho R. Isso pode ser feito escolhendo-se a fungao r(r’) de modo que
r(r" = 0) = 0. Isso faz com que todos os pontos do espago virtual (original) sejam mape-
ados em pontos exteriores ao circulo 7 = R no espago fisico (transformado). Observando
a geometria do problema, vemos que nosso espago fisico definido por {r, 6, z} e nosso

sistema virtual definido por {7, ¢, z'}, sdo ambos descritos por coordenadas cilindricas.
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Logo, podemos aplicar uma jacobiana apenas para a transformagao (1).
Podemos agora escrever as métricas, que sao nesse caso facilmente obtidas escrevendo-se

um elemento de arco ds no sistema cilindrico:
(ds)2 = (dr)2 + r2(d9)2 + (dz)Q. (2)

Comparando com a expressao (14), vemos que a métrica tem a forma diagonal. Assim,

podemos escrever a métrica para o espaco fisico como sendo:

1 0 0
g=10 r* 0. (3)
0 0 1

Concluimos dai que /7 = y/det(g) = 7. Da mesma forma, podemos escrever a métrica

do espago virtual como

1 0 0
g=10 % 0f. (4)
0 0 1

com y/det(g’) = r'. A inversa de ¢’ é dada por

1 0 0
gt=10 L of, (5)
0 0 1

e representa a métrica em sua forma contravariante. Calculando agora a matriz jacobiana

para a transformacao que estamos propondo, obtemos

c 0 0
J=10 1 0 (6)
0 01
onde definimos o = %. Nesse caso, temos que J = J7, e o determinante da jacobiana

é det(J) = 0. Com isso, podemos aplicar a (34), considerando que nosso espago virtual

tem ¢’ = 1 = p/, e substituir os valores obtidos acima para escrever o tensor dielétrico.
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Dessa forma, obtemos

a2 0 0
ro 2 ’
0 0 1
que pode ser simplificado na forma
e 0 0
el=10 — 0 (8)
o 0 =

Apesar da forma diagonal, devemos notar que os elementos diagonais nao correspondem
aos valores principais de permissividade. Porém sabemos que, como visto no capitulo
anterior, os valores principais de um tensor podem ser obtidos se transformamos esse
tensor em um tensor misto. Faremos isso utilizando a métrica do espaco fisico, pois é o

espaco de interesse. Obtemos assim

Lo 0 O
ely=10 = 0 (9)
0 0 =

Devido a matriz ser diagonal sabemos que seus valores principais sao dados pelos elementos

. .. / / . . .
da diagonal principal, logo obtemos €giqgonar = {T?O', pr :—U} A partir dai, concluimos

que as componentes do indice de refracao na diregdo dos eixos principais sao (conforme

2 _
NS

discutido no capitulo anterior) n? = gpe, = 1/0% ni =c,e, = (r'/r)> e n? =¢,69 = 1.

O tensor dielétrico (9) nos fornece uma forma geral para definir quais propriedades de-
vemos introduzir no material para que consigamos criar um dispositivo que performe uma
transformacao cilindrica no espago virtual. Materiais que realizam esse tipo de transfor-
magao sao conhecidos como mantos de invisibilidade cilindricos [2]. Temos também os
materiais que realizam transformagoes semelhantes, porém em um espaco esférico. Esses
materiais sao conhecidos como mantos de invisibilidade totais [17].

Agora que determinamos o tensor dielétrico, podemos calcular outra quantidade re-

levante ao estudo da propagacao, que é o vetor de onda co-variante. Como visto no

capitulo anterior, esse vetor é perpendicular as superficies de fase constante (frentes de
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onda). Fazemos isso considerando que o vetor de onda covariante que é dado por

Vamos considerar que a onda que se propaga fora do material (espago cartesiano) é uma
onda plana que se propaga na dire¢ao x, sendo polarizada na direcao z. QQue representa
uma onda que incide no plano transversal do cilindro. Podemos entao escrever que a onda

em coordenadas cartesianas do espago virtual tem a forma
E(z',t) = Eye'th=v'~wV¢_ (11)

Porém devido a simetria do problemas podemos reescrever nossa onda em coordenadas

cilindricas, assim ficando como o seguinte resultado
E(’l"l, t) _ Eoei(kzr’ cos(&)fwt)éz' (12)

Identificando a fase ¢ = k,r’ cos(f) —wt, podemos aplicar o gradiente referentes as coorde-
nadas do sistema fisico. Note que nao podemos utilizar o gradiente da base normalizada
para esse célculo, pois ele é intrinsecamente conectado as propriedades geométricas do
meio. Ao normaliza-lo, estariamos perdendo algumas informacoes importantes sobre a

geometria efetiva. O gradiente entao se torna

V'¢p =k, (07 cos(d)e” —r'sin(f)e’) (13)

