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RESUMO

Avanços recentes na engenharia de dispositivos ópticos na escala nanométrica

levaram à rápida consolidação de uma nova, promissora área da óptica clássica,

denominada Óptica de Transformação. Esse interessante campo da óptica in-

troduz ferramentas da geometria diferencial, amplamente utilizadas no estudo

de propagação da luz ao redor de campos gravitacionais, no estudo de propa-

gação da luz em materiais anisotrópicos. A ideia central dessa abordagem se

baseia na associação de geometrias intrínsecas a meios anisotrópicos, estabe-

lecendo uma conexão unívoca entre geometria e transformações induzidas por

materiais de impedâncias combinadas. Isso permite a aplicação de conceitos

bem estabelecidos no estudo de propagação de ondas em geometrias curvas

ao estudo de materiais a anisotrópicos, abrindo uma promissora linha de pes-

quisa que permite conectar fenômenos aparentemente distintos. O objetivo

desse trabalho é o de apresentar ao leitor as ideias básicas da óptica de trans-

formação, ilustrando com exemplos concretos a forma como esses conceitos

podem ser implementados de forma simples na projeção de dispositivos de

invisibilidade.

Palavras-Chave: Propagação de Campos Clássicos, Óptica de Trans-

formação, Geometria Diferencial, Dispositivos de Invisibilidade.



ABSTRACT

Recent advances in the designing of optical devices at a nanometer scale have

led to the rapid establishment of a new, promising area of classical optics,

known as transformation optics. This interesting field of optics is based on

the application of classical tools from differential geometry – largely employed

on the study of light propagation around gravitational fields – to investigate

light propagation into anisotropic materials. The central idea of this approach

is to assign anisotropic media an intrinsic geometry, thus establishing a uni-

que connection between geometry and transformations induced by impedance-

matched materials. This allows for the application of well-known concepts

from the study of light propagation in curved geometries to investigate ani-

sotropic materials, opening a promising new line of research that connects

phenomena of seemingly different natures. The goal of this work is to present

the reader the basic ideas of transformation optics, showing with concrete

examples how these concepts can be implemented in a simple way in the de-

signing of invisibility devices.

Keywords: Classical Field Propagation, Transformation Optics,

Differential Geometry, Invisibility Devices.
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Introdução e Objetivo

O campo da óptica de transformação se destaca como uma área pioneira na modela-

gem de caminhos ópticos controláveis em materiais [1] [2]. Essa abordagem é de extrema

importância, pois com a utilização dos metamateriais, podemos projetar dispositivos com

propriedades ópticas personalizadas [3]. Obtemos essas propriedades introduzindo aniso-

tropias no material de forma que o caminho ótico é alterado durante a propagação e pode

ser descrito pela formulação da óptica de transformação.

Além disso, a utilização da óptica de transformação junto dos metamateriais abre ca-

minhos para a criação de analogias que buscam compreender a natureza da gravidade.

Isso ocorre devido às analogias entre as abordagens que descrevem a propagação da luz

em campos gravitacionais e aquelas que modelam o caminho ótico em metamateriais.

Dessa forma, proporciona-se a oportunidade de criar um estudo laboratorial sobre efeitos

gravitacionais que não são observados ou de aprofundar o estudo daqueles que já foram

observados.

1 Óptica de transformação

O princípio de Fermat estabelece uma base para um estudo da propagação da luz em

um meio independentemente de sua geometria. Se conseguirmos relacionar o índice de

refração com a geometria do espaço, podemos interpretar a trajetória da luz como uma

geodésica. A óptica de transformação tem por objetivo criar essa ponte entre geometria

e parâmetros constitutivos do material [4].

Veremos que considerando as equações de Maxwell em um espaço arbitrário, podemos

criar uma conexão sólida entre a geometria e os parâmetros constitutivos do material, mais

precisamente o tensor de permissividade elétrica e o tensor de permeabilidade magnética.

Com isso, podemos utilizar transformações de coordenadas para encontrar os parâmetros

constitutivos, e assim desenvolver o material com propriedades de interesse.

A geometria diferencial fornece as ferramentas matemáticas necessárias para descrever

esses sistemas em geometrias arbitrárias. E, ao mapear um sistema ótico para um espaço

virtual com uma geometria específica, podemos utilizar de transformações de coordenadas
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nesse espaço virtual para atingir o efeito desejado.

Essa abordagem tem implicações importantes em diversas áreas, desde o desenvolvi-

mento de dispositivos ópticos como lentes planas, mantos de invisibilidade e lentes de

índice de refração negativo [5] [6]. Também podemos utilizá-la para melhor compreender

a natureza do campo gravitacional, permitindo uma compreensão mais ampla da estru-

tura do universo[7]. Essa analogia pode ser feita utilizando as relações que obtemos para

a geometria do espaço-tempo, aplicando-as para desenvolver materiais óticos que simulem

esses efeitos.

2 Objetivo

Este trabalho tem como objetivo introduzir o leitor aos conceitos e às ferramentas

matemáticas básicas e necessárias para o entendimento da óptica de transformação, bem

como às implicações no desenvolvimento de novos materiais. Apresentaremos cálculos de

propriedades ópticas e discutiremos alguns resultados relevantes.

Nos capítulos seguintes, apresentaremos uma revisão sucinta das equações básicas do

eletromagnetismo no vácuo e em meios materiais anisotrópicos. A seguir, serão abordados

conceitos básicos de geometria diferencial, necessários para o estudo da óptica de transfor-

mação. Mostramos então que uma analogia pode ser feita entre a propagação de campos

em materiais anisotrópicos e em espaços curvos dotados de uma geometria intrínseca.

Finalmente, consideraremos o caso de uma transformação em uma geometria cilíndrica,

que permite estudar de forma simples e claro de como os raios luminosos podem ser mani-

pulados no contexto da óptica de transformação, de modo a criar regiões de “invisibilidade”

nas quais raios luminosos são desviados, permitindo ocultação de objetos inseridos nessas

regiões.

3



Equações de Maxwell no vácuo

Podemos afirmar que um dos pontos mais relevantes da física teórica do século XIX foi

a união da teoria elétrica com a magnética, levando a leis de propagação de ondas eletro-

magnéticas que permitiram reconhecer a luz como um caso particular dessa manifestação.

Essa união nasce quando James C. Maxwell observa uma inconsistência matemática na lei

de Ampère e procura corrigi-la utilizando o princípio básico de conservação de carga. Co-

meçaremos introduzindo o conjunto de equações que descrevem a eletrodinâmica clássica

conhecidas como equações de Maxwell.

1 Lei de Gauss

A primeira equação que iremos discutir se baseia na Lei de Gauss, que é uma análise

do fluxo de campo elétrico criado por uma carga ou distribuição de cargas estacionária.

Suponhamos que existe uma distribuição localizada de cargas no espaço; a qual podemos

envolver com uma superfície gaussiana “S”. A Lei de Gauss afirma que a variação do fluxo

do campo elétrico em um ponto do espaço é diretamente proporcional à da densidade de

carga contida nesse ponto [8]. Para relacionar essas grandezas, devemos calcular a variação

de fluxo do campo elétrico, que será dada, segundo a Lei de Gauss, por: dΦe = dq
ϵ0

; em

que dq é um elemento infinitesimal de carga, dΦ é o fluxo e ϵ0 a permissividade do vácuo.

O fluxo total pode ser obtido pela soma de todas as contribuições infinitesimais de fluxo.

Então, integrando sobre toda a superfície, obtemos a lei de Gauss em sua forma integral:

Φe =

∮
S

E(r) · da =
Qint

ϵ0
(1)

em que Qint é a carga total no interior da superfície gaussiana, a qual pode ser escrita

como

Qint =

∫
ρ(r)dV, (2)

onde ρ(r) representa a densidade de carga no ponto r. Essa forma da lei de Gauss

é chamada de forma integral. Para nossos estudos, essa forma não será diretamente

utilizada, mas podemos utilizar o teorema do divergente para transformá-la na forma
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diferencial, que será de maior utilidade no que segue.

O teorema do divergente estabelece que podemos associar a integral de volume do

divergente de um campo vetorial à integral de fluxo desse mesmo campo por uma superfície

fechada. De forma mais precisa, podemos escrever

∮
S

E(r) · da =

∫
V

∇ ·E(r) dV (3)

Usando esse resultado em (1), podemos concluir que

∫
V

∇ ·E(r) dv =
Qint

ϵ0
(4)

Agora, sabemos que essa expressão tem que ser válida para qualquer volume arbitrário.

Então, podemos substituir a expressão para a carga total na relação anterior e retirar

as integrais, visto que as quantidades no integrando devem necessariamente coincidir.

Obtemos assim a lei de Gauss em sua forma diferencial:

∇ ·E(r) =
ρ(r)

ϵ0
(5)

Essa relação nos diz que as cargas atuam como fontes de linhas de campo elétrico.

2 Lei de Ampère

A Lei de Ampère, originalmente baseada em observações experimentais, pode ser de-

duzida a partir da Lei de Biot-Savart, que estabelece a criação de um campo magnético

pela presença de uma correte elétrica.

Começaremos escrevendo a lei de Biot-Savart de maneira geral [9]

B(r) =
µ0

4π

∫
J(r′)× (r − r′)

|r − r′|3
dV ′, (6)

onde µ0 é a chamada permeabilidade magnética do vácuo, e J(r′) define a densidade

de corrente no ponto r′. Essa quantidade mede o transporte de portadores de carga no
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espaço. Vamos primeiramente notar que podemos escrever
(r − r′)

|r − r′|3
como

(r − r′)

|r − r′|3
= −∇

(
1

|r − r′|

)
(7)

em que o operador “∇” se refere ao gradiente em relação a r. Agora podemos utilizar a

identidade

∇× (fV ) = ∇f × V + f∇× V , (8)

onde f e V são campos escalares e vetorial, respectivamente, para reescrever (6) em uma

forma mais conveniente. Como o operador ∇ não atua nas coordenadas r′, utilizando a

relação acima concluímos que ∇× J(r′) = 0. Assim, obtemos

J(r′)× (r − r′)

|r − r′|3
= ∇×

(
J(r′)

|r − r′|

)
(9)

Substituindo a relação (9), obtemos

B(r) = ∇× µ0

4π

∫ (
J(r′)

|r − r′|

)
dV ′. (10)

A equação (10) nos garante imediatamente a condição ∇ · B = 0, que tem como con-

sequência a interpretação da não existência de monopolos magnéticos [8]. Ainda dessa

condição, podemos introduzir a ideia de um potencial vetor, A, a partir do qual o campo

magnético pode ser escrito como

B(r) = ∇×A(r), (11)

sendo o potencial vetor definido na forma

A(r) =
µ0

4π

∫ (
J(r′)

|r − r′|

)
dV ′ (12)

Se calcularmos agora o rotacional de B, obtemos

∇×B(r) = ∇×
[
∇× µ0

4π

∫ (
J(r′)

|r − r′|

)
dV ′
]

(13)
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Fazendo uso da identidade

∇× (∇× F ) = ∇(∇ · F )−∇2F , (14)

válida para qualquer campo vetorial F , e simplificando, obtemos

∇×B(r) = ∇
[
µ0

4π

∫
J(r′) ·∇

(
1

|r − r′|

)
dV ′
]
−∇2

(
µ0

4π

∫
J(r′)

|r − r′|
dV ′
)

(15)

Usando agora a relação ∇2
(

1
|r−r′|

)
= −4πδ(r − r′), e substituindo na expressão (15)

obtemos

∇×B(r) = ∇
[
µ0

4π

∫
J(r′) ·∇

(
1

|r − r′|

)
dV ′
]
+ µ0J(r) (16)

É fácil ver que ∇
(

1
|r−r′|

)
= −∇′

(
1

|r−r′|

)
(onde ∇′ atua nas coordenadas fonte r′).

