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Resumo

O presente trabalho aborda a utilizacao das técnicas de Modelos Ocultos de Markov
(HMM, do inglés Hidden Markov Models) e aprendizagem profunda através de Redes
Neurais Convolucionais (CNN, do inglés Convolutional Neural Network) aplicadas em
sistemas de reconhecimento de fala. Foi desenvolvido um sistema de reconhecimento de
comandos de fala dependente do locutor, onde serao avaliadas duas bases gravadas pelo
mesmo locutor. Ambas as técnicas utilizadas partem do principio de treinamento do mo-
delo em cima das bases e depois a etapa de testes no reconhecimento através da extracao
de caracteristicas. Para que estes sistemas tenham um reconhecimento assertivo, os mo-
delos criados devem ser minimamente impactados por ruidos externos, o que depende em
parte do pré-processamento e também da obtencao de modelos actsticos robustos. Para
tal, neste trabalho é feita a remocao de siléncio a fim de aprimorar o reconhecimento
com base na extragdo de caracteristicas. Os resultados demonstraram que, enquanto o
modelo CNN apresentou desempenho satisfatorio com acurdcia média entre 93% e 98%,
o HMM obteve resultados superiores, alcancando acurdcia média de 99% nas bases testa-
das, evidenciando maior capacidade de generalizacao e resisténcia a ruidos. Essas métricas
confirmam a efetividade do aprendizado profundo na tarefa de reconhecimento automé-
tico de fala, especialmente em contextos de variagdo temporal e de pré-processamento

otimizado.

Palavras-chave: Sistema de Reconhecimento de Fala, Modelos Ocultos de Markov, Apren-

dizado Profundo, Redes Neurais Convolucionais



Abstract

This paper addresses the use of Hidden Markov Model (HMM) and deep learning tech-
niques through convolutional neural networks (CNN) applied to speech recognition sys-
tems. A speaker-dependent speech command recognition system were developed, where
two databases recorded by the same speaker will be evaluated. Both techniques used are
based on the principle of training the model on the databases and then the recognition
testing stage through feature extraction. For these systems to have assertive recognition,
the models created must be minimally impacted by external noise, which depends in
part on preprocessing and also on obtaining robust acoustic models. To this end, this
work removes noise and silence cutouts in order to improve recognition based on feature
extraction. The results demonstrated that, while the CNN model performed satisfacto-
rily with average accuracy between 93% and 98%, the HMM achieved superior results,
achieving an average accuracy of 99% on the tested datasets, demonstrating greater gener-
alization capacity and resistance to noise. These metrics confirm the effectiveness of deep
learning in automatic speech recognition, especially in contexts with temporal variation

and optimized preprocessing.

Keywords: Speech Recognition System, Hidden Markov Models, Deep Learning, Mel

Cepstral Coefficients, Convolutional Neural Networks
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1 Introducao

1.1 Contextualizagao

A rapida evolugao tecnoldgica tem impulsionado o desenvolvimento de Reconheci-
mento Automaético de Fala (ASR, do inglés Automatic Speech Recognition), permitindo
a interacao entre humanos e computadores de uma forma mais natural e intuitiva. Essa
tecnologia tem-se mostrado extremamente relevante em diferentes aplicagoes, oferecendo
beneficios significativos, do ponto de vista da interacdo humano-computador e impactando
positivamente a sociedade.

Um sistema de Reconhecimento de Fala Automdtico (ASR) é uma tecnologia que
processa sinais de audio para reconhecer e converter a linguagem falada em texto. Esses
sistemas utilizam varios componentes, como unidades de deteccao de fala, unidades de
fornecimento de informacgoes e unidades de selecao para otimizar a precisao e a eficién-
cia do reconhecimento (HOMMA et al., 2019). Eles envolvem extracao de caracteristicas,
modelos acusticos e analise de probabilidade de palavras-chave para reduzir a carga com-
putacional e os requisitos de hardware (ZHAN; XIN, 2020).

Segundo (SINGH, 2019), existe um crescente otimismo em torno da futura inte-
gragao da Interface Homem-Maquina (MMI, do inglés Man-machine interface) usando a
tecnologia de fala, onde se destaca a mudanca para sistemas de reconhecimento de fala ja
na fabricacao de computadores.

A integracao de sistemas de reconhecimento de voz em varias aplicagdes, como
controle de acesso, seguranca bancéria e pagamento movel, destaca sua importancia em
aumentar a segurancga e a conveniéncia na vida didria (SINGH, 2019).

Diante dessa perspectiva, é importante compreender os ganhos proporcionados
pela utilizagao de sistemas de reconhecimento de fala. Essa compreensao é fundamental

para explorar o potencial dessa tecnologia e incentivar sua adog¢ao em diversas aplicagoes.

1.2 Estado da arte

Os sistemas de Reconhecimento Automatico de Fala(ASRs) que utilizam Modelos
Ocultos de Markov (HMM, do inglés Hidden Markov Models) tém sido fundamentais no
desenvolvimento de tecnologias de reconhecimento de fala. Estes sistemas baseados em
HMM sao projetados para modelar a variabilidade temporal da fala e tém sido usados
com eficacia em varios idiomas e aplicagoes.

O desenvolvimento do primeiro sistema ASR para a linguagem Tulu empregou os
modelos Modelo de Mistura Gaussiana (GMM, do inglés Gaussian Mizture Model) e
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Redes Neurais Profundas (DNN, do inglés Deep Neural Network) compilando modelos
hibridos GMM-HMM e DNN-HMM, revelando que os modelos monofénicos GMM-HMM
tiveram um desempenho melhor com dados limitados em comparagao com os modelos de
trifone, que requerem conjuntos de dados mais extensos para um desempenho ideal (AMO-
OLYA et al., 2022).

No contexto de sistemas de fala interativos, Hamidi et al. (2021) um ASR baseado
em HMM foi utilizado para reconhecer palavras, alfabetos e digitos especificos na lingua
Amazigh, alcancando alto desempenho e aprimorando a capacidade do sistema de en-
tender e processar comandos de voz com precisao. A pesquisa demonstrou que o sistema
atinge uma alta taxa de reconhecimento de mais de 80% para usuérios administrado-
res autorizados, enquanto mantém uma baixa taxa de reconhecimento de menos de 5%
para usudarios nao administradores, destacando efetivamente seus recursos de seguranca
(HAMIDI et al., 2021).

Os sistemas de reconhecimento de fala que utilizam HMM ganharam interesse
significativo em varios trabalhos de pesquisa. E, além disso, os avangos na modelagem
acustica, que sao cruciais para sistemas baseados em HMMs, se concentram em aumentar
a robustez ao ruido ambiental, as condi¢bes do canal e as variagoes dos alto-falantes,
abordando variabilidade de prontincia (ANUJA; AKSHATHA; JAYAPRAKASH, 2022).

Apesar da robustez dos sistemas tradicionais baseados em HMM, as abordagens
modernas estao incorporando cada vez mais modelos de ponta a ponta. Métodos baseados
em Redes Neurais Artificiais (ANN, do inglés Artificial Neural Network) combinados com
técnicas de otimizacao aprimoram a comunicagao, melhorando a precisao do reconheci-
mento e reduzindo ruidos indesejados, tornando a aplicacdo de pesquisa por voz mais
confidvel (ANUJA; AKSHATHA; JAYAPRAKASH, 2022). Esses avancos destacam o ce-
nario em evolugao das tecnologias ASR, em que os sistemas baseados em HMM continuam
a desempenhar um papel vital, especialmente em cendrios com dados limitados, enquanto
os modelos mais novos ultrapassam os limites de desempenho e robustez em condicoes
mais complexas e ruidosas.