0

onde e" e e” sao vetores contravariantes da base transformada. Agora, utilizamos a

métrica do espago virtual transformado

o> 0 0
g t=10 L of, (14)
0 0 1

para escrever k; = (V’'¢); em sua versao contravariante, assim obtendo:

b=k, (a cos(0)e, — l/sin(@)eg> | (15)
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A partir desse vetor de onda, podemos tracar o caminho 6tico e estudar melhor o com-
portamento da onda ao se propagar no dispositivo de invisibilidade. Isso ocorre porque,
como visto no capitulo anterior, k? é paralelo a direcao de propagacao no meio. Com isso,

podemos visualizar geometricamente os efeitos para uma determinada transformacao.

2 Exemplo de dispositivo de invisibilidade cilindrico

Como demonstramos na segao anterior, podemos utilizar (9) para calcular as propri-
edades 6pticas do nosso dispositivo de invisibilidade. Uma transforma¢ao comum que
podemos aplicar é aquela que mapeia os pontos do espaco fisico para uma regiao anelar

no espaco virtual. Essa transformacao é dada pelas seguintes condi¢oes

(') = 22t = MRy
2
=0 (16)
/
zZ =z

em que Ry e Ry sdo respectivamente os raios internos e externos da regiao anelar (Ry >
R;). Note que essa transformagao equivale & uma compressao simples, seguida de uma
translacao da coordenada radial. Geometricamente, todos os pontos tais que r’ < R
no espaco virtual sao mapeados em r > R; no espaco fisico, sendo os pontos do anel

externo (1’ = Ry) mapeados neles mesmos. Quando Ry > R;, o fator de compressao

Ry — Ry

o= —
Ry

Isso pode ocorrer devido a fatores como absor¢ao pelo material e efeitos de borda que

se aproxima da unidade, dificultando a obtencao dos efeitos invisibilidade.

podem surgir, assim nao gerando os efeitos desejados. Agora, podemos simplesmente
substituir essa transformacao na equacao para os valores principais do tensor dielétrico,

e reescrevé-lo em termos das coordenadas do sistema fisico r, obtendo assim:

T_TRl 0 0
e=1| 0 & 0 (17)
2
0 0 (—Rfm) e

Calculando o vetor de onda para essa mesma transformacao, obtemos que o vetor de



onda tem a forma

k= bk, (RQR;QRI) (cos(@)er - T_LRl sm(e)eg) , (18)

e, e ey vetores covariantes da base transformada. Com isso, podemos simular a transfor-
macao do caminho 6tico para o material que se propaga dessa forma.

Para termos uma ideia qualitativa do efeito da transformagao, consideremos um con-
junto de pontos que igualmente espacados no sistema cartesiano. Esses pontos sao ma-
peados seguindo a transformagao proposta, de tal forma que conseguimos mapear todos

eles para a regiao do anel.

Espago Original (Cartesiano) Espago Transformado (Anel)

S
\

2N
S
i,
i N7

-2

Figura 1: Mapeamento de pontos em um espaco cartesiano para a regiao de um anel.
Podemos notar que os pontos préximos a origem sao mapeados em pontos que
estao no maximo & uma distancia R; da origem no sistema do anel, criando
assim uma regiao de invisibilidade.

A Fig. 1 ilustra como uma regiao de pontos no espago cartesiano (regiao azul, grafico a
esquerda) sao mapeados em pontos no espago transformado (regido em vermelho, grafico
a direita). Podemos notar que quaisquer pontos menores que R; serdo mapeados para
pontos fora dessa regiao, de forma que criamos uma regiao em que nao vai haver nenhum
ponto interior a ;. Isso é de extrema importancia para os dispositivos de invisibilidade,
pois é nessa regiao que os objetos que queremos deixar invisiveis devem ser posiciona-
dos. Note também que os pontos fora de R, nao sao de interesse para nossa anélise, se
considerarmos que fora da regiao a onda nao estar interagindo com o meio.