Substituindo esse resultado, e resolvendo a integral restante por partes (considerando que

a integração é em todo espaço) obtemos

∫
J(r′) ·∇′

(
1

|r − r′|

)
dV ′ = −

∫ ∇′ · J(r′)

|r − r′|
dV ′, (17)

onde usamos a identidade ∇ · (fV ) = ∇f · V + f∇ · V , assim como o fato de que

a distribuição de cargas deve se anular no infinito [8]. Agora, utilizando a equação da

continuidade para correntes estacionárias, ∇′ · J(r′) = 0, obtemos a forma diferencial da

Lei de Biot-Savart, válida no regime da magnetostática:

∇×B(r) = µ0J(r) (18)

Ressaltamos que essa equação só é válida para a magnetostática, pois a equação da con-

tinuidade assume que ∂ρ
∂t

= 0 o que só é válido para correntes estacionárias, onde não

há acúmulo de cargas no espaço. Podemos generalizar esse resultado se considerarmos a

equação da continuidade:

∇ · J +
∂ρ

∂t
= 0 (19)

Essa equação estabelece que a variação de cargas em pontos do espaço ocorre devido ao

fluxo de cargas pela vizinhança do ponto, estabelecendo assim a lei da conservação de
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cargas. Agora, se substituirmos ρ dado pela equação de Gauss (5), obtemos

∇ · J +
∂ ϵ0∇ ·E

∂t
= 0 (20)

Podemos definir uma nova densidade de corrente I que é dada por

J(r, t) + ϵ0
∂E(r, t)

∂t
≡ I(r, t) (21)

de forma que agora a lei de Ampère em termos de I pode ser escrita na sua forma mais

geral como:

∇×B(r, t) = µ0I(r, t) (22)

Substituindo agora B(r) = ∇ × A(r), e novamente utilizando a identidade vetorial

dada por (14), obtemos:

∇× (∇×A) = ∇(∇ ·A)−∇2A (23)

Notamos que potencial vetor, definido a partir da relação B = ∇ × A, é dotado da

chamada liberdade de calibre, por ser essa invariante frente à transformação A → A+∇ψ,

sendo ψ um campo escalar arbitrário. Em particular, podemos escolher ψ de modo que

∇·A = 0 (calibre de Lorenz). Dessa forma, o potencial vetor passa a obedecer a seguinte

equação de Poisson:

∇2A = −µ0J(r) (24)

Determinando o potencial vetor por meio dessa relação, conseguimos determinar comple-

tamente o campo magnético apenas tomando o rotacional desse potencial.

3 Lei de indução de Faraday

A equação (5) descreve o módulo e o sentido do campo elétrico e não contém nenhuma

informação sobre sua direção, de modo que não podemos determinar totalmente o campo

elétrico gerado por uma distribuição de cargas com ela [8]. Porém, um resultado do cálculo

vetorial estabelece que, se obtivermos o divergente e o rotacional de um campo vetorial

em todo o espaço, conseguiremos determiná-los de forma única [9].

Começaremos estudando o trabalho realizado por um campo elétrico, gerado por uma
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distribuição arbitrária de cargas, ao mover uma carga teste ao longo de um caminho

fechado Γ. Esse trabalho será dado por

W =

∮
Γ

F (r) · dr (25)

em que F (r) é a força elétrica, definida por F (r) = qE(r) sendo q a carga teste. Substi-

tuindo acima, obtemos:

W = q

∮
Γ

E(r) · dr (26)

Podemos utilizar o teorema de Stokes, que relaciona a integral de linha de um campo

vetorial em um caminho fechado à uma integral de superfície do rotacional desse campo.

Dessa forma, podemos concluir que o trabalho pode ser representado na forma

ε =

∫
S

∇×E(r) · da (27)

em que ε = W
q

é a chamada força eletromotriz.

Por outro lado, Faraday notou experimentalmente que a força eletromotriz gerada por

uma indução magnética é dada por

ε = −dΦm

dt
, (28)

onde Φm representa o fluxo do campo magnético sobre a superfície na qual a força ele-

tromotriz é induzida. Sabemos que o fluxo magnético Φm em uma superfície aberta Λ é

dado por

Φm =

∫
Λ

B(r, t) · da (29)

Levando em consideração que os fluxos obtidos experimentalmente são idênticos e que Λ

pode ser escolhida arbitrariamente, podemos concluir que

∫
Λ

∇×E(r, t) · da = − d

dt

∫
Λ

B(r, t) · da (30)

Usando a regra de Leibniz para diferenciação sob o sinal de integral e assumindo uma

superfície Λ é fixa no tempo, podemos escrever

∇×E(r, t) = −∂B(r, t)

∂t
(31)
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Para o caso eletrostático, não há movimentação de cargas para gerar uma corrente e,

por consequência, não há um campo magnético. Dessa forma podemos escrever:

∇×E(r) = 0, (32)

que é válida no domínio da eletrostática. Sabemos do cálculo vetorial que, se o rotacional

de um campo vetorial é nulo, esse campo é conservativo. Portanto, ele pode ser descrito

como o negativo do gradiente de um campo escalar [8]. Isso nos permite escrever o campo

E como sendo:

E(r) = −∇φ(r) (33)

onde φ(r) é o potencial elétrico.

Tomando o divergente do campo eletroestático, obtemos:

∇ ·E(r) = ∇ ·∇φ(r) (34)

Logo, temos ∇ ·∇φ(r) = ∇2φ(r) o que resulta, utilizando a lei de Gauss, que:

∇2φ(r) = −ρ(r)
ϵ0

(35)

. A equação acima é conhecida como equação de Poisson. Para o caso em que ρ(r)
ϵ0

= 0

chegamos na equação de Laplace:

∇2φ(r) = 0 (36)

Podemos notar esse resultado é consequência direta da condição de sabermos o rotaci-

onal e o divergente do campo. Então, ao determinarmos o potencial elétrico, podemos

determinar totalmente o campo eletrostático.

4 Resumo do Capítulo

Neste capítulo, foram desenvolvidas as equações básicas do eletromagnetismo, que sin-

tetizam as Leis que regem eletromagnetismo. No entanto, essas equações não estão em

sua forma mais geral, pois estamos considerando que o meio é isotrópico. Assim, deixamos

de incluir fenômenos como a magnetização e a polarização, que serão essenciais para as

discussões futuras. Podemos resumir as equações de Maxwell no vácuo discutidas nesse
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capítulo como

∇ ·E(r) =
ρ(r)

ϵ0
(37)

∇ ·B(r) = 0 (38)

∇×E(r, t) = −∂B(r, t)

∂t
(39)

∇×B(r, t) = µ0I(r, t) (40)

No próximo capítulo, faremos a transição das equações de Maxwell de um meio iso-

trópico para um meio anisotrópico, assim englobando todos os aspectos necessários para

tratar do magnetismo em materiais.
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Equações de Maxwell em meios

materiais

Agora que sabemos como as equações de Maxwell se comportam no vácuo, estamos

prontos para tratar dos meios materiais. Tais meios não podem ser descritos pelas equa-

ções anteriores, pois elas desconsideram efeitos adicionais que ocorrem devido à pre-

sença de múltiplas partículas carregadas, provenientes da estrutura atômica/molecular

dos meios materiais. Devido a esse grande número de partículas dentro de um material,

o comportamento das quantidades E e B pode variar de ponto a ponto. Isso nos leva à

necessidade de descrevê-las em termos de valores médios [10], que fornecem uma descrição

adequada do comportamento macroscópico do eletromagnetismo nesses meios.

1 Eletrostática em meios materiais

Estudamos no capítulo anterior a criação de um campo elétrico devido à presença de

uma distribuição de cargas livres. Porém, em um meio material, há uma interação entre

essas cargas e as chamadas cargas ligadas, que são aquelas inerentes à estrutura atômica

do material. Isso pode gerar duas características nos materiais: a condutividade elétrica

e a isolação elétrica, o que nos leva a classificar, do ponto de vista do eletromagnetismo

clássico, os materiais em dois tipos básicos: os condutores e os dielétricos. Cada um desses

meios terá uma resposta diferente à aplicação de um campo elétrico externo.

Quando aplicamos um campo elétrico externo em um condutor, as cargas irão se orga-

nizar de forma a cancelar o campo externo no interior do material, gerando assim uma

corrente elétrica transiente no sentido oposto ao campo aplicado. Isso ocorre porque os

condutores possuem um excesso de cargas livres. Nos dielétricos, a resposta à aplicação de

um campo externo resulta na re-orientação de dipolos elétricos e magnéticos, que também

buscam blindar os campos em seu interior, sem gerar corrente elétrica nesse processo [8].

Para tratar da eletrostática em condutores, devemos considerar que todas as cargas

livres irão se distribuir de forma que o campo elétrico interno no condutor se anule, dessa

forma minimizando a energia eletrostática no interior do material. Isso se deve à presença
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de um número suficiente de cargas livres capazes de migrar para a superfície do condutor,

assim blindando completamente um campo externo aplicado. Podemos notar, devido

a essa propriedade, que a diferença entre o campo macroscópico e o microscópico existe

apenas na superfície do condutor. Pois, na média, as flutuações do campo macroscópico no

interior do material são nulas e o campo líquido se torna o campo gerado pela distribuição

de cargas superficiais do material [10]. Logo, para condutores, na ausência de cargas livres

no interior do material, o campo elétrico satisfaz:

∇ ·E = 0, (1)

∇×E = 0. (2)

Para dielétricos, por outro lado, consideramos que a carga total é neutra, devido ao fato

de que as cargas estão ligadas na forma de dipolos ou multipolos, resultando em carga

líquida nula. No entanto, sabemos experimentalmente que tais objetos ainda sentem

a ação de um campo elétrico externo aplicado. Isso ocorre por meio da separação de

cargas devido à aplicação do campo, sendo esse fenômeno conhecido como polarização.

A polarização P se refere à existência de pequenos momentos de dipolos por unidade de

volume do dielétrico. Essa grandeza é definida como a densidade de momento dipolar p

em um volume V , na forma:

P = lim
∆V→0

∆p

∆V
(3)

A polarização nos ajuda a entender melhor o campo elétrico criado dentro de um di-

elétrico, pois podemos relacioná-la ao potencial eletrostático através do potencial de um

dipolo ideal. Podemos calcular o potencial de um dipolo no vácuo pela equação:

φ(r) =
1

4πϵ0

p(r′) · (r − r′)

|(r − r′)|3
, (4)

sendo r′ a posição do dipolo ideal, definido como cargas opostas de mesma magnitude q,

separadas por uma distância d, de modo que p = qd. Se considerarmos uma distribuição

contínua de dipolos, podemos substituir na equação acima a densidade de dipolos dada

por (3). Recorrendo ao princípio da superposição linear, obtemos então

φ(r) =
1

4πϵ0

∫
V

P (r′) · (r − r′)

|r − r′|3
dV ′. (5)
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Mas, usando a relação (7), essa expressão pode ser reescrita na forma

φ(r) =
1

4πϵ0

∫
V

P (r′) ·∇′
(

1

|r − r′|

)
dV ′. (6)

Utilizando de integração por partes e o teorema da divergência, obtemos que o potencial

dipolar é dado por

φ(r) =
1

4πϵ0

[∮
S

1

|r − r′|
P (r′) · da′ −

∫
V

1

|r − r′|
(∇′ · P (r′))dV ′

]
. (7)

Da equação acima, concluímos que a primeira integral é o potencial gerado por uma

distribuição de “cargas” superficial σlig(r′) = P (r′) · n̂′, em que n̂ é o vetor normal à

superfície de integração, e a segunda é o potencial gerado por uma densidade volumétrica

dada por ρlig(r′) = −∇′ ·P (r′). Para continuar, consideraremos que σlig = 0, o que pode

ser feito se considerarmos que as integrais acima se estendem ao infinito, onde o vetor de

polarização se anula.