As redes neurais artificiais (ANNs) e as Redes Neurais Profundas (DNN, do in-
glés  Deep Neural Network) sdo fundamentais na evolu¢ao de modelos computacionais
que imitam as fung¢des do cérebro humano se baseando no funcionamento dos neurdnios.
As DNNs, um subconjunto das ANNs, surgiram com o avango tecnoldgico e oferecem
representacoes mais complexas de alto nivel e tém transformado as mais diversas areas da
industria e sociedade, especialmente os campos de visao computacional, processamento
de sinais, reconhecimento de voz e processamento de linguagem natural (VANNESCHI;
SILVA, 2022).

O aprendizado profundo, do inglés Deep Learning, é uma das formas mais conheci-
das de se referir as DNNs. Com os recentes aprimoramentos das arquiteturas de processa-

dores e placas graficas, o maior poder computacional possibilitou o uso e desenvolvimento
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mais intensivo de solugoes utilizando as Redes Neurais Convolucionais (CNN; do inglés
Convolutional Neural Network). Estas podem ser vistas como um tipo especializado das
redes neurais profundas (DNNs). Ao contrario das DNNs tradicionais, que dependem da
multiplicacao geral de matrizes, as CNNs utilizam uma operagao matematica fundamental
na rede conhecida como convolucao em pelo menos uma de suas camadas.

No trabalho apresentado por How et al. (2022), a integracao de modelos de apren-
dizado profundo com CNNs e DNNs foi explorada para reconhecer as emocoes da fala,
com as CNNs superando as DNNs em termos de precisao e funcao de perda, alcancando
uma maior precisao de 76,50%.

As CNNs tém sido amplamente usadas em sistemas de reconhecimento de fala
para detectar fonemas mal pronunciados e mostraram resultados notaveis em varias apli-
cagdes, com uma taxa de precisdo de 91,81% e uma taxa de erro de palavras de 12,4%.
(SOUNDARYA; KARTHIKEYAN; THANGARASU, 2023)

Este tipo de rede esta impulsionando grandes avancos em visdo computacional,
que tém aplicacoes importantes em carros autonomos, robodtica, drones, seguranca, diag-

nosticos médicos e tratamentos para deficientes visuais.

1.3 Justificativa

O reconhecimento de fala é uma area multidisciplinar baseada em conhecimentos
de processamento digital de sinais, aprendizado de maquina, estatistica, dentre outros.
Essa técnica esta desempenhando um papel crucial em diversas aplicagoes, que envolvem
desde assistentes virtuais em dispositivos méveis até sistemas de controle por voz em
ambientes industriais.

A busca incessante por métodos mais eficazes e precisos no reconhecimento tem
impulsionado o desenvolvimento de diversas técnicas de classificacdo ao longo das tultimas
décadas. Os sistemas de reconhecimento de fala ASRs s@o amplamente empregados atu-
almente e a precisao depende do método utilizado em combinacao com a base de dados a
ser comparada.

Para se definir o melhor modelo, o estudo atual apresenta uma comparacao entre
modelos a fim de identificar o método mais eficaz nas aplicacoes de reconhecimento de
fala. Desta forma, o estudo visa aprimorar a interacao humano-computador por meio do
Reconhecimento Automéatico de Fala (ASR), que permite ao computador compreender as

palavras faladas e transforma-las em formas textuais ou outras formas de interacao.

1.4 Formulacao do problema

Duas abordagens que emergiram no contexto de sistemas de reconhecimento de fala

sao os Modelos Ocultos de Markov (HMMs) e os modelos de aprendizado profundo. Essas
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técnicas sao baseadas em paradigmas diferentes e utilizadas separadamente de acordo com
as limitagoes de dados, desempenho computacional e objetivos a serem alcangados pelo
sistema de reconhecimento de fala.

Os métodos tradicionais de reconhecimento de fala, como HMMs, sao usados ha
muito tempo, mas tém limitagoes em termos de precisao e eficiéncia. Recentemente, mo-
delos de aprendizado profundo se mostraram mais eficazes em lidar com as complexidades
das tarefas de reconhecimento de fala.

Os HMMs, que ha muito tempo tém sido uma escolha padrao, oferecem uma estru-
tura robusta para modelar sequéncias temporais, especialmente na analise de caracteris-
ticas espectrais. Por outro lado, o avanco da tecnologia e aprimoramento do aprendizado
profundo trouxeram métodos como DNNs e CNNss.

Considerando que o desempenho observado no reconhecimento depende direta-
mente do método de classificacdo empregado, este estudo visa explorar e comparar o

desempenho dessas duas categorias de métodos no contexto do reconhecimento de fala.

1.5 Objetivos

O objetivo geral deste trabalho é comparar o desempenho entre métodos tradicio-
nais de aprendizado de maquina baseados em HMM e modelos de aprendizado profundo
baseados em CNN para determinar qual deles é o mais eficaz em sistemas de reconheci-

mento de fala.

1.5.1 Objetivos especificos

Para alcancar o objetivo geral, os seguintes objetivos especificos devem ser cum-

pridos:

Gravagao de duas bases de audios dependente de locutor;

o Implementacao de um sistema de reconhecimento de fala utilizando o HMM e apren-

dizado de maquina;

e Implementacao de um sistema de reconhecimento de fala utilizando CNN e apren-

dizado profundo;
o Treinamento dos modelos utilizando os conjunto de dados gravados pelo locutor;

o Testes e aferigoes com alteragdes nos parametros dos modelos a fim de encontrar a

melhor eficiéncia de cada modelo;

» Realizar a validacao experimental a fim de validar a eficicia dos modelos
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1.6  Estrutura do trabalho

No Capitulo 1, foi feita uma contextualizacao dos ASRs e apresentado o estado da
arte com algumas de suas aplicagoes, foi apresentada a justificativa e a formalizacao do
problema, além de apresentar os objetivos do trabalho.

O Capitulo 2 apresenta toda a revisdo de literatura apresentando os conceitos
atrelados aos sistemas de reconhecimento de fala. Os modelos ocultos de Markov HMMs
e redes neurais convolucionais foram detalhados com conceitos, estruturas e técnicas uti-
lizadas nas aplicagoes dos mesmos. Conceitos basicos e necessarios ao desenvolvimento do
trabalho foram explicados para que possamos compreender melhor as discussoes aborda-
das ao longo do trabalho.

O Capitulo 3 apresenta a metodologia utilizada na constru¢ao do modelo oculto
de marvok (HMM) do presente trabalho, descrevendo todas as etapas do modelo, bem
como os parametros a serem considerados na execugao dos experimentos. Em uma segunda
parte do Capitulo 3, foi apresentada a metodologia utilizada na construcao da rede neural
convolucional (CNN) do presente trabalho e detalhados todos os pardmetros e etapas de
construcao desta rede.

O Capitulo 4 apresenta uma série de experimentos realizados para o treinamento
e validacao dos modelos HMM e CNN, os quais foram conduzidos de forma comparativa e
estruturada em diferentes etapas de analise. Para o modelo HMM, foram avaliados o limiar
do recorte de siléncio aplicado aos dados de entrada, a variagao no nimero de Gaussianas
utilizadas na modelagem e o desempenho do modelo final apds o ajuste dos parametros.
Ja para o modelo CNN, os experimentos compreenderam a andlise do limiar de recorte de
siléncio, a aplicacao de técnicas de distensao temporal nos dados de entrada e a avaliagao
do modelo final de rede convolucional. Todos os experimentos foram aplicados a duas
bases de dados distintas, permitindo comparar o comportamento e a eficiéncia de cada

abordagem sob diferentes condi¢des de pré-processamento e configuracao dos modelos.