A transformacao induzida pelas equagoes (16) pode ser também visualizada conside-
rando a transformagao de raios que incidem na regiao de invisibilidade. Essa analise
é realizada na Fig. 2, onde raios incidentes paralelamente ao eixo x no espaco virtual
(grafico a esquerda) sao desviados devido & presenca do material (graficos central e da di-

reita). Vemos claramente que os raios nao penetram na regiao de invisibilidade (r < Ry),
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Figura 2: Representagao de feixes nos espagos virtual (esquerda) e fisico (graficos central e
da direita). Antes da transformagao 6ptica, os feixes se propagam paralelamente
ao eixo x. Apos aplicada a transformacao, ocorre um desvio dos feixes na regiao
de invisibilidade. No painel central, os parametros sao Ry = 2 e Ry = 5. No
painel & esquerda, Ry =5 e Ry = 8. Em ambos os casos, k, = 1.

sendo desviados na vizinhanga de R; antes de seguir sua trajetoria. Em regides suficiente-
mente afastadas, o comportamento original do raio incidente é recuperado, de modo que
a “ocultar” o efeito do dispositivo de invisibilidade. Esse efeito é maior quando a regiao
de invisibilidade é menor, conforme ilustrado na Fig. 2. No painel central (R; = 2), os
desvios do caminho retilineo sao menos perceptiveis, a longas distancias, quando compa-
rados aos raios de um dispositivo com R; = 5 (painel a direita), onde efeitos de curvatura
tornam-se mais perceptiveis.

Outra analise interessante se refere ao calculo dos indices de refracao do material.

Lembrando que a matriz de indices de refragao ¢ dada por:

(R2§QR1 )2 0 0
n = 0 (R2}32R1 T_TRl )2 0 (19)
0 0 1

A Fig. 3 exemplifica a relagdo do indice de refragao com a posi¢ao dentro da regiao do
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Figura 3: Plote do indice de refracao em fungao posigao radial dentro da regiao R; < r <
R,. Podemos notar que, como esperado, o indice de refracao na direcao angular
cresce de forma a “curvar” a propagacao da luz dentro do material

material, considerando os valores Ry = 1 e Ry = 1.4. Podemos notar que, a medida que
aproximamos de R, o indice de refragao na dire¢ao polar diminui. Temos duas regices
de interesse uma em que o indice de refragao radial é menor que o polar e uma em que
ele € maior que o radial. Para os parametros selecionados, a mudanga entre esses regimes
ocorre para r ~ 1.095. No regime de n, > ng, a luz se propaga de maneira mais lenta na
diregao e,. Logo, a luz sente um desvio maior nessa direcao. Para o regime n, < ny, a luz
se propaga mais lentamente na diregao ey, sentindo assim um maior desvio nessa diregao.
Com isso podemos ver que, quanto mais perto da regiao r = R;, maior serd o desvio
causado pelo material na direcao 7, assim “expulsando” as ondas que se propagam nesse
sentido. Enquanto no regime n, < ny o meio fard com que a luz busque se propagar no
sentido polar, rotacionando em torno da origem. Esse efeito ¢ também evidenciado pelo
crescimento radial de ng, indicando que a velocidade angular ao redor da origem aumenta
na regiao anelar, evidenciando um movimento de “vortice” da radiagao ao redor do anel
inferior. Podemos ver esse feito na Fig. 4 que representa o campo vetorial definido pelo
vetor de onda k.

Podemos notar pela Fig. 4 que h4 um comportamento andémalo da propagagao do
campo no espago espaco fisico. Fisicamente, esse comportamento resulta da criacao de
um campo de reacao no interior do material, em resposta ao campo externo aplicado.

Para exemplificar essa resposta podemos comparar, qualitativamente, esse feito aquele de
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Figura 4: Representagao dos campos vetoriais de propagacao na regiao Ry < r < Rs.
Podemos ver que no espaco fisico (esquerda) o campo tem um comportamento
que busca rotacionar a propagacao ao redor da origem, ao passo que no espaco
virtual (direita) o campo se comporta como um fluxo normal na diregao z. Os
parametros utilizados para ambos os graficos foram R =1, Ry =2e k, =1

um dipolo elétrico alinhado paralelamente a um campo elétrico externo na direcao x. A
presenca do campo deve re-alinhar o dipolo em sua dire¢cao, de modo que o dipolo produz
um campo que ird se somar ao campo externo, assim criando uma onda distorcida em sua
vizinhanga. Porém, ele nao cancela o campo externo, apenas distorce sua propagac¢ao na
vizinhanga préoxima. Efeito similar ocorre com o vetor de onda devido & transformacgao
induzida pelo material. Na auséncia de matéria, ele se propaga na direcao . Porém, no
interior do material a interacao do campo com multipolos presentes no material leva a
uma distorcao dessa propagacao. Como foi discutido anteriormente, esse efeito resulta
justamente do fato de que os indices de refracao no material sao diferentes em cada ponto
e dire¢ao no espaco de propagagao (espago fisico).