Queremos agora aplicar a lei de Gauss para descrever o campo elétrico no interior do

material. Para isso, podemos redefinir a densidade de cargas na equação (37) em termos

de densidades de cargas ligadas e livres:

ρ(r) = ρlivre(r) + ρlig(r) (8)

Usando a relação para a densidade de cargas volumétricas ligadas, temos

∇ ·E(r) =
1

ϵ0
(ρlivre −∇ · P (r)) (9)

A partir dessa relação, definimos um novo campo chamado deslocamento elétrico, que é

dado por

D(r) = ϵ0E(r) + P (r). (10)

Com isso, a lei de Gauss para meios materiais se torna

∇ ·D(r) = ρlivre. (11)

Para alguns materiais, temos que a polarização é diretamente proporcional ao campo
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aplicado, sendo essa relação a seguinte:

P = ϵ0χeE, (12)

em que χe define a chamada de suscetibilidade elétrica. Essa grandeza mede a resposta

elétrica do material à aplicação de um campo. A proporcionalidade entre polarização

e campo implica que os dipolos elétricos no meio irão orientar-se na direção do campo,

em uma tentativa de blindar o campo total no interior do material [9]. Diferentemente

dos meios condutores, essa blindagem não é completa, pois as cargas ligadas são capazes

apenas de reorientar-se na presença do campo. Considerando novamente a equação (10),

podemos substituir a polarização pela relação (12), obtendo assim:

D = εE (13)

em que ε = ε0(1+χe) é a chamada permissividade elétrica do material. Os materiais que

seguem essa relação linear entre D e E são chamados de dielétricos lineares. Com isso,

temos que a forma macroscópica das equações de Maxwell para a eletrostática são

∇ ·D = ρlivre, (14)

∇×E = 0. (15)

Devemos tomar cuidado com essas equações, pois, embora alguns materiais não sejam

condutores nas condições normais de temperatura e pressão, eles ainda podem ser ioniza-

dos por algum efeito externo, assim gerando uma quantidade de cargas livres que devem

ser consideradas ao se aplicar a lei de Gauss [9].

2 Magnetismo em meios materiais

Por meio da mecânica quântica, sabe-se que todos os materiais possuem dipolos magné-

ticos intrínsecos, originados pelos spins dos átomos que compõem esses materiais. Porém,

devido à organização desses spins, muitos materiais não possuem propriedades magnéticas

macroscópicas [9]. Entretanto, quando um material é submetido a um campo magnético

externo, os spins podem re-orientar-se e assumir configurações específicas. Esse processo
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é conhecido como magnetização. Para materiais paramagnéticos, a magnetização faz com

que os dipolos magnéticos sofram um torque que tende a alinhá-los na direção do campo

magnético. Para os diamagnéticos, a indução magnética faz com que os dipolos se alinhem

antiparalelamente ao campo. Podemos definir a magnetização macroscópica como sendo

a soma dos momentos de dipolos magnéticos médios por unidade de volume da seguinte

forma

M =
∑
i

Ni⟨mi⟩ (16)

em que ⟨mi⟩ é o momento de dipolo médio da molécula i, Ni é o número de moléculas

por unidade de volume.

De forma análoga ao caso eletrostático, podemos calcular o potencial vetor gerado por

um dipolo magnético ideal. O potencial gerado por um dipolo magnético ideal é dado por

A(r) =
µ0

4π

m(r′)× (r − r′)

|r − r′|3
(17)

Assumindo que, para uma distribuição contínua, cada momento de dipolo médio pode ser

aproximado por um momento de dipolo ideal, podemos escrever a magnetização como

M = lim
∆V→0

∆m

∆V
(18)

Assim, usando o princípio da superposição linear, podemos reescrever o potencial como

sendo

A(r) =
µ0

4π

∫
V

M(r′)× (r − r′)

|r − r′|3
dV ′ (19)

Podemos usar agora a relação (7), de forma a obter

µ0

4π

∫
V

M (r′)× (r − r′)

|r − r′|3
dv′ =

µ0

4π

∫
V

M(r′)×∇′
(

1

|r − r′|

)
dV ′. (20)

Resolvendo a integral por partes, e considerando que a magnetização é bem localizada,

obtemos da integração que o potencial é dado por

A(r) =
µ0

4π

∫
V

[
∇×M (r′)

|r − r′|
dV ′ −

∫
V

∇×
(
M(r′)

|r − r′|

)
dV ′
]
. (21)

A segunda integral acima pode ser manipulada por meio do teorema do divergente [8]
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para um campo vetorial. Com isso, podemos reescrever o potencial vetor como

A(r) =
µ0

4π

∫
V

[∮
S

1

|r − r′|
M (r′)× da′ −

∫
V

1

|r − r′|
(∇′ ×M(r′))dV ′

]
. (22)

Analogamente ao caso eletrostático, podemos associar o potencial magnetostático em

um material à uma distribuição de correntes superficiais e à distribuição de correntes

volumétricas. Para isso, definimos as grandezas KM(r′) = M (r′)× n̂, onde n̂ é o vetor

normal a superfície de integração, e JM(r′) = ∇′×M(r′). Reconhecemos a grandeza KM

como a corrente superficial ligada, sendo JM a corrente volumétrica ligada. Considerando

que a magnetização é suficientemente localizada, podemos considerar que uma integração

em todo o espaço geraria um potencial nulo para as correntes superficiais, de forma que

o potencial apenas dependa das correntes volumétricas. Assim, o potencial pode ser

reescrito como

A(r) =
µ0

4π

∫
V

∇×M (r′)

|r − r′|
dV ′ (23)

Vemos que, para o caso em que não há uma movimentação de cargas livres, ainda

obtemos uma contribuição para o potencial, proveniente da corrente de magnetização.

Assim, podemos redefinir a corrente total como a combinação das correntes de cargas

livres e as correntes de Magnetização, na forma:

JT (r) = Jlivre(r) + JM(r), (24)

Substituindo a corrente total na lei de Ampère, obtemos

∇×B(r) = µ0JT (r) (25)

Novamente, de maneira análoga caso eletrostático, podemos introduzir um campo au-

xiliar H(r) para reescrever a lei de Ampère. Para isso, consideramos

∇× B(r)

µ0

= Jlivre(r) +∇×M (26)

Reorganizando essa expressão, temos

∇×
(
B(r)

µ0

−M(r)

)
= µ0Jlivre(r) (27)
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Podemos definir então o campo auxiliar como sendo

H(r) =
B(r)

µ0

−M(r) (28)

Para materiais em que a magnetização responde linearmente à aplicação de um campo

magnético externo, podemos relacionar as grandezas acima pela seguinte expressão

M(r) = χmH(r), (29)

em que χm define a susceptibilidade magnética do material. Essa quantidade mede a

resposta do material ao campo aplicado. Substituindo essa relação na equação para

o campo magnético, obtemos uma expressão semelhante à obtida para o deslocamento

elétrico:

B(r) = µH(r) (30)

em que definimos µ = µ0(1 + χm) como sendo a permeabilidade magnética do material.

Dessa forma, podemos reescrever as equações do magnetismo em meios materiais em

termos do campo auxiliar H como sendo

∇×H(r) = Jlivre(r) (31)

∇ ·B(r) = 0 (32)

3 Ondas eletromagnéticas em materiais isotrópicos

Na seção anterior, definimos as grandezas macroscópicas D e B, e mostramos como

elas se relacionam com seus análogos microscópicos. Essas relações são descritas pelas

equações constitutivas (13) e (30)

Antes de derivarmos a equação de propagação de uma onda eletromagnética em um

meio, devemos reescrever as equações de Maxwell em termos de D e H . Dessa forma, as

equações de Maxwell para materiais lineares se tornam

∇ ·D = ρlivre (33)
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∇×E = −∂B
∂t

(34)

∇×H = Ilivre (35)

∇ ·B = 0 (36)

Note que Ilivre é definida por

Ilivre = Jlivre +
∂D

∂t
(37)

Agora que transformamos as equações de Maxwell, iremos considerar o caso em que

ρlivre = 0 e Jlivre = 0. Esse caso representa a situação onde não há fontes livres, podendo

ser estendida à propagação no vácuo mediante às substituições ϵ→ ϵ0 e µ→ µ0.

Matematicamente, as equações acima descrever um sistema de quatro equações dife-

renciais e duas incógnitas, sendo essas incógnitas relacionadas por rotacionais. Com essa

informação, podemos calcular o rotacional de alguma dessas quantidades para conseguir-

mos acoplar duas equações em uma. Faremos isso para o campo elétrico:

∇× (∇×E) = ∇×
(
−∂B
∂t

)
(38)

Utilizando a propriedade (23) dos rotacionais, obtemos

∇× (∇×E) = ∇(∇ ·E)−∇2E (39)

que implica em

∇(∇ ·E)−∇2E = ∇×
(
−∂B
∂t

)
(40)

Usando a Lei de Gauss, podemos concluir que essa expressão se reduz a seguinte forma

∇2E =
∂

∂t
(∇×B) (41)

Por outro lado, sabemos da lei de Ampère que

∇×B = µ(∇×H) = Ilivre (42)
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Combinando esses resultados, obtemos

∇2E = µ
∂

∂t
(∇×H) (43)

Para o caso que estamos estudando, temos que ∇×H = ∂D
∂t

. Logo, nossa equação para

a propagação do campo elétrico se torna

∇2E = εµ
∂2E

∂t2
. (44)

Essa equação mostra que o campo elétrico se propaga como uma onda no interior de

materiais lineares, de velocidade definida por v = 1√
µε

. Notemos que podemos associar

essa velocidade com o índice de refração do material pela relação

v =
c

n
(45)

em que n é o índice de refração, sendo dado por n =
√

µε
µ0ε0

. Caso queiramos descobrir

uma equação para o campo magnético, podemos proceder da mesma forma, porém con-

siderando agora para o rotacional do campo magnético. Se isso for feito, chegaremos à

uma equação idêntica, trocando apenas E por B. Isso mostra que o sistema de equa-

ções de Maxwell pode ser reduzido de quatro equações de primeira ordem acopladas para

duas equações desacopladas de segunda ordem. Resulta dessas equações que os campos

se propagam como ondas de mesma velocidade. Além disso, é fácil de verificar, através

das Leis de Faraday, Gauss, e ausência de monopolos, que os campos são mutuamente

perpendiculares, sendo também ortogonais à direção de propagação.

Com a equação (44), conseguimos descrever o comportamento de uma onda eletromag-

nética no interior de um material. Em um caso mais geral, podemos notar que essas ondas

não necessariamente devem se propagar com a mesma velocidade em todas as direções.

Isso ocorre porque, caso haja mudança no índice de refração em alguma das direções de

propagação no material, segue da relação (45) que a velocidade nessa direção mudará.

Podemos notar também que para o vácuo, a relação (45) se resume a relação

v = c (46)

Com posse dessas equações, conseguimos determinar exatamente a velocidade que a onda
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eletromagnética irá se propagar em qualquer meio linear. Além disso, sabemos que essas

ondas devem ter, para meios homogêneos e isotrópicos, a mesma velocidade em qualquer

direção e em qualquer ponto do espaço.

Veja que as equações desenvolvidas acima consideram o meio isotrópico e homogêneo,

de forma que as quantidades ε e µ são constantes com a posição e, sendo escalares,

independem da direção de propagação. Para um meio anisotrópico e inomogêneo [1] con-

siderarmos que as suscetibilidades são descritas por matrizes. Dessa forma, é conveniente

expressar tanto o deslocamento dielétrico quanto a indução magnética em termos de ma-

trizes ε e µ, respectivamente. Dessa forma, podemos generalizar as relações constitutivas

na forma:
1. D = ε0εE

2. B = µ0µH
(47)

em que ε = 1 + χe e µ = 1 + χm. Como veremos adiante, podemos usar as relações

acima para conectar as propriedades de meios anisotrópicos com aquelas de um espaço

curvo qualquer. Notamos também que as relações acima implicam que os campos em

materiais anisotrópicos não são necessariamente paralelos aos campos externos que os

induzem, refletindo a anisotropia intrínseca da distribuição de cargas e correntes ligadas

do material.
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Introdução à Geometria Diferencial

Agora que estamos familiarizados com os conceitos do eletromagnetismo em materi-

ais, iremos introduzir os conceitos de geometria diferencial que nos ajudarão a criar uma

analogia entre espaços curvos e a presença de anisotropia óptica em materiais dielétricos.

Para facilitar a abordagem, iniciaremos com a definição de grandezas e convenções ado-

tadas com frequência no contexto da geometria diferencial. Começaremos introduzindo a

convenção de somatório de Einstein, que facilitará nossa notação a medida que avançamos

no desenvolvimento da formulação teórica. Essa notação estabelece que:

• Índices que aparecem uma única vez em um termo podem assumir valores de 1 a 3

(coordenadas espaciais).

• Índices que se repetem em um termo são entendidos como uma soma de 1 a 3.

A título de ilustração, podemos considerar a seguintes expressões:

3∑
i=1

Aii = Aii = A11 + A22 + A33,

3∑
i=1

AiB
i = AiB

i = A1B
1 + A2B

2 + A3B
3.