2 Revisao bibliografica

2.1 Sistema de Reconhecimento de Fala

O campo do ASR evoluiu significativamente nas ultimas décadas, marcado por
fases distintas e avancos tecnoldgicos. Os primeiros estudos surgiram com o intuito de criar
maquinas capazes de reconhecer e entender a fala de qualquer alto-falante em qualquer
ambiente, uma meta que impulsiona pesquisas hd mais de 70 anos (RABINER; JUANG,
2007).

A representacao de um modelo ASR pode ser vista na Figura 1. A principal funcao
dos sistemas ASRs é transformar um sinal de entrada acustica da fala em uma sequéncia

simbdlica correspondente (fonemas, trifones, palavras, etc).

Figura 1 — Sistema de Reconhecimento de Fala.
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Reconhecido

i

Acionamento/Comando

Fonte: Do autor.

Um sistema ASR, genericamente, consiste em uma parte frontal de processamento
de sinal e uma parte de modelagem e reconhecimento. A tarefa principal da parte frontal é
analisar o sinal actstico de entrada e extrair os eventos acusticos relevantes que identificam
caracteristicas especificas da fala, como a posicao e o movimento da lingua do falante.
Essas informacoes devem ser representadas em termos de um conjunto compacto e eficiente
de parametros de fala.

A etapa subsequente utiliza essas caracteristicas para analisar e reconhecer o con-
teudo fonético do sinal de fala de entrada. Para melhorar o desempenho em ambientes
ruidosos, alguns sistemas incorporam uma unidade de medi¢ao de ruido que ajusta os pa-
droes de rejeicdo com base nos niveis de ruido ambiente, garantindo um reconhecimento

mais preciso ao rejeitar resultados nao confidveis (SAKOE, 1978).
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2.2 Coeficientes Mel-Cepstrais

Nos sistemas de reconhecimento de fala, a etapa do pré-processamento consiste
na limpeza e remocao de ruidos do sinal de entrada. Ao combinar o pré-processamento
de sinais de fala e a extragao de recursos do Coeficientes Mel-Cepstrais (MFCC, do in-
glés Mel-frequency cepstral coefficients), os modelos em estudo derivam um algoritmo de
reconhecimento de fala.

Os MFCC sao usados para representar aspectos importantes dos sinais de fala
originais, que sao entao usados como entrada para os modelos dos sistemas de reconhe-
cimento de fala. Ao converter os dados brutos de dudio em um conjunto de coeficientes,
os MFCCs fornecem uma representacao parametrizada do sinal de fala que o HMM e o
CNN podem processar com eficicia (HUANG; ZHU; GUO, 2020).

Os MFCCs sao derivados da escala Mel, que imita a resposta do ouvido humano a
diferentes frequéncias, tornando-os altamente eficazes para andlise de audio. . Conforme
demonstrador por Wassner e Chollet (1996), as taxas de erro foram reduzidas eme 50%
no reconhecimento de palavras conectadas.

A Figura 2 mostra detalhadamente o processo de extracao de MFCCs, com-
posto pelas etapas de pré-énfase, enquadramento, janelas, Transformada Réapida de Fou-

rier (FFT), processamento do banco de filtros Mel e Transformada Discreta de Cosseno
(DCT).

o Pré-énfase: Esta etapa envolve a passagem do sinal de fala por um filtro que enfatiza
frequéncias mais altas, o que ajuda a equilibrar o espectro e melhorar a relacao

sinal /ruido.

o Janelamento: O sinal de audio ¢é dividido em pequenos segmentos chamados de qua-
dros, geralmente com duragao de 20ms a 30ms. Essa etapa é crucial para considerar
a natureza nao estacionaria do sinal de fala, uma vez que as propriedades acus-
ticas podem variar rapidamente. Cada quadro é multiplicado por uma funcao de
janela, como a janela Hamming, para minimizar as descontinuidades nas bordas dos

quadros.

» Transformada Répida de Fourier (FFT): Os dados em janela sao transformados no

dominio da frequéncia usando o FFT.

« Filtros na escala Mel: O espectro de poténcia obtido da FFT é passado por um
conjunto de filtros triangulares espacados de acordo com a escala Mel, o que ajuda

a enfatizar as frequéncias perceptualmente importantes.

o Logaritmo: Calcula-se a energia na saida de cada filtro triangular do banco.
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Figura 2 — Coeficientes Cepstrais de Frequéncia Mel (MFCCs).
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 Transformada de cosseno discreta (DCT): A DCT é aplicada sobre o conjunto de
valores de energia obtidos em cada filtro do banco, de modo que o resultado deste

calculo fornece os coeficientes MFCCs.

Os MFCCs sao amplamente usados porque fornecem uma boa discriminagao entre
os diferentes sons da fala, tém baixa correlacao e capturam caracteristicas fonéticas impor-
tantes, tornando-os altamente eficazes para tarefas de reconhecimento de fala. De acordo
com Huang, Zhu e Guo (2020), os MFCCs sao usados como um vetor de caracteristicas

em combinagao com modelos ocultos de Markov (HMMs).
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2.3  Modelos Ocultos de Markov - HMM

Os sistemas de reconhecimento de fala demandam uma modelagem sofisticada
capaz de incorporar informacoes relevantes representadas no espaco de caracteristicas
acusticas, e também a variabilidade temporal.

Um modelo oculto de Markov (HMM) é um modelo estatistico usado para repre-
sentar sistemas que sao considerados um processo de Markov com estados ocultos, o que
significa que o sistema passa por transicoes de um estado para outro, mas os estados em
si ndo sao diretamente visiveis para o observador (PING, 2021).

No contexto deste trabalho, o HMM é usado para reconhecimento de fala e este
modelo é projetado levando-se em consideracao tanto o numero de estados quanto o
numero de gaussianas por estado.

O ntimero de estados em um HMM representa diferentes segmentos do sinal de fala
que o modelo tenta capturar. O nimero de gaussianos por estado se refere a complexidade
da distribuicao da probabilidade de emissao para cada estado. A partir das misturas
gaussianas, o modelo pode identificar melhor a variabilidade dentro de cada estado.

A relacao entre o nimero de gaussianas e os estados é crucial porque determina
a capacidade do modelo de representar com precisao as caracteristicas acusticas da fala.
Mais estados podem fornecer uma segmentagao mais precisa do sinal de fala, enquanto
mais gaussianas por estado podem oferecer uma representacao mais detalhada da varia-
bilidade actstica dentro de cada estado.

Em um HMM, existem dois componentes principais: Os estados e observacoes. Os
estados sao as partes ocultas do modelo que nao podem ser identificadas de forma direta,
enquanto as observagoes sao as saidas visiveis que podem ser medidas ou registradas.

As probabilidades de transi¢do representam as chances de passar de um estado
para outro. Essas probabilidades ajudam a determinar a probabilidade de transicao entre
os estados no modelo e ajudam a prever a sequéncia de estados ao longo do tempo.

Cada estado no HMM tem uma distribuicao de probabilidade associada as obser-
vagoes possiveis (probabilidades de emissdo). A modelagem dos eventos de fala, como o
inicio de um fonema, por exemplo, ocorre através destas distribui¢oes de probabilidades
dos estados, e a duracao desses eventos é modelada através de probabilidades de emissao
e transicao de estado. Sendo assim, o HMM é capaz de observar as variagdes temporais
entre diferentes amostras de uma mesma palavra.