O tensor dielétrico (17) no interior da regido de interesse Ry < r < Ry possui todas
as componentes positivas, o que pode ser observado pela Fig. 5. Porém, vemos que
a componente desse tensor na direcao € decai rapidamente a medida em que r — Ro,
onde a propagacao na auséncia de matéria é recuperada. Esse comportamento que define
o indice de refracao que foi visto na Fig. 3. Veja que, para r — R;, a componente
9o diverge. E justamente essa caracteristica que busca “expulsar” dessa regido as ondas
eletromagnéticas, assim blindando a regiao interior a »r = R; tornando-a inacessivel a
radiacao incidente.

Materiais que exibem esse tipo de comportamento ja foram implementados experimen-

talmente em pequenas escalas [18], embora ainda exista uma grande dificuldade experi-
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Figura 5: Variagao das componentes do tensor dielétrico dentro da regiao Ry < r < Ry,
notemos que egg diverge rapidamente para r — R;.

mental de implementar muitas das ideias resultantes das anélises da 6ptica de transforma-
¢ao [18]. Muitas dessas dificuldades de implementagao sdo advindas do comportamento
quantico da matéria em pequenas escalas, que interferem na manipulacao exata das pro-
priedades exigidas para o material que desejamos [19] [14]. Por fim, cabe salientar que
a permissividade em meios dielétricos varia de acordo com a frequéncia da radiagao inci-
dente. Assim, dispositivos de invisibilidade devem ser projetados para operar em faixas

especificas do espectro eletromagnético, sendo em geral inoperantes nas demais.



Conclusoes

Nesse trabalho, mostramos como podemos criar uma analogia entre o eletromagnetismo
em espagos curvos e meios anisotropicos, e como podemos utilizé-la para explorar a 6p-
tica de transformacao e suas aplicagoes. Partindo da analise das equagoes de Maxwell,
conseguimos construir grande parte da 6ptica de transformacao utilizando o ferramental
da geometria diferencial. Com isso, generalizamos a descrigao dos campos a geometrias
curvas, o que nos permitiu deduzir a ideia fundamental da 6ptica de transformacao: a
analogia entre materiais e geometrias, em condigoes onde a compatibilidade de impedan-
cias é satisfeita. Aplicando também alguns resultados da algebra linear, estabelecemos
conexoes diretas entre efeitos Oticos e efeitos geométricos.

No decorrer do trabalho, foram estudadas as equag¢oes de Maxwell no vacuo e em meios
materiais, onde introduzimos as equagoes constitutivas do meio. A partir disso, desenvol-
vemos brevemente as relagoes mais fundamentais da geometria diferencial, e a partir delas
reescrevemos as equacoes de Maxwell para sistemas curvos arbitrarios. Com isso, veri-
ficamos que um meio anisotrépico poder ser visto como o agente de uma transformacao
geométrica, desde que a condi¢ao de compatibilidade de impedéancia seja satisfeita. A par-
tir dessa condigao, uma métrica intrinseca pode ser associada ao tensor de permissividade,
deixando assim invariantes as equacoes de Maxwell.

Com esses resultados, propusemos uma breve aplicagao para o caso de uma transforma-
¢ao radial geral em coordenadas cilindricas. Obtivemos para essa transformacao o tensor
dielétrico e o vetor de onda. A partir dai, propomos uma transformacao simples que visa
simular o efeitos de invisibilidade. Mostramos como a transformacao proposta associa
cada ponto de um plano no espago virtual a pontos dentro da regiao anelar no espaco
fisico, de modo a criar uma regiao na qual a luz é totalmente defletida. A seguir, calcu-
lamos para esse caso o tensor dielétrico e o vetor de onda. Com base nessas quantidades,
analisamos a propagacao de raios na regiao transformada, confirmando assim que essa
transformacao de fato cria uma regiao onde nao ha passagem de luz.

Concluimos deste trabalho que a 6ptica de transformacao é um campo valioso para o
desenvolvimento de novos materiais 6pticos, em especial capas de invisibilidade. Além

disso, por ser baseada na analogia com trajetérias da luz em espacos curvos, a teoria é



promissora em futuras aplicagoes visando o estudo de efeitos gravitacionais, reprodutiveis
em laboratorio.

Esse trabalho demostrou que, sob as condigoes necessarias, é possivel utilizar conceitos
geométricos para estudar a 6ptica de materiais. Um exemplo ¢é a generalizagao explicita
do Principio de Fermat a geometrias quaisquer, que nem sempre é de facil visualizacao em
sistemas complexo como materiais anisotropicos. Por fim, destacamos que a necessidade
do condicao de compatibilidade de impedancia limita a aplicacao desses conceitos para
efeitos naturais, tais como miragens. Isso nos leva a questionar a possibilidade de formula-
¢ao de abordagens alternativas, que permitam eliminar essa condi¢ao, ampliando o leque
de sistemas que podem ser utilizados na prética para o desenvolvimento de dispositivos

6pticos com respostas controladas.
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