Devemos observar que, quando realizamos uma soma sobre objetos diferentes, devemos

garantir que os índices estejam de acordo com o exemplificado, um sobrescrito e outro

subscrito.

Definimos a delta de Kronecker δij como

δij =

1 se i = j,

0 se i ̸= j.

(1)

Da mesma maneira, definimos o chamado símbolo de Levi-Civita [ijk] para 3 dimensões
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como sendo

[ijk] =


+1 se (i, j, k) é uma permutação par de (1, 2, 3),

−1 se (i, j, k) é uma permutação ímpar de (1, 2, 3),

0 se quaisquer índices se repetem.

(2)

esses dois objetos são essenciais para manter a coerência da convenção da soma. Dessa

forma, conseguimos escrever várias propriedades vetoriais em termos desses dois objetos

de forma simples e compacta.

1 Transformação de Coordenadas

Nos capítulos anteriores, nos utilizamos de vetores para descrever as quantidades do

eletromagnetismo, atribuindo a essas quantidades um módulo e uma direção. Porém,

nada foi dito sobre quais sistemas de coordenadas foram utilizados para descrever esses

vetores. É assumido que tais quantidades devem, necessariamente, ser invariantes frente

à mudança de referencial. Isso implica que, independente do sistema escolhido, deve

ser sempre possível transcrevê-lo para outro sistema de coordenadas, de modo a manter

invariantes as equações do eletromagnetismo. Sabemos da álgebra linear que, dado um

vetor x podemos aplicar nesse vetor uma transformação linear, tal que o vetor x′ seja

dado por

x′ = Tx (3)

onde T é a matriz transformação que representa a transformação linear. Devemos observar

que o vetor x possui uma base associada. Uma possível interpretação da transformação

acima consiste em considerar que os vetores da base são afetados pela transformação

linear. Então, quanto aplicamos uma transformação em um vetor, estamos aplicando

uma transformação em sua base. Uma maneira de encontrar a matriz de transformação é

considerando 2 conjuntos de bases, ei e e′
i, sendo essas as bases original e transformada,

respectivamente. Como os vetores dessas bases são linearmente independentes, podemos

escrever cada componente da base transformada como sendo combinações lineares dos
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vetores da base original da seguinte forma:

e′
i = F k

i ek, (4)

em que F k
i são componentes da transformação. No caso de bases cartesianas, essas com-

ponentes são constantes. Da mesma maneira, podemos escrever as componentes da base

sem linha (original) em termos da base linha (transformada) como

ei = Gk
i e

′
k. (5)

Podemos notar a seguinte relação

ei = F k
i e

′
k = F k

i (G
j
kej) = δjiej. (6)

Dessa forma, concluímos que a matriz G tem que ser necessariamente a inversa da matriz

F , pois quando é feito a contração em k obtemos a delta de Kronecker.

Note que o vetor transformado x′ pode ser expresso na base original. Suas componentes

x̃i nessa base podem ser obtidas considerando-se

x′ = xie′
i = xiF k

i ek, (7)

de onde identificamos a expansão x = x̃kek, com coeficientes x̃k dados por

x̃k = F k
i x

i. (8)

Notamos então que as componentes se transformam de forma inversa aos vetores da base,

pela mesma transformação. Diferenciado a expressão acima em relação a xj e usando
∂xi

∂xj
= δij, podemos representar os coeficientes F k

i na forma:

F j
k =

∂x̃j

∂xk
. (9)

Usando ainda δji =
∂x̃j

∂xk
∂xk

∂x̃i
, concluímos que Gk

i =
∂xk

∂x̃i
. Note que essas relações valem

para sistemas cartesianos.

De forma geral, a transformação entre sistemas de coordenadas não segue uma lei linear
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como visto acima. Além disso, a lei de transformação depende do ponto particular que

está sendo transformado. Nesse caso, a transformação entre coordenadas xj e x̃i segue

uma lei geral da forma xj = xj(x̃1, x̃2, x̃3). Nesse caso, podemos generalizar o resultado

acima através da matriz Jacobiana dessa transformação, cujos elementos são definidos da

seguinte forma:

J i
j =

∂xi

∂x̃j
. (10)

O Jacobiano nos informa a relação entre um vetor em dois sistemas de coordenados

distintos, em que as funções das coordenadas podem ser derivadas. Para verificar isso

é simples, suponha que R é um vetor que dependa das coordenadas xi e que podemos

escrever xi = xi(x̃
j). Então pela regra da cadeia temos

∂R

∂x̃j
=
∂xi

∂x̃j
∂R

∂xi
, (11)

que é exatamente
∂R

∂x̃j
= J i

j

∂R

∂xi
. (12)

O Jacobiano obedece a todas as regras que definimos para transformações, podendo ser

identificado como uma generalização da matriz de transformação de bases.

2 Tensor métrico

Na seção anterior, descrevemos como um sistema de coordenadas se transforma, e mos-

tramos como a transformação entre sistemas pode ser generalizado através da matriz

Jacobiana. Porém, apenas isso não nos fornece informações suficientes acerca do espaço

que queremos estudar, em particular sobre suas propriedades geométricas. Precisamos

então descobrir como acessar as propriedades inerentes ao espaço. Para tal, introduzimos

o conceito de métrica, a partir da qual podemos extrair toda informação sobre a geometria

do espaço que queremos estudar. Podemos defini-la de maneira simples considerando que

a medida de distâncias é algo inerente à qualquer espaço. Assim, podemos adotar um

elemento de distância ds em um sistema euclidiano como sendo

ds2 = δijdx
idxj. (13)
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Como sabemos a medida de distância deve ser invariante frente a mudanças de sistema

de coordenadas, podemos igualar essa quantidade àquela obtida após a aplicação de uma

mudança de coordenadas:

ds2 = δijJ
i
kJ

j
l dx

kdxl ≡ gkldx
k.dxl (14)

Aqui, definimos como métrica o objeto gkl = δijJ
i
kJ

j
l = J i

kJ
i
l . Essa grandeza nos informa

a maneira como a medida de distância varia quando mudamos de um sistema coordenado

para outro. Podemos observar também que a equação (14) pode ser reescrita como o

módulo quadrado de um vetor V . Assim, podemos também expressar a métrica em

termos dos eixos coordenados. Para isso, consideramos a relação

|A|2 = AiAjei · ej. (15)

Note que os eixos ei acima não precisam ser ortogonais ou normalizados, como é o caso

cartesiano. Dessa forma conseguimos associar a métrica ao vetores de base do espaço

através da seguinte relação:

ei · ej = gij (16)

dessa forma conseguimos definir uma métrica inclusive para sistemas que não são orto-

gonais. Note que, no caso cartesiano, a métrica tem a forma euclidiana gij = δij. É fácil

verificar que a métrica deve obedecer algumas regras importantes, sendo elas:

• Simetria: gij = gji.

• Possuir inversa: gijgik = δjk

O tensor métrico possui propriedades fundamentais que são frequentemente utilizadas

na geometria diferencial. Uma delas é a capacidade de converter índices covariantes

(índices inferiores) em contravariantes (índices superiores), conforme

Ai = gijAj. (17)

Assim, o mesmo vetor A pode ser representado nas formas covariante e contravariante,

estando essas formas (ditas duais) conectadas pela métrica do espaço. Outra propriedade

importante, derivada do conceito de comprimento de arco, é a definição de um elemento
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de volume, dado por

dv =
√
gd3x, (18)

onde g = det(gij) é o determinante do tensor métrico. Essa propriedade segue diretamente

da relação gij = Jk
i J

k
j , a qual implica g = det(J)2.

Por fim, temos de enunciar um teorema importante da geometria diferencial, chamado

Teorema da Existência de Coordenadas Normais de Riemann [11] que pode ser enunciado

da seguinte forma:

Teorema 1. Dado um espaço vetorial, podemos sempre definir nas proximidades de um

ponto P , um sistema de coordenas que se diferencia da métrica euclidiana apenas por uma

função escalar f(xk). Isso é

gij = f(xk) δij (19)

Tais coordenadas são chamadas de coordenadas normais de Riemann em torno do

ponto p.

O teorema (1) garante que em torno de qualquer ponto de um espaço podemos escrever

a métrica como uma métrica diagonal. Note que o espaço difere do espaço cartesiano

apenas por uma função f(xk), como consequência podemos definir todas as propriedades

do espaço em torno desse ponto apenas sabendo quem é f(xk).

3 Derivada covariante e coeficientes de conexão

Para um sistema não cartesiano, sistemas de coordenadas associados a pontos diferen-

tes do espaço em geral serão distintos, pois estão relacionados à uma particular lei de

transformação. Então, para um vetor A escrito nessa base, o diferencial em relação à

coordenada xk é

dA =
∂A

∂xk
dxx (20)

Uma vez que os vetores da base são funções da posição, podemos expressar a derivada

parcial do vetor A na forma

∂A

∂xk
=
∂(Aiei)

∂xk
= ei

∂Ai

∂xk
+ Ai ∂ei

∂xk
. (21)

Se quisermos apenas saber qual é a variação das componentes de A, basta fazermos o
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produto interno com a base covariante ej. Dessa forma, obtemos

∂Aj

∂xk
=
∂Aj

∂xk
+ Ai ∂ei

∂xk
· ej, (22)

onde usamos ei · ej = (ei · ek)e
k · ej = gikg

kj = δji . Definimos agora a quantidade

Γj
ik ≡

∂ei

∂xk
· ej. Reescrevendo a expressão acima em termos dessa grandeza, e trocando o

simbolo de derivada parcial por “∇”, obtemos

∇kA
j =

∂Aj

∂xk
+ AiΓj

ik, (23)

em que Γj
ik é chamado de coeficiente da conexão, ou símbolos de Christoffel do segundo

tipo. Os coeficientes de conexão são objetos nos informam o quanto um vetor é “inclinado”

ou “curvado” quando é transportado paralelamente em uma determinada direção no espaço

curvo. Isso porque o segundo termo acima pode ser interpretado como a variação do vetor

A quando este é transportado paralelamente (isto é, mantendo sua forma original) do

ponto inicial ao ponto vizinho, onde o sistema de eixos sofre uma mudança.

A equação (23) é a forma mais utilizada para se calcular a derivada covariante. Porém

torna-se claro que encontrar os coeficientes da conexão pode ser trabalhoso, dependendo do

tipo de vetores de base que estamos utilizando. Para resolver esse problema, introduzimos

a chamada conexão de Levi-Civita, que é definida para uma conexão que é simétrica nos

índices i e k. Por definição, a conexão de Levi-Civita [12] é dada por

Γj
ik =

1

2
gjl
(
∂gli
∂xk

+
∂glk
∂xi

− ∂gik
∂xl

)
. (24)

Essa conexão é extremamente importante, pois ela garante que a derivada covariante da

métrica seja nula. Isso garante que o módulo do vetor e seus ângulos são preservados. A

partir de agora, iremos assumir que para os espaços que estamos tratando obedecem a

essa conexão.

4 Geodésica e Transporte paralelo

Agora que sabemos como calcular a métrica e vimos que para espaços curvos precismos

de uma conexão que define como nossos vetores variam entre pontos vizinhos, é nor-
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mal também perguntarmos como um vetor varia quando percorre um caminho no espaço

curvo. Uma forma direta de se fazer isso é considerando um princípio variacional, onde

o caminho percorrido é minimizado com relação à geometria curva do espaço. Devido às

características geométricas do nosso problema, podemos considerar uma função lagran-

giana equivalente, aplicando assim o princípio de mínima ação. O caminho total a ser

percorrido pode ser escrito na forma

∫
ds =

∫
ds

dt
dt =

∫ √
gij
dxi
dt

dxj
dt
dt. (25)

Vemos daí que é natural escolhermos a seguinte lagrangiana [1]

L =
ds

dt
=
√
gijẋiẋj (26)

em que ẋi é definido como dxi

dt
. Substituindo (26) na equação de Euler-Lagrange,

∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
= 0, (27)

obtemos a chamada equação da geodésica que possui a forma

d2xi

ds2
+ Γi

jk

dxj

ds

dxk

ds
= 0 (28)

A equação (28) mostra como as componentes de um vetor mudam quando percorrem um

caminho parametrizado em um espaço curvo. Para o caso da luz, essa equação descreve

como o meio material irá alterar o caminho da luz de acordo com a propagação dela

pelo meio. Outra forma de interpretar essa equação é notando que dxj

ds
é exatamente

a componente de um vetor unitário tangente parametrizado pelo comprimento de arco.