Para inicializar o modelo, gera-se a distribuicao do estado inicial, considerando
um numero fixo de Gaussianas que especifica a probabilidade de o sistema comecar em
cada estado possivel. Essas probabilidades (Gaussianas) definem o ponto de partida para
o modelo e sao essenciais para inicializar os calculos em algoritmos como o algoritmo de
Viterbi.

Os HMMs exigem um treinamento do modelo. Este treinamento envolve o processo

de estimagao dos pardmetros do modelo (probabilidades de transigao, probabilidades de
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emissao e distribuicao de estado inicial) a partir de um conjunto de dados observados.

Apos ter a base de palavras descritas por seus modelos, o HMM realiza o processo
de decodificacao onde tem-se por objetivo encontrar a sequéncia mais provavel de estados
ocultos dada uma sequéncia de observacoes. O algoritmo de Viterbi é comumente usado
para esse propoésito, fornecendo uma maneira eficiente de determinar a melhor sequéncia
de estados que explica os dados observados (PING, 2021).

Cada palavra da base de dados é representada por uma sequéncia de estados e dessa
forma foi criado um modelo HMM para cada palavra. Os modelos actisticos baseados em
HMM podem ser representados pela forma compacta, sendo 7 as probabilidades iniciais,

A a matriz de covariancia e B as probabilidades de transi¢cao de estados.

A= (A,BT) (2.1)

Apébs obter os modelos através do treinamento, a etapa de reconhecimento faz a
comparac¢ao de um sinal de audio e verifica qual dos modelos treinados produz a maior

verossimilhanca, de modo a se determinar qual é a palavra produzida.

2.4 Algoritmo de Baum-Welch

O Algoritmo Baum-Welch (BWA, do inglés Baum-Welch algorithm) é um algo-
ritmo de aprendizado de maquina utilizado na fase de treinamento de Modelos Ocultos
de Markov (HMMs). E frequentemente aplicado em sistemas de reconhecimento de fala
para ajustar os parametros do modelo HMM com base em dados de treinamento.

Para estimar os parametros do HMMs, o algoritmo funciona de forma iterativa
para melhorar as estimativas destes parametros. Para isso, uma estimativa inicial dos
parametros é utilizada e, em seguida, refina repetidamente essas estimativas para maxi-
mizar a probabilidade dos dados observados. Esse processo iterativo continua até que a
probabilidade de encontrar os dados observados nao aumente mais significativamente ou
atinja um valor de verossimilhanga desejado (ANNAS; OUZINEB; BENYACOUB, 2022).

Durante o treinamento, o BWA executa duas etapas de maximizacao da veros-
similhanca, com o objetivo de encontrar estes pardmetros desconhecidos de um modelo
oculto de Markov. As etapas sdo divididas em Etapa de expectativa (E-Step) e Etapa de
maximizagao (M-Step).

Na etapa de expectativa, o algoritmo calcula o nimero esperado de vezes que cada
transicao de estado ocorre e o numero esperado de vezes que cada estado é visitado,
dadas as estimativas dos parametros atuais. Essas expectativas sao calculadas usando as
probabilidades para frente e para tras e dispdem informagoes sobre os estados ocultos do
HMM.

Na etapa de maximizacgao, o algoritmo atualiza as estimativas dos parametros para

maximizar a probabilidade esperada calculada na etapa anterior. Isso envolve atualizar
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as probabilidades de transicao entre os estados e as probabilidades de observar cada
ocorréncia em cada estado. Nesta etapa, os parametros HMM sao atualizados com o
objetivo de maximizar a verossimilhanca dos dados observados.

Os passos E-Step e M-Step sao repetidos iterativamente até que os parametros
convirjam para uma solugdo Otima ou até que um critério de parada seja alcancado.
A convergéncia do algoritmo garante que os parametros ndao mudem significativamente
entre iteragoes sucessivas. Com isso, ao final das iteragoes, os parametros do HMM estao
ajustados para melhor se adequar aos dados de treinamento, melhorando a representacao

de uma determinada sequéncia de fala.

2.5 Algoritmo de Viterbi

Na etapa de decodificagao, o algoritmo Viterbi é empregado para se determinar
a sequéncia de estados mais provavel que resultam na identificacao de palavras faladas a
partir de um determinado conjunto de observagoes.

O algoritmo Viterbi funciona calculando iterativamente a probabilidade do cami-
nho mais provavel para cada estado em cada etapa de tempo, usando as probabilidades
dos estados anteriores e as probabilidades de transi¢do entre os estados (PING, 2021).

O algoritmo de Viterbi atua na etapa de decodificagdo dentro do HMM. Para isso, o
algoritmo remonta do estado final ao estado inicial, seguindo o caminho que maximizou as
probabilidades em cada etapa. Essa etapa envolve retroceder pelos estados para encontrar
a sequéncia que levou a maior probabilidade no estado final e, assim, reconhecer qual foi

a palavra falada.

2.6 Redes Neurais Convolucionais - CNN

As redes neurais convolucionais (CNNs) sdo redes neurais artificiais profundas
que podem ser usadas para classificar imagens, agrupa-las por similaridade e realizar
reconhecimento de padroes.

As CNNs também podem realizar o reconhecimento 6ptico de caracteres para di-
gitalizar textos e tornar possivel o processamento de linguagem natural em documentos
analogicos e manuscritos, onde as imagens sao simbolos a serem transcritos. As CNNs
também podem ser aplicadas a arquivos de dudio quando estes sdo representados visual-
mente como um espectrograma.

O processamento nessas redes ocorre em varios blocos de construgao, como cama-
das de convolucao, camadas de agrupamento e camadas totalmente conectadas.

Um método chave usado em CNNs é a operagao de convolugao. Isso envolve aplicar
um filtro (ou kernel) a imagem de entrada, deslizando-o por pequenas se¢oes da imagem.

Esse processo gera um mapa de ativacao, que destaca a presenca de caracteristicas espe-
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cificas na imagem. A operacgao de convolugao é fundamental para a capacidade das CNNs
de detectar padroes e caracteristicas em imagens.

As CNNs sdo compostas por varias camadas, incluindo camadas convolucionais,
camadas de agrupamento e camadas totalmente conectadas. Essas camadas trabalham
juntas para extrair e aprender recursos dos dados de entrada. (MUNIR; KONG; QU-
RESHI, 2023). A Figura 3 exemplifica uma CNN composta por duas camadas convolu-
cionais, duas camadas de agrupamento(pooling) e uma camada totalmente conectada. A

saida final é reduzida a um tnico vetor de classificacao.

Figura 3 — Ilustracao da arquitetura de uma CNN com duas camadas convolucionais, duas
de pooling, uma totalmente conectada e a de saida
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Fonte: Retirado de Renesio (2019).

2.6.1 Camadas convolucionais

A camada convolucional geralmente aparece mais de uma vez dentro da rede neu-
ral, sendo sempre a primeira camada da rede. A camada convolucional foi projetada para
detectar e extrair as caracteristicas (features) dos dados de entrada.

A camada aplica um conjunto de filtros aos dados de entrada. Cada filtro desliza
sobre os dados de entrada, executando um produto ponto a ponto entre o filtro e uma
pequena regiao da entrada. Essa operacao é conhecida como convolucao e resulta em um
mapa de caracteristicas que representa a presenca de recursos especificos nos dados de
entrada.

A Figura 4 exemplifica a aplicacao de dois filtros a um dado de entrada, resultando
em dois mapas de caracteristicas. A posicao (1,1) estd marcada para identificar a primeira
operacao da convolugao. A varredura acontece ponto a ponto, onde o filtro passa por todas

as posicoes até que seja formado o mapa de caracteristicas final.
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Cada filtro resulta em um mapa de caracteristicas que identifica uma caracteristica
especifica e, posteriormente, cada mapa passa por uma funcao de ativagao para gerar um
mapa de ativagdo. Na Figura 4 temos duas caracteristicas sendo levantadas por dois filtros,

e cada mapa ¢é responsavel por identificar uma dessas caracteristicas.

Figura 4 — Ilustracao da operacao realizada pela camada convolucional. Dois filtros sao
aplicados a entrada, resultando em seus respectivos mapas de ativacao.

Entrada Filtros  Mapas de Ativacao

Fonte: Retirado de Kovaleski (2018).

Os filtros podem ser ajustados para identificar padroes especificos e ajustados
conforme a complexidade do modelo e da rede a ser aplicada. O primeiro pardmetro a
ser ajustado é o tamanho do filtro convolucional e este é usualmente chamado de kernel
size. A Figura 5 exemplifica um filtro de tamanho 3x3 (kernel 3) e as equagbes (2.2) e
(2.3) exemplificam o processo de convolugao e deslizamento deste filtro sob os dados de

entrada.

Oy, = Z Z Fij*ri,g (2.2)

i=1j=1

i=3 j=4

O12 = Z Z Fij*ri,j (2.3)

i=1 j=2
na qual 0 sdo as saidas dos mapas de caracteristicas, 1 e j sao as dimensoes da matriz
para convolucao, F o filtro aplicado aos dados de entrada definidos por I.

Além do tamanho do filtro como parametro ajustavel, é possivel definir o padrao
de deslocamento do filtro sobre os dados, a quantidade de valores considerados em cada
operacgao e inserir novos valores ao conjunto a ser analisado. Os parametros de passo, do
inglés stride, e preenchimento , do inglés padding, sao os mais frequentemente utilizados
para realizar tais definigdes. (KOVALESKI, 2018).

O passo controla como o filtro fara as convolugoes em torno do dado de entrada.
A Figura 5(a) exemplifica o deslocamento gerado com o passo sendo 1 e resulta no des-
locamento do filtro de uma amostra por vez. O passo ¢ normalmente definido de forma
que a dimensao da saida seja um nimero inteiro e ndo uma fragdo. A Figura 5(b) mostra
o que acontece com a saida quando se altera o valor do passo para 2 no mesmo filtro de
tamanho 3 x 3 e o salto passa a ser 2. O deslocamento deste filtro ocorre coluna a coluna

e depois linha a linha a fim de analisar todo o dado de entrada.
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Figura 5 — Filtro de tamanho 3 x 3 na camada de convolucao

Entrada 7 x 7 Saida5x 5

(a) Passo(stride) de valor 1.

Entrada 7 x 7 Saida3x 3

(b) Passo (stride) de valor 2.

Fonte: Do autor.

O passo define o movimento do filtro, ou seja, com um passo de tamanho 1 o filtro
caminha uma amostra por vez. Quanto maior o valor do passo, menor sera a dimensao
da saida e isso nao é o desejado em uma camada de convolugao. Especificamente nas
primeiras camadas da rede, devem ser preservadas o maximo de informagoes sobre o dado
de entrada original para que sejam extraidos o maior nimero de caracteristicas.

Uma técnica que auxilia na preservacao dos dados é o preenchimento zero, do
inglés zero padding, nessa camada. O preenchimento zero preenche o volume de entrada
com zeros ao redor da borda e faz com que a entrada e a saida possuam o mesmo tamanho.

O conjunto destes parametros é definido como os hiperparametros e pode variar
de acordo com o tamanho, complexidade, tipo de tarefa de processamento e objetivo de
aplicacao da rede neural com essa camada. Ao analisar um conjunto de dados, a escolha
dos hiperparametros deve ser feita levando-se em consideracao os objetivos especificos da
rede neural. As primeiras camadas convolucionais detectam caracteristicas de baixos niveis
de complexidade, mas a rede deve ser projetada para que sejam detectadas caracteristicas
de altos niveis.

A Figura 6 mostra os dados de entradas divididos por posi¢ao.Cada neurénio da
camada seguinte estara conectado a uma pequena regiao da camada de entrada. Na figura

em questao, tem-se 3 x 3 conexdes feitas ao neuroénio, um total de 9 dados de entrada.
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Figura 6 — Campo receptivo local de um filtro 3 x 3

Dados de Entrada

Neurdnio

Fonte: Do autor.

A regidao em negrito da Figura 6 é chamada de campo receptivo local para o
neurdnio oculto. E uma pequena janela em cima dos dados de entrada e esta deve ser
deslocada por toda a imagem de entrada para realizar a operagao de convolucao. Para
cada campo receptivo local, existe um neuronio oculto diferente na primeira camada
oculta. A Figura 7 mostra o deslocamento da primeira janela para o seu neurénio de

referéncia.
Figura 7 — Deslocamento do campo receptivo local para criagao do mapa de caracteristicas

Camada de Mapa de
Entrada Caracteristicas

Fonte: Do autor.

O movimento de deslizamento continua até que todos os neurénios ocultos sejam
definidos e seja construido o mapa de caracteristicas referentes a esse filtro. No exemplo
acima, temos uma entrada de 6 x 6 e, utilizando um filtro de tamanho 3 x 3, havera 4
x 4 neurdnios no mapa de caracteristicas, um total de 16 neuronios para o exemplo em
questao.

Cada neuronio aprende um peso a ser aplicado em cada uma de suas conexdoes
criadas e o neur6nio oculto também aprende um viés, do inglés, bias geral que entra como

uma constante no somatorio aplicado. A Figura 8 demonstra o funcionamento do neurénio
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e os pesos aplicados aos dados de entrada para se definir o valor na saida de cada um dos

neur6nios que reflete no mapa de caracteristicas.
Figura 8 — Funcao somatoria com pesos e bias de um neurénio em uma CNN.

Entradas
Pesos

Bias bik)

Wi

. Fungido de
Somatorio Ativagio
RelU Saida
Yix
Whn-1

0 6¢

Fonte: Do autor.

Cada neurénio tem um bias e pesos conectados ao seu campo receptivo local. Para
um determinado mapa de caracteristicas, todos os neurdnios compartilham os mesmos
pesos e mesmos bias. No exemplo anterior, os 16 neuronios que compoem o mapa de
caracteristicas sao treinados para determinar um tipo de caracteristica especifica daquele
mapa e compartilham os mesmos pesos e viés.

Para redes neurais de complexidade maior, torna-se desejavel a projecao de mais
de um mapa, onde cada mapa ird representar uma caracteristica especifica. Por exemplo,
em uma deteccao de imagem, um mapa pode ser treinado para detectar bordas, outro
para detectar linhas verticais, outro para detectar linhas horizontais e um quarto para
detectar preenchimento.

A Figura 9 mostra as diferentes conexoes feitas para cada mapa de caracteristicas,

onde cada mapa possui seus respectivos pesos e vieses compartilhados.
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Figura 9 — Mapas de caracteristicas formados a partir de dados de entrada

Mapa de
Caracteristicas
1

Mapa de
Caracteristicas
2
Camada de
Entrada

Mapa de
Caracteristicas
3

Mapa de
Caracteristicas

Fonte: Do autor.

No exemplo, foram utilizados 4 mapas de caracteristicas, possuindo 16 neurénios
cada um e representando uma camada oculta de 64 neurdnios no total. Na pratica, as
CNNs de complexidade mais elevadas possuem cerca de 20 a 40 mapas de caracteristicas.