Podemos simplificar essa equação escrevendo

dxj

ds
= Aj (29)

substituindo (29) em (28), obtemos

dAi

ds
+ Γi

jlA
jAl = 0. (30)
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Podemos manipular essa equação, através do uso de regra da cadeia, para obter o seguinte

resultado:

Al

(
∂Ai

∂xl
+ Γi

jlA
j

)
= 0, (31)

que pode ser reescrito na forma

Al∇lA
i = 0. (32)

Com esse resultado vemos que, para um vetor que segue uma geodésica, a variação desse

vetor na direção do caminho é nula. Chamamos esse fenômeno de transporte paralelo.

Isso significa que a variação do vetor é paralela e igual em todos os pontos do o caminho

percorrido.

5 Curvatura

Tendo estudado a definição e sentido geométrico dos símbolos de conexão, iremos intro-

duzir um novo objeto que depende exclusivamente dessas grandezas. O tensor de Riemann

é fundamental na geometria diferencial, sendo o responsável por caracterizar a curvatura

do espaço de interesse [13]. Uma maneira fácil de definir o tensor de Riemann é utilizando

a relação

[∇k,∇l]V
i = Ri

jklV
j (33)

em que [∇k,∇l] é o comudador entre as derivadas covariantes associadas a conexão de

Levi-Civita. Explicitamente, podemos expressar o tensor Ri
jkl como

Ri
jkl =

∂Γi
kl

∂xj
−
∂Γi

jl

∂xk
+ Γi

jmΓ
m
kl − Γi

kmΓ
m
jl . (34)

O tensor de Riemann, quando expresso de forma totalmente covariante, obedece às cha-

madas identidades de Bianchi [12], que fornecem informações cruciais sobre sua antissime-

trização. A primeira identidade de Bianchi refere-se à antissimetrização dos três últimos

índices do tensor de Riemann, e pode ser escrita na forma

Rmjkl +Rmklj +Rmljk = 0. (35)
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A segunda identidade de Bianchi relaciona a antissimetrização das derivadas covariantes

do tensor de Riemann, sendo expressa como

∇mR
i
jkl +∇kR

i
jlm +∇lR

i
jmk = 0 (36)

A partir do tensor de Riemann, podemos obter outro objeto que engloba informações

relevantes sobre a curvatura do espaço, o chamado tensor de Ricci. Ele pode ser obtido

pela contração do tensor de Riemann, na seguinte forma

Ri
jil = Rjl (37)

O tensor de Ricci descreve a curvatura seccional do espaço, dessa forma nos fornecendo

uma caracterização local da curvatura do espaço. Além disso, podemos introduzir um

número escalar associado ao tensor de Ricci, conhecido como o escalar de Ricci. Ele é

obtido pela contração total do tensor de Ricci, da seguinte forma

Rjj = R (38)

Dessa maneira, o escalar de Ricci sintetiza informações sobre a curvatura facilitando o

estudo das propriedades geométricas do espaço.

6 Mapeamento conforme

Na geometria diferencial, podemos definir um subconjunto de espaços curvos que pos-

suem seu tensor de curvatura definido apenas por uma função escalar de acordo com o

teorema (1)

A importância disso é o fato de essa propriedade garantir que o tensor de curvatura

irá apenas depender dessa função escalar f(xi). A consequência de utilizar um subespaço

que obedeça essa condição é o fato de que agora o módulo dos vetores não será mais

conservado, porém o ângulo entre dois vetores será. Espaços que obedecem a esse princípio

são chamados de conformalmente planos, pois diferem do espaço plano apenas por uma

transformação conformal. A utilidade desses mapas vem primeiramente do teorema de

Riemann, e segundo do fato de que eles nos permitem calcular facilmente as componentes
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do tensor de Riemann em qualquer dimensão, utilizando

Ri
jkl =

1

f

(
∂

∂xj
∂f

∂xk
δil −

∂

∂xj
∂f

∂xl
δik −

∂

∂xi
∂f

∂xk
δjl +

∂

∂xi
∂f

∂xl
δjk

)

+
1

f 2

[
∂f

∂xj

(
∂f

∂xl
δik −

∂f

∂xk
δil

)
+
∂f

∂xi

(
∂f

∂xk
δjl −

∂f

∂xl
δjk

)

− ∂2f

∂(xm)2

(
δikδjl − δilδjk

)]
.

(39)

Por fim, para os nossos estudos estaremos interessados em criar mapas que podem ser

escritos por transformações conformais, pois facilitará obtenção dos parâmetros ópticos

e permitirá uma analogia simples entre o espaço físico e o espaço virtual em que iremos

trabalhar.

7 Reescrevendo os operadores diferenciais

Após discutirmos os conceitos básicos de geométrica diferencial, podemos agora uti-

lizar de algumas relações obtidas para reescrever os operadores diferenciais usualmente

definidos em coordenadas cartesianas. Primeiramente, iremos reescrever o divergente,

e em seguida o rotacional, terminando com a definição do Laplaciano em coordenadas

quaisquer.

7.1 Divergente

O divergente na convenção da soma pode ser escrito como ∇·A = ∂Ai

∂xi ; se consideramos

um sistema de coordenadas qualquer, essa expressão pode ser relacionada com a derivada

covariante como

∇jA
j =

∂Aj

∂xj
+ AiΓj

ij. (40)

Sabemos que a derivada covariante de um vetor qualquer em um espaço que obedece a

conexão de Levi-Civita pode ser escrita como

∇jA
j =

∂Aj

∂xj
+ Ai

[
1

2
gjl
(
∂gli
∂xj

− ∂gij
∂xl

+
∂glj
∂xi

)]
, (41)
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onde usamos explicitamente a forma dos coeficientes de conexão dadas por (24). Podemos

notar que, se trocarmos os índices mudos e utilizarmos a simetria da métrica, obtemos

gjl
(
∂gli
∂xj

− ∂gij
∂xl

)
= 0 (42)

De forma que para uma conexão de Levi-Civita obtemos

∇jA
j =

∂Aj

∂xj
+ Ai

(
1

2
gjl
∂glj
∂xi

)
(43)

Utilizando o resultado de que gjl ∂glj
∂xi = 2√

g

∂
√
g

∂xi , obtemos

∇jA
j =

∂Aj

∂xj
+
Ai

√
g

∂
√
g

∂xi
(44)

A equação acima pode ser reescrita utilizando a regra da cadeia, de foma que obtemos

para o divergente a relação

∇ ·A =
1
√
g

∂

∂xi
(
√
gAi). (45)

Com a expressão acima conseguimos determinar facilmente o divergente em qualquer

sistema de coordenadas em um espaço que obedece a conexão de Levi-Civita.

7.2 Rotacional

Sabemos do cálculo vetorial que o rotacional de um campo vetorial é escrito na conven-

ção da soma como

∇×A = εijk
∂Ak

∂xj
ei, (46)

onde εijk representa o símbolo de Levi-Civita no sistema transformado. Usando as pro-

priedades usuais de transformação, obtemos:

εijk = ± 1
√
g
[ijk], (47)

sendo [ijk] o símbolo de permutação definido em (2). A escolha do sinal na relação

acima está vinculada ao sistema transformado obedecer ou não o sistema de mão direita.
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Substituindo na equação para o rotacional, obtemos a forma final como sendo

∇×A = ± 1
√
g
[ijk]

∂Ak

∂xj
ei. (48)

7.3 Laplaciano

Antes de definir o Laplaciano, precisamos definir a forma do operador gradiente em

coordenadas generalizadas. Vamos considerar a situação em que queremos encontrar a

variação de um campo potencial ao longo de um elemento de caminho. Podemos escrever

então que

dU = ∇U · dr. (49)

Em termos das componentes dos campos vetoriais e dos vetores de base, temos

dU = ei · ej(∇U)idxj = gij(∇U)idxj. (50)

Por outro lado, para um escalar U = U(x1, x2, x3), podemos escrever

dU =
∂U

∂xj
dxj. (51)

Comparando as expressões acima (válidas para dxj arbitrários), concluímos que

∂U

∂xj
= (∇U)i gij. (52)

Multiplicando os dois lado pelo inverso da métrica gij, e usando o fato da métrica ser

simétrica, obtemos que as componentes do vetor gradiente em coordenadas generalizadas

são

(∇U)i = gij
∂U

∂xj
. (53)

Fazendo uso da relação acima podemos, finalmente escrever o gradiente como sendo o

objeto

∇U = (∇U)i ei = gij
∂U

∂xj
ei. (54)

A partir da definição do gradiente obtida acima, e utilizando a forma do divergente,
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equação (45), é direto obter o Laplaciano, que será

∇ ·∇U = ∇2U =
1
√
g

∂

∂xi

(
√
ggij

∂U

∂xj

)
(55)

A expressão acima pode ser diretamente generalizada para um campo vetorial A qualquer,

na forma

∇2A =
1
√
g

∂

∂xi

(
√
ggij

∂A

∂rj

)
. (56)

8 Considerações finais

Neste capítulo, revisamos os conceitos básicos da geométrica diferencial para a descrição

de espaços vetoriais em três dimensões. Porém, para estudos mais avançados na óptica

de transformação, torna-se necessário um aprofundamento maior dentro desse campo,

fazendo-se uso de propriedades e relações que não foram discutidas nesse breve capítulo.

Esse é o caso, por exemplo, das transformações realizadas em espaços de quadrivetores.

A diferença fundamental nesse caso é que a métrica intrínsica do espaço não mais é eucli-

diana. Além disso, as equações de Maxwell, discutidas nos capítulos anteriores, assumem

formas mais compactas em termos do tensor de campo e do quadrivetor densidade de

corrente. Esses tópicos estão fora do esboço do presente trabalho, cujo foco é o estudo da

óptica de transformação no espaço real, no contexto de validade da óptica geométrica.

Para facilitar a busca, faremos um resumo das equações importantes que serão utilizadas

no decorrer deste trabalho. Começaremos com os operadores vetoriais em coordenadas

quaisquer:

1. ∇ ·A =
1
√
g

∂

∂xi
(
√
gAi)

2. ∇×A = ± 1
√
g
[ijk]

∂Ak

∂xj
ei

3. ∇2A =
1
√
g

∂

∂xi

(
√
ggij

∂A

∂xj

) (57)
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Além disso, listamos aqui algumas das relações fundamentais da geometria diferencial:

1. ∇kA
j =

∂Aj

∂xk
+ AiΓj

ik

2. [∇k,∇l]V
i = Ri

jklV
j

3. Rmjkl +Rmklj +Rmljk = 0

4. ∇mR
i
jkl +∇kR

i
jlm +∇lR

i
jmk = 0

(58)

Iremos agora utilizar essas relações para descrever as leis do eletromagnetismo em um

espaço curvo, comparando a forma dessas equações com aquelas obtidas em espaços eu-

clidianos na presença de meios anisotrópicos. Com isso, vamos estabelecer uma analogia

entre essas duas abordagens, aparentemente distintas.
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Relação entre eletromagnetismo em

geometrias curvas e meios

anisotrópicos

Tendo desenvolvido o ferramental necessário para compreender as ideias básicas da

geometria diferencial, podemos agora reescrever as equações de Maxwell no vácuo consi-

derando uma geometria arbitrária, fazendo uso das equações (57), introduzidas no capítulo

anterior. Como resultado, obtemos as expressões

1.
∂

∂xi
(
√
ggijEj) =

√
gρlivre

ε0

2. [ijk]
∂Ek

∂xj
= −µ0

∂

∂t
(±√

ggijHj)

3.
∂

∂xi
(
√
ggijHj) = 0

4. [ijk]
∂Hk

∂xj
= ε0

∂

∂t
(±√

ggijEj)±
√
gJ i

(1)

Note que, nessas relações, eliminamos o campo magnético em favor do campo auxiliar

H = µ0B. Além disso, as equações são escritas de modo que os vetores E e H aparecem

em suas versão covariantes. Esse procedimento é essencial para estabelecer a conexão do

espaço curvo em questão com o meio material. Queremos agora associar a geometria do

espaço com as propriedades do meio. Pela discussão introduzida no final do Capítulo 3

sabemos que, em meios anisotrópicos, a permissividade elétrica e permeabilidade magné-

tica agem como matrizes que transformam a maneira de propagação dos campos elétricos

e magnéticos de acordo com a posição e com a direção. Das equações (47), podemos

escrever as seguintes relações constitutivas:

Di = ε0ε
ijEj

Bi = µ0µ
ijHj

(2)

Com base nas equações acima, vemos que as equações de Maxwell em um espaço arbitrário

podem ser associadas a um meio anisotrópico, desde que as seguintes conexões sejam
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estabelecidas:
εij = ±√

ggij = 1 + χij
e

µij = ±√
ggij = 1 + χij

m

(3)

Essas relações necessariamente implicam na condição εij = µij. Tal condição é chamada

de correspondência de impedância. Ela nos garante que as propriedades que calculamos

no espaço virtual serão idênticas àquelas observadas no espaço físico. Essa condição é de

extrema importância física, pois ela não ocorre naturalmente na natureza; de modo que

torna-se necessário produzir materiais com esse tipo de propriedade, e estudar quais as

condições microscópicas necessárias para garantir essa condição em diferentes materiais.

Outro ponto importante é o fato dessa condição garantir que a impedância do material

seja igual à do vácuo. Isso significa que não haverá reflexões indesejadas na interface entre

o material e o vácuo [1]. Chegamos a essa conclusão por meio da análise dos determinantes

em (3), onde:

det(ε) = det(
√
gg−1). (4)

Utilizando o fato de que det(aM) = a3 det(M ) e det(M−1) = (det(M))−1 (sendo M

uma matriz 3 × 3 e a um escalar), concluímos que que det(ε) = ±√
g. Substituindo na

equação (3) e isolando gij em termos de εij obtemos

gij = ± εij

det(ε)
= ± µij

det(µ)
(5)

É importante destacar que não estamos nos referindo à geometria do material, mas sim

à geometria de um espaço abstrato, em que os efeitos da anisotropia do material aparecem

como efeitos geométricos inerentes à esse espaço.

Da equação (5), podemos adquirir um significado da métrica para a propagação da luz

no material considerando seus elementos diagonais. Por exemplo, segue da relação acima

que o elemento g11 é

g11 =
ε11

det(ε)
. (6)

Mas, considerando que no material o tensor de permissividade seja diagonal, com auto-

valores nos eixos principais εx, εy e εz, obtemos ε11 = εx. Como vimos que pelo teorema

(1), podemos sempre escolher ε tal que ele seja diagonal localmente. Assim, podemos
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escrever o determinante como det(ε) = εxεyεz. Dessa forma, temos

g11 =
1

εyεz
. (7)

Como gij é diagonal, segue da relação acima que o elemento g11 da métrica será

g11 = εyεz. (8)

Podemos interpretar um elemento de arco paralelo ao eixo principal ex do sistema carte-

siano (antes da transformação) como sendo um elemento de caminho dlx percorrido pela

luz na ausência do material, isto é, no vácuo. Conforme vimos em (14), o elemento de arco

dx percorrido no material está relacionado a dlx por (dlx)2 = g11(dx)
2. Se os elementos de

arco são percorridos em um intervalo dt (invariante nos dois sistemas), podemos concluir

que:

c2 = g11v
2
x −→ g11 =

v2x
c2
, (9)

onde vx é a velocidade da luz no meio. Assim, podemos identificar o elemento g11 com

n2
x, onde nx = vx/c é o índice de refração na direção do eixo principal x nesse ponto do

material. Logo, n2
x = g11 = εyεz. Da mesma forma, concluímos facilmente que g22 = n2

y =

εxεz e g33 = n2
z = εxεy. Podemos definir uma matriz diagonal n de elementos diagonais

(nx, ny, nz), de modo que g = n2. Como a relação entre dois tensores é independente do

sistema de eixos, podemos concluir dessa discussão que:

(nij)
2 = gij. (10)

Vemos então uma conexão direta entre a métrica do espaço e o índice de refração

local no material. Essa conexão é de extrema importância, pois ela que nos permite

manipular as propriedades ópticas dos materiais da maneira que queiramos, além de

relacionar facilmente as propriedades do material com a geometria de um espaço curvo.

Digamos, por exemplo, que temos uma métrica semelhante à de Schwarzschild. Essa

métrica nos diz que pode existir uma configuração para o qual o índice de refração pode ser

tal que em torno de certa região temos uma distorção do caminho ótico que se assemelha

à distorção causada por um buraco negro. Tais objetos são conhecidos como dispositivos

de invisibilidade [14] [15] [16].
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1 Equação da onda para um espaço curvo

Tendo definido a relação entre as equações de Maxwell em meios anisotrópicos e espaços

curvos, iremos agora escrever a equação de uma onda que se propaga em um espaço vazio

que possui uma geometria curva, de forma que poderemos utilizar as mesmas considerações

feitas para a dedução de (44). Porém, trataremos nossas derivadas espaciais como sendo

derivadas covariantes. Utilizando da notação indicial, podemos escrever:

[∇× (∇×E)]i = εijkεklm∇j∇lEm (11)

Usando a identidade εijkεklm = δilδ
j
m − δimδ

j
l , obtemos

[∇× (∇×E)]i = ∇j∇iEj −∇l∇lE
i (12)

Podemos notar que o termo ∇j∇iEj em situações que Γj
ik = 0 comutam, de forma que

podemos interpretar o resultado como o gradiente do divergente. Para situações mais

gerais em que não ocorre a comutação, podemos adicionar e subtrair ∇i∇jE
j, de forma

a obter

[∇× (∇×E)]i = ∇j∇iEj −∇l∇lE
i +∇i∇jE

j −∇i∇jE
j. (13)

Notamos que ∇j∇iEj −∇i∇jE
j = [∇j∇i]Ej. É interessante nesse estágio utilizarmos a

métrica para baixar o índice i, pois assim conseguimos usar a relação (2) em (58), que é

dada por [∇j,∇i]E
j = Rj

kjiE
k. Dessa forma, multiplicando ambos os lados da igualdade

pela métrica, obtemos

[∇× (∇×E)]i = RkiE
k −∇l∇lEi. (14)

De forma análoga ao que foi feito para a equação (44), podemos escrever o lado direito

da Lei de Ampère, após a aplicação de εijk∇j, usando a Lei de Faraday. Em notação

indicial, obtemos

µ0ε
ijk∇j

(
∂Hk

∂t

)
= µ0ε0

∂2Ei

∂t2
(15)

Para igualar essa expressão à (14), devemos ainda baixar o índice i:

µ0ε
jk
i ∇j

(
∂Hk

∂t

)
= µ0ε0

∂2Ei

∂t2
, (16)
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de forma a obter finalmente a equação

1

c2
∂2Ei

∂t2
= ∇l∇lEi −RkiE

k. (17)

A equação (17) é a forma de uma onda eletromagnética que se propaga em um espaço

curvo e vazio. Podemos ver claramente que, para espaços que não possuem curvatura, o

segundo termo do lado direito é nulo, e equação da onda “tradicional” no espaço cartesiano

é recuperada. Utilizando a equação da onda nessa forma se torna mais fácil nossa análise

da propagação da onda em um espaço curvo, pois as soluções das equações de propagação

no vácuo podem ser associadas diretamente à propagação no meio material.

2 Caminho ótico em materiais anisotrópicos

Após generalizar a equação da onda eletromagnética se propagando em espaços curvos,

vamos agora analisar o comportamento de propagação em um meio. Suponhamos que

a solução da equação (17) tem forma similar à uma onda plana, de modo que o campo

elétrico (ou magnético) pode ser escrito com a forma Ei = Aie
iϕ, em que a fase ϕ é uma

função do tempo e da posição, e Ai é a amplitude complexa do campo, que também

depende do tempo e da posição. Calculando a derivada temporal de Ei, obtemos

dEi

dt
= eiϕ

(
dAi

dt
+ Ai

dϕ

dt

)
(18)

Como queremos uma onda que seja coerente no tempo, podemos assumir que dϕ
dt

se anula.

Calculando a derivada covariante de Ei, obtemos

∇iEi = eiϕ (∇iAi + Ai∇iϕ) (19)

Podemos ver que ∇iϕ define um gradiente que associamos ao vetor de propagação ki,

que aponta na direção normal às frentes de onda (onde ϕ é constante). De forma geral,

podemos construir a fase ϕ como sendo

ϕ =

∫
k · dr ± ωt (20)
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em que ω = ∂ϕ
∂t

. O sinal depende de como estamos observando a direção de propagação:

(-) para uma onda progressiva e (+) para uma onda regressiva.

Agora, vamos construir nossa solução partindo de duas suposições. A primeira é: a

variação do comprimento de onda λ não varia muito para pequenas distâncias. A segunda

hipótese é: para distâncias na escala do comprimento de onda, a curvatura efetiva é muito

pequena. Matematicamente, podemos resumir as duas condições como sendo

|∇λ| ≪ 1

|Rij|λ2 ≪ 1
(21)

A primeira dessas relações estabelece que a resolução espacial típica é muito maior que

o comprimento de onda, sendo a condição usual de domínio da óptica geométrica em

espaços planos. A segunda condição pode ser vista como uma extensão que incorpora

efeitos de curvatura local do espaço em questão. É importante notar que essas equações

são invariantes frente a transformações de coordenadas. Dessa forma, se elas são válidas

no espaço virtual (antes da transformação), elas também serão válidas no espaço real

(após a transformação). Essas relações garantem que o limite de análise seja o limite de

óptica geométrica para geometrias arbitrárias, permitindo caracterizar a propagação da

luz por meio de raios que descrevem sua trajetória no espaço.

Vamos agora analisar a equação da onda considerando essas condições. Substituindo

Ei em (17), obtemos para o divergente

∇j∇jEi = eiϕ
(
∇j∇jAi + 2ikj∇jAi + iAi∇jk

j − kjkjAi

)
. (22)

Para a derivada temporal, assumindo uma onda progressiva, obtemos

∂2Ei

∂t2
= eiϕ

(
∂2Ai

∂t2
− 2iω

∂Ai

∂t2
− ω2Ai

)
(23)

No domínio da óptica geométrica, as contribuições mais relevantes provém da variação da

fase, pois ela varia de forma muito mais rápida que a amplitude. Podemos assumir que,

na média, a maior contribuição para a variação dos campos é aproximadamente a maior
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contribuição da variação da fase [10]. Com isso, conseguimos escrever

∇j∇jEi = −eiϕkjkjAi

∂2Ei

∂t2
= −eiϕω2Ai

(24)

Nos limites impostos por (21), podemos ignorar o tensor de Ricci. Dessa forma, subs-

tituindo as duas equações acima na equação da onda, obtemos

ω2

c2
= kjkj. (25)

A relação (25) é chamada de relação de dispersão. Podemos reescreve-la em termos da

métrica abaixando o índice do vetor de onda, obtendo assim

ω2

c2
= gijkikj. (26)

Agora reescrevemos a frequência de propagação da onda plana como sendo

ω2 = c2gijkikj. (27)

Segue da equação (10) que a frequência deve se alterar de acordo com o índice de refração

segundo a seguinte relação:

ω2 = c2(nij)2kikj (28)

Com a relação acima, podemos ver que existe uma dependência não-trivial entre a

frequência de uma onda incidente e o índice de refração do material, o que pode gerar

efeitos interessantes como por exemplo a decomposição de uma luz branca polarizada

durante a propagação em uma mistura de água e açúcar. Nesse caso a mistura age como

um meio anisotrópico que seleciona as frequências com base no sentido de polarização da

luz, dessa forma muda a frequência da luz na saída do tubo dependendo de como a ela é

polarizada antes de entrar no tubo.

Podemos mostrar também que, se a frequência da luz é constante durante todo o ca-

minho, necessariamente a seguinte condição deve ser obedecida:

∇jk
iki = ki∇jki = 0. (29)
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Essa relação é justamente a condição (32), ou seja, no espaço curvo a propagação lumi-

nosa continua sendo tal que a variação do vetor de onda obedece a equação da geodésica,

seguindo assim o princípio de Fermat. Esse resultado mostra que, apesar de todas as

considerações, ainda estamos obedecendo a o princípio fundamental da óptica de trans-

formação.

É importante notar que, no caso de um espaço o mesmo vetor k aparece de duas for-

mas diferentes (covariante e contravariante), que representam duas grandezas distintas.