O compartilhamento de pesos e bias dentro de cada mapa traz uma economia de
processamento e definicdo de pardmetros. Por exemplo, na Figura 10, sao utilizados mapas
de tamanho 5 x 5, totalizando 25 neur6nios por mapa e, considerando 20 mapas, um total
de 500 neurdnios. Se fossem aplicados filtros 5 x 5, 12.500 pesos seriam utilizados para
determinar e 500 bias. Mas com o compartilhamento de pesos e bias, tem-se um total de

500 pesos e 25 bias nessa camada da rede neural em questao.

Figura 10 — Exemplo de 20 mapas de caracteriscitas de uma CNN

Fonte: Retirado de Data Science Academy (2022).

2.6.2 Camadas ReLU (Unidades Lineares Retificadas)

Apos cada camada convolugao, é comum fazer a aplicacdo de uma camada nao

linear, ou camada de ativacao, imediatamente depois. A funcao de ativacao é aplicada em
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cima de cada neurdnio do mapa de caracteristicas e transforma este mapa em um mapa
de ativagao para que o neurdnio seja ativo ou nao quando identificar a caracteristica que
ele esta treinado para reconhecer.

O propdésito desta camada é introduzir a nao linearidade a um sistema que realizou
operacoes lineares durante as camadas de convolugao, permitindo que a rede aprenda
padroes mais complexos.

A camada ReLU aplica a funcao

f(z) = max(0,x), (2.4)

e significa que ela emite a entrada diretamente se for positiva, caso contrario, ela gera
zero. Esse limite simples em zero traz uma eficiéncia computacional para a rede e permite
um treinamento mais rapido dos modelos.

Esta camada também ajuda a aliviar o problema do gradiente de desaparecimento,
que é o problema em que as camadas inferiores da rede treinam muito lentamente devido
a diminuicdo do gradiente através das camadas. Isso ocorre porque o gradiente do ReLLU é
zero ou um, garantindo que os gradientes nao diminuam a medida que se propagam pela

rede.

2.6.3 Camadas de agrupamento

A camada de agrupamento, do inglés, pooling layer, tem como objetivo reduzir a
quantidade de parametros da rede através da compressao dos dados de saida da camada
de convolucao anterior a ela. Estas camadas de agrupamento costumam vir logo apds uma
camada de convolugao para que seja reduzida a complexidade computacional.

Nessa categoria, existem varias opgoes de técnicas a serem aplicadas para a re-
alizacdo do agrupamento. A aplicacdo da funcao de maxima, ou maz-pooling é a mais
popular e consegue abranger as exigéncias especificas dos sistemas de reconhecimento de
fala.

A Figura 11 exemplifica o agrupamento feito através da funcao max-pooling. Foi
aplicado um filtro de tamanho 2x2 e um passo de 2. Dessa forma, ele atua nos dados de
entrada da camada anterior e gera o nimero maximo em cada sub-regiao em torno da
qual o filtro faz a convolucao, resultando em uma reducao do mapa de caracteristicas em
75%. Com isso, atende-se ao primeiro propésito principal de uma rede convolucional, que

é reduzir o custo computacional.
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Figura 11 — Funcionamento de uma camada de agrupamento com maz-pooling.

Entrada 4x4 max-pooling 2x2

Fonte: Do autor.

Além deste, a camada de agrupamento com maz-pooling atende o segundo propo-
sito de uma rede que é evitar o overfitting. Esse termo se refere a quando um modelo é
tao ajustado aos exemplos de treinamento que nao é capaz de generalizar os conjuntos de
validacao e teste. Uma rede sofrendo de overfitting ndo consegue perceber as variagoes e
sO consegue trabalhar com os dados perfeitos e idénticos aos do treinamento, o que nao é

desejado para um sistema de reconhecimento de fala que possui variagoes.

2.6.4 (Camadas de abandono

As camadas de abandono, ou camadas de dropout, tém uma fungdo muito espe-
cifica em redes neurais e afetam significativamente o desempenho da rede nos sistemas
de reconhecimento de fala. Na tultima secao, foi apresentado o problema de overfitting,
onde, apds o treinamento, ao se aplicar o modelo aos novos dados de teste, obtém-se um
desempenho insatisfatorio.

Esta camada desativa aleatoriamente elementos individuais (neurénios) dentro dos
mapas de ativagdo na camada que a antecede, definindo-os como zero. Com isso, a rede é
forcada a fornecer a classificagdo ou saida correta para um exemplo especifico, mesmo que
alguns dos neurdnios sejam descartados. Isso garante que a rede nao esteja ficando muito
presa aos dados de treinamento e, portanto, ajuda a aliviar o problema de overfitting
(HINTON et al., 2014).

O termo dropout refere-se a uma técnica de regularizacao utilizada em redes neu-
rais, cujo objetivo é reduzir o sobreajuste (overfitting) e aumentar a capacidade de ge-
neralizacao do modelo. Ele consiste na desativagdo temporaria de neurdnios durante o
processo de treinamento, feita de forma aleatéria a partir de uma probabilidade fixa p.
Quando um neurénio é desativado, ele deixa de contribuir com o calculo da saida e tem
todas as suas conexdes de entrada e saida momentaneamente ignoradas. A Figura 12(a)
ilustra uma rede neural completa, com todos os neurdnios ativos, enquanto a Figura 12(b)

apresenta a mesma rede com uma fracdo de neurénios desativados, considerando p = 0,5.
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Figura 12 — Camada de abandono
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(a) Rede neural completa (b) Rede neural apds aplicagdo do
dropout

Fonte: Retirado de Hinton(2014)

E importante destacar que o dropout é aplicado exclusivamente durante o treina-
mento. A cada iteragdo, uma fragao definida dos neurénios (por exemplo, 20% ou 50%)
¢ removida, o que forca a rede a nao depender excessivamente de conexds ou unidades
especificas. J4 durante a fase de inferéncia (teste ou uso pratico do modelo), todos os
neurdnios permanecem ativos, e os valores de saida sao ajustados de forma a compensar

a auséncia do dropout no treinamento, preservando a coeréncia estatistica.

2.6.5 (Camadas totalmente conectadas

Esta é a ultima camada de uma rede neural convolucional(CNN) e ela atua como
a principal camada na classificacao devido a juncao de todas as caracteristicas anteriores
a ela.

Foi visto anteriormente que os filtros na primeira camada convolucional sao proje-
tados para identificar caracteristicas de baixo nivel, por exemplo, reconhecer um sinal de
audio. Porém, para a rede determinar e reconhecer uma palavra através do sinal de fala,
a rede precisa ser capaz de reconhecer caracteristicas de nivel mais alto, como formantes,
frequéncia fundamental (pitch) e duracao dos sons, por exemplo.

Quando passa por outra camada convolucional, a saida da primeira camada convo-
lucional se torna a entrada da segunda camada convolucional. Essa entrada ¢ dada pelos
mapas de caracteristicas de baixo nivel que resultam da primeira camada. Na segunda
camada convolucional, quando ¢é aplicado um novo conjunto de filtros em cima dessa
entrada, a saida serd um mapa de caracteristicas que representa recursos de nivel mais
alto. Ao avancar pela rede, passa-se por mais camadas convolucionais, obtendo mapas de

caracteristicas que representam recursos cada vez mais complexos.
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Apés a aplicagao de camadas de convolucgao, seguidas por camadas de ReLU,
agrupamento e abandono, tém-se os mapas de caracteristicas que representam recursos
de alto nivel. E, para finalizar a rede, é adicionada uma camada totalmente conectada
formada por neurénios individuais, e cada um deles conecta-se a todas as caracteristicas
da camada anterior.

Cada neurdénio em uma camada totalmente conectada é um né individual que
recebe como entrada todas as ativagoes da camada anterior. Se a camada anterior tem,
por exemplo, 64 caracteristicas, e a primeira camada densa possui 32 neurdnios, entao
cada neurénio da FCI1 tem 64 pesos (um para cada entrada). No total, a FC1 teria
32 x (64 + 1) = 2080 parametros treinéveis.