Quando ele é contravariante (ki) ele representa o vetor de propagação, e quando aparece

em sua forma covariante ki estamos falando do gradiente da fase. No espaço físico (trans-

formado) esses dois objetos apontam em diferentes direções, a não ser que o espaço seja

plano, ou seja, o material seja isotrópico. Enquanto as componentes ki = ∇iϕ são ortogo-

nais aos planos de fase constante, as componentes ki são tangentes aos arcos de caminho

dxi no meio. Isso pode ser visto diretamente da relação
dxi

dt
=
∂ω

∂ki
. Usando a relação de

dispersão (26), vemos claramente que:

dxi

dt
=

cgijkj√
glmklkm

=
c

ω
ki, (30)

da onde concluímos que ki aponta na direção do raio luminoso em cada ponto.

3 Transformações Gerais

Durante nosso estudo até aqui, tratamos apenas da aplicação de uma única transforma-

ção. Porém, problemas de eletromagnetismo são naturalmente simplificados dependendo

do sistema de coordenadas que escolhemos para descrever a geometria do objeto que esta-

mos estudando. Por exemplo, é mais simples escolher coordenadas esféricas para resolver

um problema de uma esfera carregada ao invés de escolher qualquer outro tipo de coor-

denada. Como vimos na revisão de geometria diferencial, podemos definir uma métrica a

partir de uma transformação nas coordenadas, de forma que o elemento de caminho seja

mantido. Logo, podemos estender essa definição para o seguinte caso: dado um elemento

de caminho em uma geometria qualquer, esse elemento se transforma como

(ds)2 = gijdx̃
idx̃j = gijJ

i
kJ

j
l dx

kdxl, (31)

44



onde agora x̃i representam as coordenadas em uma nova transformação, sendo J i
j os

elementos da Jacobiana que promove a transformação do sistema (curvo) xi ao novo

sistema x̃i. Dessa forma, definimos a nova métrica na geometria do problema como sendo

g̃kl = gijJ
i
kJ

j
l . (32)

Se retomarmos para a definição dos parâmetros constitutivos, concluímos que os tensores

de permeabilidade e permissividade serão dados por

µij = εij = ±
√
g

√
γ
gklJ i

kJ
j
l (33)

em que γ é o determinante da métrica do novo sistema de coordenadas curvilíneo, γ =

det(g̃). Assim, conseguimos tratar dos nossos problemas de forma mais geral, pois conse-

guimos imbuir a geometria do material dentro da nossa definição de espaço, dessa forma

conseguindo generalizar a métrica, e por consequência o índice de refração.

Podemos escrever a relação anterior na forma matricial como sendo

ε =

√
g

√
γ

Jg−1JT

det(J)
. (34)

Essa forma nos permite então criar um mapeamento entre a geometria que queremos apli-

car e os parâmetros constitutivos do material, lembrando que sempre podemos fazer uma

transformação conforme para obter resultados importantes para cada material localmente.

A equação (34) é importante para os casos em que supomos que nosso espaço é vazio.

Para o caso em que o espaço a ser transformado é não vazio (meio material), obtemos que

os parâmetros constitutivos são dados por [1]

ε =

√
g

√
γ

Jg−1JT

det(J)
ε′ (35)

em que ε′ é uma permissividade do espaço virtual.

Outro resultado importante que precisamos levar em consideração é o fato de que es-

tamos interessados nos valores principais do tensor dielétrico, pois a partir deles pode-

mos determinar os índices de refração do material considerado. Porém, quando estamos

aplicando uma transformação entre espaços curvos, os valores principais são em geral

modificados pelas transformações não ortogonais. O cálculo dos auto-valores εi deve ser
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realizado em uma representação cartesiana, onde esses valores são invariantes. Logo, deve-

ríamos introduzir uma forma de calcula-los após realizada a transformação. Um resultado

da álgebra linear que podemos utilizar é relacionado à invariância dos valores principais

sobre a uma transformação M ′ = T−1MT . Podemos provar isso considerando que, dado

Mv = mv em que v′ = T−1v, temos que

M ′v′ = (T−1MT )(T−1v). (36)

Simplificando a equação acima, obtemos

M ′v′ = (T−1M )v = mv′. (37)

Um tensor misto se transforma seguindo essa mesma regra, pois podemos escrever a

transformação como sendo T i′

j′ = J i′
i T

i
jJ

j
j′ ou, em notação matricial, T ′ = J−1TJ . Isso

garante que seus valores principais sejam os mesmos em qualquer sistema de coordenadas.

Com esse resultado, podemos então utilizar εik = εijgjk e transformar o tensor dielétrico

em um tensor misto. Dessa forma obtendo os valores principais desse novo tensor que

é invariante sobre transformações. Agora que possuímos maneiras de calcular o tensor

de permissividade e encontrar os valores principais para aplicar a transformação, iremos

começar a tratar exemplos de aplicação.
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Aplicações de Óptica de

transformação

No capítulo anterior, discutimos as implicações da utilização da óptica de transforma-

ção, chegando aos resultados para conseguirmos estudar fenômenos ópticos a partir desse

novo ponto de vista. Seguiremos agora ilustrando alguns exemplos de aplicações práticas

das técnicas desenvolvidas no capítulo anterior.

1 Dispositivo de invisibilidade

Podemos construir esse tipo de dispositivo considerando que o material proporciona

uma mudança de coordenadas no espaço onde a radiação se propaga. No caso de um

dispositivo de invisibilidade, isso é feito de modo a criar uma região onde os pontos

internos são mapeados em pontos fora dessa região no espaço virtual. Esse tipo de ma-

peamento permite que raios luminosos que se propagam no espaço físico (transformado)

sejam descritos por transformações que não permitem a propagação deles dentro da região

especificada, “ocultando” assim um objeto inserido nessa região.

Para ilustrar esses efeitos, vamos considerar uma geometria cilíndrica, conveniente para

nosso problema. Por simplicidade dos cálculos, escolheremos uma transformação geral,

mas que seja capaz de capturar o fenômeno de invisibilidade. Assim, consideramos a

transformação

r = r(r′) +R, θ = θ′, z = z′, (1)

onde x1 = r′, x2 = θ′ e x3 = z′ são as coordenadas radial, polar e longitudinal, respec-

tivamente, em um sistema cilíndrico (antes da aplicação da transformação óptica). Essa

transformação leva de um sistema cilíndrico para outro sistema cilíndrico em que existe

um buraco de tamanho R. Isso pode ser feito escolhendo-se a função r(r′) de modo que

r(r′ = 0) = 0. Isso faz com que todos os pontos do espaço virtual (original) sejam mape-

ados em pontos exteriores ao círculo r = R no espaço físico (transformado). Observando

a geometria do problema, vemos que nosso espaço físico definido por {r, θ, z} e nosso

sistema virtual definido por {r′, θ′, z′}, são ambos descritos por coordenadas cilíndricas.
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Logo, podemos aplicar uma jacobiana apenas para a transformação (1).

Podemos agora escrever as métricas, que são nesse caso facilmente obtidas escrevendo-se

um elemento de arco ds no sistema cilíndrico:

(ds)2 = (dr)2 + r2(dθ)2 + (dz)2. (2)

Comparando com a expressão (14), vemos que a métrica tem a forma diagonal. Assim,

podemos escrever a métrica para o espaço físico como sendo:

g =


1 0 0

0 r2 0

0 0 1

 . (3)

Concluímos daí que √
γ =

√
det(g) = r. Da mesma forma, podemos escrever a métrica

do espaço virtual como

g′ =


1 0 0

0 r′2 0

0 0 1

 . (4)

com
√
det(g′) = r′. A inversa de g′ é dada por

g′−1 =


1 0 0

0 1
r′2

0

0 0 1

 , (5)

e representa a métrica em sua forma contravariante. Calculando agora a matriz jacobiana

para a transformação que estamos propondo, obtemos

J =


σ 0 0

0 1 0

0 0 1

 (6)

onde definimos σ = ∂r
∂r′

. Nesse caso, temos que J = JT , e o determinante da jacobiana

é det(J) = σ. Com isso, podemos aplicar a (34), considerando que nosso espaço virtual

tem ε′ = 1 = µ′, e substituir os valores obtidos acima para escrever o tensor dielétrico.
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Dessa forma, obtemos

ε−1 =
r′

rσ


σ2 0 0

0 1
r′2

0

0 0 1

 , (7)

que pode ser simplificado na forma

ε−1 =


r′

r
σ 0 0

0 1
rr′σ

0

0 0 r′

rσ

 (8)

Apesar da forma diagonal, devemos notar que os elementos diagonais não correspondem

aos valores principais de permissividade. Porém sabemos que, como visto no capítulo

anterior, os valores principais de um tensor podem ser obtidos se transformamos esse

tensor em um tensor misto. Faremos isso utilizando a métrica do espaço físico, pois é o

espaço de interesse. Obtemos assim

ε−1γ =


r′

r
σ 0 0

0 r
r′σ

0

0 0 r′

rσ

 . (9)

Devido a matriz ser diagonal sabemos que seus valores principais são dados pelos elementos

da diagonal principal, logo obtemos εdiagonal =
{

r′

r
σ, r

r′σ
, r′

rσ

}
. A partir daí, concluímos

que as componentes do índice de refração na direção dos eixos principais são (conforme

discutido no capítulo anterior) n2
r = εθεz = 1/σ2, n2

θ = εrεz = (r′/r)2 e n2
z = εrεθ = 1.

O tensor dielétrico (9) nos fornece uma forma geral para definir quais propriedades de-

vemos introduzir no material para que consigamos criar um dispositivo que performe uma

transformação cilíndrica no espaço virtual. Materiais que realizam esse tipo de transfor-

mação são conhecidos como mantos de invisibilidade cilíndricos [2]. Temos também os

materiais que realizam transformações semelhantes, porém em um espaço esférico. Esses

materiais são conhecidos como mantos de invisibilidade totais [17].

Agora que determinamos o tensor dielétrico, podemos calcular outra quantidade re-

levante ao estudo da propagação, que é o vetor de onda co-variante. Como visto no

capítulo anterior, esse vetor é perpendicular às superfícies de fase constante (frentes de
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onda). Fazemos isso considerando que o vetor de onda covariante que é dado por

∇iϕ = ki. (10)

Vamos considerar que a onda que se propaga fora do material (espaço cartesiano) é uma

onda plana que se propaga na direção x, sendo polarizada na direção z. Que representa

uma onda que incide no plano transversal do cilindro. Podemos então escrever que a onda

em coordenadas cartesianas do espaço virtual tem a forma

E(x′, t) = E0e
i(kxx′−ωt)êz. (11)

Porém devido a simetria do problemas podemos reescrever nossa onda em coordenadas

cilíndricas, assim ficando como o seguinte resultado

E(r′, t) = E0e
i(kxr′ cos(θ)−ωt)êz. (12)

Identificando a fase ϕ = kxr
′ cos(θ)−ωt, podemos aplicar o gradiente referentes as coorde-

nadas do sistema físico. Note que não podemos utilizar o gradiente da base normalizada

para esse cálculo, pois ele é intrinsecamente conectado às propriedades geométricas do

meio. Ao normalizá-lo, estaríamos perdendo algumas informações importantes sobre a

geometria efetiva. O gradiente então se torna

∇′ϕ = kx
(
σ−1 cos(θ)er − r′ sin(θ)eθ

)
, (13)

onde er e eθ são vetores contravariantes da base transformada. Agora, utilizamos a

métrica do espaço virtual transformado

g′−1 =


σ2 0 0

0 1
r′2

0

0 0 1

 , (14)

para escrever ki = (∇′ϕ)i em sua versão contravariante, assim obtendo:

k = kx

(
σ cos(θ)er −

1

r′
sin(θ)eθ

)
. (15)
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A partir desse vetor de onda, podemos traçar o caminho ótico e estudar melhor o com-

portamento da onda ao se propagar no dispositivo de invisibilidade. Isso ocorre porque,

como visto no capítulo anterior, ki é paralelo à direção de propagação no meio. Com isso,

podemos visualizar geometricamente os efeitos para uma determinada transformação.

2 Exemplo de dispositivo de invisibilidade cilíndrico

Como demonstramos na seção anterior, podemos utilizar (9) para calcular as propri-

edades ópticas do nosso dispositivo de invisibilidade. Uma transformação comum que

podemos aplicar é aquela que mapeia os pontos do espaço físico para uma região anelar

no espaço virtual. Essa transformação é dada pelas seguintes condições

r(r′) =
R2 −R1

R2

r′ +R1

θ = θ′

z = z′

(16)

em que R1 e R2 são respectivamente os raios internos e externos da região anelar (R2 >

R1). Note que essa transformação equivale à uma compressão simples, seguida de uma

translação da coordenada radial. Geometricamente, todos os pontos tais que r′ < R1

no espaço virtual são mapeados em r > R1 no espaço físico, sendo os pontos do anel

externo (r′ = R2) mapeados neles mesmos. Quando R2 ≫ R1, o fator de compressão

σ =
R2 −R1

R2

se aproxima da unidade, dificultando a obtenção dos efeitos invisibilidade.

Isso pode ocorrer devido a fatores como absorção pelo material e efeitos de borda que

podem surgir, assim não gerando os efeitos desejados. Agora, podemos simplesmente

substituir essa transformação na equação para os valores principais do tensor dielétrico,

e reescrevê-lo em termos das coordenadas do sistema físico r, obtendo assim:

ε =


r−R1

r
0 0

0 r
r−R1

0

0 0
(

R2

R2−R1

)2
r−R1

r

 (17)

Calculando o vetor de onda para essa mesma transformação, obtemos que o vetor de
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onda tem a forma

k = kx

(
R2 −R1

R2

)(
cos(θ)er −

1

r −R1

sin(θ)eθ

)
, (18)

er e eθ vetores covariantes da base transformada. Com isso, podemos simular a transfor-

mação do caminho ótico para o material que se propaga dessa forma.

Para termos uma ideia qualitativa do efeito da transformação, consideremos um con-

junto de pontos que igualmente espaçados no sistema cartesiano. Esses pontos são ma-

peados seguindo a transformação proposta, de tal forma que conseguimos mapear todos

eles para a região do anel.

Figura 1: Mapeamento de pontos em um espaço cartesiano para a região de um anel.
Podemos notar que os pontos próximos a origem são mapeados em pontos que
estão no máximo à uma distancia R1 da origem no sistema do anel, criando
assim uma região de invisibilidade.

A Fig. 1 ilustra como uma região de pontos no espaço cartesiano (região azul, gráfico à

esquerda) são mapeados em pontos no espaço transformado (região em vermelho, gráfico

à direita). Podemos notar que quaisquer pontos menores que R1 serão mapeados para

pontos fora dessa região, de forma que criamos uma região em que não vai haver nenhum

ponto interior a R1. Isso é de extrema importância para os dispositivos de invisibilidade,

pois é nessa região que os objetos que queremos deixar invisíveis devem ser posiciona-

dos. Note também que os pontos fora de R2 não são de interesse para nossa análise, se

considerarmos que fora da região a onda não estar interagindo com o meio.

A transformação induzida pelas equações (16) pode ser também visualizada conside-

rando a transformação de raios que incidem na região de invisibilidade. Essa análise

é realizada na Fig. 2, onde raios incidentes paralelamente ao eixo x no espaço virtual

(gráfico à esquerda) são desviados devido à presença do material (gráficos central e da di-

reita). Vemos claramente que os raios não penetram na região de invisibilidade (r < R1),
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Figura 2: Representação de feixes nos espaços virtual (esquerda) e físico (gráficos central e
da direita). Antes da transformação óptica, os feixes se propagam paralelamente
ao eixo x. Após aplicada a transformação, ocorre um desvio dos feixes na região
de invisibilidade. No painel central, os parâmetros são R1 = 2 e R2 = 5. No
painel à esquerda, R1 = 5 e R2 = 8. Em ambos os casos, kx = 1.

sendo desviados na vizinhança de R1 antes de seguir sua trajetória. Em regiões suficiente-

mente afastadas, o comportamento original do raio incidente é recuperado, de modo que

a “ocultar” o efeito do dispositivo de invisibilidade. Esse efeito é maior quando a região

de invisibilidade é menor, conforme ilustrado na Fig. 2. No painel central (R1 = 2), os

desvios do caminho retilíneo são menos perceptíveis, a longas distâncias, quando compa-

rados aos raios de um dispositivo com R1 = 5 (painel à direita), onde efeitos de curvatura

tornam-se mais perceptíveis.

Outra análise interessante se refere ao cálculo dos índices de refração do material.

Lembrando que a matriz de índices de refração é dada por:

n =


(R2−R1

R2
)2 0 0

0 ( R2

R2−R1

r−R1
r

)2 0

0 0 1

 (19)

A Fig. 3 exemplifica a relação do índice de refração com a posição dentro da região do
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Figura 3: Plote do índice de refração em função posição radial dentro da região R1 ≤ r ≤
R2. Podemos notar que, como esperado, o índice de refração na direção angular
cresce de forma a “curvar” a propagação da luz dentro do material

material, considerando os valores R1 = 1 e R2 = 1.4. Podemos notar que, a medida que

aproximamos de R1, o índice de refração na direção polar diminui. Temos duas regiões

de interesse uma em que o índice de refração radial é menor que o polar e uma em que

ele é maior que o radial. Para os parâmetros selecionados, a mudança entre esses regimes

ocorre para r ∼ 1.095. No regime de nr > nθ, a luz se propaga de maneira mais lenta na

direção er. Logo, a luz sente um desvio maior nessa direção. Para o regime nr < nθ, a luz

se propaga mais lentamente na direção eθ, sentindo assim um maior desvio nessa direção.

Com isso podemos ver que, quanto mais perto da região r = R1, maior será o desvio

causado pelo material na direção r̂, assim “expulsando” as ondas que se propagam nesse

sentido. Enquanto no regime nr < nθ o meio fará com que a luz busque se propagar no

sentido polar, rotacionando em torno da origem. Esse efeito é também evidenciado pelo

crescimento radial de nθ, indicando que a velocidade angular ao redor da origem aumenta

na região anelar, evidenciando um movimento de “vórtice” da radiação ao redor do anel

inferior. Podemos ver esse feito na Fig. 4 que representa o campo vetorial definido pelo

vetor de onda k.

Podemos notar pela Fig. 4 que há um comportamento anômalo da propagação do

campo no espaço espaço físico. Fisicamente, esse comportamento resulta da criação de

um campo de reação no interior do material, em resposta ao campo externo aplicado.

Para exemplificar essa resposta podemos comparar, qualitativamente, esse feito àquele de
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Figura 4: Representação dos campos vetoriais de propagação na região R1 ≤ r ≤ R2.
Podemos ver que no espaço físico (esquerda) o campo tem um comportamento
que busca rotacionar a propagação ao redor da origem, ao passo que no espaço
virtual (direita) o campo se comporta como um fluxo normal na direção x. Os
parâmetros utilizados para ambos os gráficos foram R1 = 1, R2 = 2 e kx = 1

um dipolo elétrico alinhado paralelamente a um campo elétrico externo na direção x. A

presença do campo deve re-alinhar o dipolo em sua direção, de modo que o dipolo produz

um campo que irá se somar ao campo externo, assim criando uma onda distorcida em sua

vizinhança. Porém, ele não cancela o campo externo, apenas distorce sua propagação na

vizinhança próxima. Efeito similar ocorre com o vetor de onda devido à transformação

induzida pelo material. Na ausência de matéria, ele se propaga na direção x. Porém, no

interior do material a interação do campo com multipolos presentes no material leva à

uma distorção dessa propagação. Como foi discutido anteriormente, esse efeito resulta

justamente do fato de que os índices de refração no material são diferentes em cada ponto

e direção no espaço de propagação (espaço físico).

O tensor dielétrico (17) no interior da região de interesse R1 ≤ r ≤ R2 possui todas

as componentes positivas, o que pode ser observado pela Fig. 5. Porém, vemos que

a componente desse tensor na direção θ decai rapidamente a medida em que r → R2,

onde a propagação na ausência de matéria é recuperada. Esse comportamento que define

o índice de refração que foi visto na Fig. 3. Veja que, para r → R1, a componente

εθθ diverge. É justamente essa característica que busca “expulsar” dessa região as ondas

eletromagnéticas, assim blindando a região interior a r = R1 tornando-a inacessível à

radiação incidente.

Materiais que exibem esse tipo de comportamento já foram implementados experimen-

talmente em pequenas escalas [18], embora ainda exista uma grande dificuldade experi-
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Figura 5: Variação das componentes do tensor dielétrico dentro da região R1 ≤ r ≤ R2,
notemos que εθθ diverge rapidamente para r → R1.

mental de implementar muitas das ideias resultantes das análises da óptica de transforma-

ção [18]. Muitas dessas dificuldades de implementação são advindas do comportamento

quântico da matéria em pequenas escalas, que interferem na manipulação exata das pro-

priedades exigidas para o material que desejamos [19] [14]. Por fim, cabe salientar que

a permissividade em meios dielétricos varia de acordo com a frequência da radiação inci-

dente. Assim, dispositivos de invisibilidade devem ser projetados para operar em faixas

específicas do espectro eletromagnético, sendo em geral inoperantes nas demais.
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Conclusões

Nesse trabalho, mostramos como podemos criar uma analogia entre o eletromagnetismo

em espaços curvos e meios anisotrópicos, e como podemos utilizá-la para explorar a óp-

tica de transformação e suas aplicações. Partindo da análise das equações de Maxwell,

conseguimos construir grande parte da óptica de transformação utilizando o ferramental

da geometria diferencial. Com isso, generalizamos a descrição dos campos a geometrias

curvas, o que nos permitiu deduzir a ideia fundamental da óptica de transformação: a

analogia entre materiais e geometrias, em condições onde a compatibilidade de impedân-

cias é satisfeita. Aplicando também alguns resultados da álgebra linear, estabelecemos

conexões diretas entre efeitos óticos e efeitos geométricos.

No decorrer do trabalho, foram estudadas as equações de Maxwell no vácuo e em meios

materiais, onde introduzimos as equações constitutivas do meio. A partir disso, desenvol-

vemos brevemente as relações mais fundamentais da geometria diferencial, e a partir delas

reescrevemos as equações de Maxwell para sistemas curvos arbitrários. Com isso, veri-

ficamos que um meio anisotrópico poder ser visto como o agente de uma transformação

geométrica, desde que a condição de compatibilidade de impedância seja satisfeita. A par-

tir dessa condição, uma métrica intrínseca pode ser associada ao tensor de permissividade,

deixando assim invariantes as equações de Maxwell.

Com esses resultados, propusemos uma breve aplicação para o caso de uma transforma-

ção radial geral em coordenadas cilíndricas. Obtivemos para essa transformação o tensor

dielétrico e o vetor de onda. A partir daí, propomos uma transformação simples que visa

simular o efeitos de invisibilidade. Mostramos como a transformação proposta associa

cada ponto de um plano no espaço virtual a pontos dentro da região anelar no espaço

físico, de modo a criar uma região na qual a luz é totalmente defletida. A seguir, calcu-

lamos para esse caso o tensor dielétrico e o vetor de onda. Com base nessas quantidades,

analisamos a propagação de raios na região transformada, confirmando assim que essa

transformação de fato cria uma região onde não há passagem de luz.

Concluímos deste trabalho que a óptica de transformação é um campo valioso para o

desenvolvimento de novos materiais ópticos, em especial capas de invisibilidade. Além

disso, por ser baseada na analogia com trajetórias da luz em espaços curvos, a teoria é
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promissora em futuras aplicações visando o estudo de efeitos gravitacionais, reprodutíveis

em laboratório.

Esse trabalho demostrou que, sob as condições necessárias, é possível utilizar conceitos

geométricos para estudar a óptica de materiais. Um exemplo é a generalização explícita

do Princípio de Fermat a geometrias quaisquer, que nem sempre é de fácil visualização em

sistemas complexo como materiais anisotrópicos. Por fim, destacamos que a necessidade

do condição de compatibilidade de impedância limita a aplicação desses conceitos para

efeitos naturais, tais como miragens. Isso nos leva a questionar a possibilidade de formula-

ção de abordagens alternativas, que permitam eliminar essa condição, ampliando o leque

de sistemas que podem ser utilizados na prática para o desenvolvimento de dispositivos

ópticos com respostas controladas.
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