Em redes classificadoras, a ultima camada totalmente conectada utiliza a saida
das camadas anteriores como entrada e gera um vetor dimensional N como saida, sendo
N o numero de classes que a rede tem para classificar.

Em Munir, Kong e Qureshi (2023) apresentam um programa de classificagdo de
digitos através de imagem, N seria 10, pois existem 10 digitos. Cada ntimero nesse vetor
dimensional N representa a probabilidade de uma determinada classe. Por exemplo, se o

vetor resultante para um programa de classificacao de digitos for
[0,0.1,0.1,0.75,0,0,0,0,0,0.05], (2.5)

isso representa uma probabilidade de 10% de que a imagem seja o nimero 1, uma proba-
bilidade de 10% de que a imagem seja o nimero 2, uma probabilidade de 75% de que a
imagem seja o nimero 3 e uma probabilidade de 5% de que a imagem seja o niimero 9.
A Figura 13 mostra duas camadas totalmente conectadas e suas conexoes ao fi-
nal de uma rede neural convolucional. Estas duas camadas possuem, respectivamente, 6

neurdnios na primeira camada e 8 neur6énios na segunda.
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Figura 13 — Conexoes de duas camadas totalmente conectadas
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Fonte: Do autor.

As conexodes da camada totalmente conectada sdo feitas uma a uma para cada
neuronio dos mapas de caracteristicas da camada anterior. Ao final, a camada totalmente
conectada se resume aos neurdnios de classificacao. Na Figura 13 tem-se a classificacao

de apenas 2 classes.

2.7 Taxa de erro de palavras

A Taxa de Erro de Palavras (WER, do inglés Word Error Rate) é uma métrica
de avaliacao comumente utilizada em tarefas de reconhecimento de fala e sistemas de
processamento de linguagem natural. Ela é empregada para definir a precisdo entre a
transcrigao automatica de um sistema e a transcricao de referéncia, medida em termos da
taxa de erro de palavras.A férmula béasica para calcular a WER ¢é dada por (2.6).

S+D+1

WER = ———— 2.6
N ) ( )

sendo S o numero de palavras substituidas, D o niimero de palavras deletadas, I o nimero
de palavras inseridas e N o ntiimero total de palavras na transcri¢ao de referéncia.

A métrica WER considera a soma dos trés tipos de erros, sendo eles a quantidade
de Substituicoes (S), a quantidade de Delegoes (D) e a quantidade de inser¢oes (I). Em
performance de sistemas de reconhecimento de fala, a acuracia de palavras dada por
(WAcc) é mais comumente utilizada e ela é dada por (2.7).

S+D+1

Wi =1-WER =1 - ~——— (2.7)



Capitulo 2. Revisdo bibliogrifica 23

Para sistemas onde nao se tem a remocao e a insercao de palavras, a taxa de
assertividade ¢ dada pelo ntimero de acertos dividido pelo nimero de dados de teste.
Reescrevendo a equagao (2.7), pode-se definir WAcce como
S N-S

WAcczl_i

= = (2.8)

2.8 Validacao Cruzada como método de avaliagao

A validagao cruzada K-Fold é uma técnica usada para avaliar o desempenho de
modelos de aprendizado de maquina, dividindo os dados em k subconjuntos.

Essa técnica envolve particionar o conjunto de dados em k subconjuntos, treinar o
modelo em k-1 subconjuntos e validé-lo no subconjunto restante, iterando esse processo
k vezes para garantir que cada subconjunto sirva como conjunto de validacao uma vez.

Uma separacao comumente utilizada e que sera utilizada neste trabalho sao de
70% dos dados para o treinamento e 30% para os testes. Neste trabalho, os dados foram
divididos entre subconjunto de treinamento e teste, de forma aleatéria. Este processo foi
repetido iterativamente, de modo que, ao término de cada iteragao, foi possivel avaliar o
desempenho do sistema de reconhecimento. Ao final, pode-se obter o desempenho médio,

a partir dos valores encontrados em cada iteracao.



24

3 Desenvolvimento do trabalho

3.1 Introducao

A partir das técnicas descritas no capitulo anterior, foi possivel implementar um
sistema de reconhecimento de comandos de fala baseado em HMM e um outro baseado em
CNN. Sendo assim, esse capitulo expoe os métodos aplicados ao longo do desenvolvimento
do trabalho com a finalidade de descrever as técnicas e detalhar os parametros aplicados
a elas.

Para o trabalho atual foram utilizadas duas bases de palavras com locutor tinico,
sendo a primeira focada no reconhecimento de palavra isolada e a segunda com foco no
reconhecimento de frases de comando. Cada base é composta de 150 gravagdes de um

unico locutor, sendo 30 repeticoes de cada classe das seguintes bases:
» Base 1 - Palavras Isoladas

— Sala;

— Cozinha;
— Quarto;
— Acender;

— Apagar.
e Base 2 - Frases de Comando

— Acender luz quarto;
— Apagar luz quarto;
— Ligar ar quarto;

— Desligar ar quarto;

Desligar TV Sala.

Cada uma destas bases foi utilizada separadamente aos dois modelos propostos.
A primeira parte deste capitulo detalha a aplicagdo ao modelo oculto de Markov (HMM)
considerando as etapas de pré-processamento, treinamento e testes. A segunda etapa do
trabalho foi feita aplicando as mesmas bases em uma rede neural convolucional (CNN)
projetada especificamente para um sistema de reconhecimento de fala.

Ambas as técnicas utilizam a extragdo de caracteristicas dos sinais de fala e re-
alizam a classificagdo dos mesmos a fim de reconhecer a palavra pronunciada. O reco-
nhecimento acontece de forma separada em cada um dos modelos e, ao final, é feita a

comparacao de eficicia dos modelos em cada experimento.
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3.2 Modelo oculto de Markov

A Figura 14 detalha a estrutura do HMM utilizado neste trabalho modelada com
8 estados. Essa estrutura de 8 estados foi definida com base nos experimentos para atingir
o objetivo deste trabalho. Foi iniciado em 5 mas os melhores desempenhos encontrados

foram com 8 estados.

Figura 14 — Estrutura HMM do presente trabalho.

Fonte: Do autor.

Para o presente trabalho, foi construido um modelo de reconhecimento de fala
baseado no HMM através do software Matlab. A ferramenta, juntamente com a toolbox
de Machine Learning, presente no software, simplificando os processos de treinamento e
comparagao dos modelos baseados em aprendizado de maquina.

No presente trabalho, o treinamento ¢ executado utilizando o algoritmo Baum-
Welch, que ajusta iterativamente os parametros do modelo baseado na maximizacao da

verossimilhanga (Maximum-Likelihood Estimation).

3.2.1 Pré-processamento

Os sinais gravados foram pré-processados com o objetivo de reduzir as perturbagoes
e ressaltar as informacoes tteis, pois até mesmo os melhores sistemas de reconhecimento
sofrem substancial degradagao de seu desempenho quando trabalham com sinais de fala
corrompidos por ruidos.

Para o presente trabalho, os sinais de audio foram adquiridos através do microfone
de um computador, o qual nao garante perfeicao e remocao dos ruidos. Estas aquisi¢oes
foram feitas utilizando o Matlab e, sob elas, foram aplicados filtros passa-altas a fim de
remover os ruidos de baixa frequéncia. Além destes filtros, todos os sinais foram sub-
metidos a uma normalizacdo do sinal de audio para que todos fossem processados em
mesma amplitude, reduzindo dessa forma as variacoes resultantes de diferentes volumes
de gravacao do microfone.

Por fim, foi realizado o recorte de siléncio dos sinais de dudio gravados que se
encontram antes e apés o sinal acustico. O custo computacional da maquina a realizar o
processamento também é reduzido com o corte de siléncio.

O recorte de siléncio tem como base a funcao de energia de um sinal de dudio onde

ela é calculada utilizando uma janela deslizante que se move ao longo do sinal. Para cada
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posicao da janela, a energia é calculada somando-se os quadrados dosvalores das amostras
dentro da janela. Em seguida, um limiar é aplicado a essa energia para determinar se a
regiao é considerada como siléncio ou nao.

Para o presente trabalho, foram identificadas regides do sinal onde a energia, ou a
magnitude ao quadrado do sinal, € menor que um determinado limiar fixo. Essas regices
identificadas como "siléncio"foram removidas, resultando em um sinal de 4udio com menos
ruido de fundo. O melhor resultado encontrado foi utilizando-se um limiar fixo de corte
de ruido com amplitude de 0.29614.

Na Figura 15 observa-se o sinal de audio de um comando antes e apds a etapa
de pré-processamento. Pode ser observada a remocao de periodos de siléncio ou ruido

indesejado do sinal captado.

Figura 15 — Recorte de siléncio aplicado durante a etapa de pré processamento do HMM
sedo (a) Sem recorte de siléncio e (b) Com recorte de siléncio.
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Fonte: Do autor.

3.2.2 Extracao de caracteristicas

A funcao desta etapa é criar uma representacao do sinal de fala através de de um
conjunto de caracteristicas representativas de cada segmento do sinal contido em uma
janela temporal.

Para a tratativa de cada sinal de audio, o sinal de entrada foi dividido em quadros
de 160 amostras, considerando-se uma frequéncia de amostragem de 8 kHz, com uma
duracao de 20 ms, sendo os quadros adjacentes separados por 80 amostras. Esta divisao
foi de 20 ms para que o quadro em anélise seja considerado um sinal quase estacionario,

Conforme visto na sec¢ao 2.2, o janelamento ¢é crucial na etapa de extracao de ca-
racteristicas. Neste trabalho, utilizou-se uma janela de Hamming com o intuito de reduzir
a distor¢ao espectral associada ao efeito do janelamento dos dados.

A obtencao dos MFCCs é o método mais difundido para extracao de caracteristicas

e é utilizado para sele¢do das informacoes dinamicas.
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No presente trabalho, foi utilizado um vetor de pardmetros com dimensao de 39
coeficientes mel. Esses coeficientes capturam informagoes relevantes sobre as caracteristi-
cas espectrais da fala. A divisao destes 39 coeficientes e a forma como foram obtidos neste

trabalho sao apresentadas abaixo:

o 12 Pardmetros Mel-Cepstrais (MFCC) - Representam as amplitudes das compo-
nentes espectrais do sinal de audio e foram calculadas na escala mel através da
utilizagdo de um banco de 18 filtros passa-faixa triangulares e calculo logaritmo da
saida deste banco de banco de filtros. Por fim, aplica-se a DCT sobre o vetor con-
tendo os 18 valores de energia correspondentes a cada filtro do banco, com o intuito

de se comprimir esta informagao para apenas 12 parametros.

 Derivada Primeira (Delta-Mel-Cepstrais) - Capturam a taxa de variagdo dos para-

metros mel-cepstrais ao longo do tempo, fornecendo informagoes dinamicas.

o Derivada Segunda (Delta-Delta-Mel-Cepstrais) - Representam a taxa de variagao
das derivadas primeiras, oferecendo uma segunda ordem de dindmica nas caracte-

risticas espectrais

o 1 Pardmetro de Energia - Reflete a quantidade total de energia no sinal de dudio,

em cada quadro.

e 1 Derivada Primeira (Delta-Energia) - Indica a variacao na energia do sinal ao longo

do tempo.

o 1 Derivada Segunda (Delta-Delta-Energia) - Representa a taxa de variacao da deri-

vada primeira da energia, adicionando uma dimensao extra de dinamica.

Os coeficientes MFCCs e suas respectivas derivadas de primeira e segunda ordem
assim como o pardmetro de energia e suas respectivas derivadas, foram obtidos a partir
de cada janela. Dessa forma, foi gerado um vetor de saida composto de 39 parametros

para cada janela de 20 ms do sinal.

3.2.3 Treinamento do HMM

Conforme descrito no inicio deste capitulo, o sistema de reconhecimento de fala
dependente de locutor em aplicagao foi inicializado com gravagao de 30 sinais de audio
de cada uma das 5 palavras em cada base. Destes 30 sinais de audio, 22 foram separados
para a etapa de treinamento e 8 foram para a etapa de teste, que sera descrita na préxima
secao.

A metodologia para treinamento do modelo oculto de Markov (HMM) utilizada

envolveu um processo iterativo que utiliza o algoritmo BWA, também conhecido como
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- FExpectation-Maximization, para ajustar os parametros do modelo com base nos dados
observados.

Os parametros do modelo HMM foram inicializados e foram ajustados ao longo
da etapa de treinamento. Estes incluem probabilidades iniciais, matriz de transicao de
estados e distribuigoes de probabilidade de emissao formando cada estado de Markov.

O treinamento ocorreu de forma iterativa, aplicando-se o algoritmo de Expectation-
Maximization (EM), apresentado no Capitulo 2, a fim de chegar a uma condigao de
convergéncia onde se tenha o maior nimero de iteragbes ou uma pequena variagdo nos
parametros daquele modelo. Apés o treinamento, o modelo resultante foi avaliado usando
conjuntos de dados de teste para verificar seu desempenho, e estes serao detalhados na

proxima segao.

3.2.4 Etapas de teste e afericao dos resultados

Apo6s o treinamento do HMM, deve-se realizar os testes usando conjuntos de dados
distintos dos utilizados no treinamento. O processo de teste envolve avaliar o desempenho
do modelo na classificagao ou predigao de sinais de audio que nao foram utilizados durante
a etapa de treinamento. Conforme visto na secao anterior, 8 sinais de audio de cada palavra
foram separados para esta etapa de teste.

Assim como no treinamento, os dados de teste devem passar por um processo de
pré-processamento e extragao de caracteristicas, tal como ocorreu com os dados utilizados
na etapa de treinamento. No caso deste trabalho, buscou-se realizar o recorte de siléncio
e realizar a extragao de caracteristicas conforme descrito na 3.2.2.

Os parametros ajustados durante o treinamento foram carregados da etapa de
teste. Com o auxilio do algoritmo Viterbi, descrito no Capitulo 2, foi determinada a
sequéncia mais provavel de estados dada a sequéncia de observacao durante a etapa de
decodificacao.

Por fim, para analise de desempenho durante a fase de testes, foram comparadas
a sequéncia de estados identificada pelo sistema com o sinal de audio original utilizado
como entrada nos testes. Com base nos valores de probabilidade produzidos pelos modelos
acusticos associados a cada comando de fala, esta etapa da decodificagao identifica o
modelo que fornece a maior verossimilhanca, o qual esta associado a uma determinada
palavra.

Para realizar a validacao dos resultados, foram calculadas as taxas de erro e asser-
tividade do sistema através de métricas de desempenho descritas no Capitulo 2. Através
da validacao cruzada 5-fold, o conjunto de dados foi dividido em 5 grupos e foram calcu-
lados resultados especificos para cada um destes 5 conjuntos. Esta divisao em 5 folds faz

com que todas as gravacoes passem pela etapa de teste.
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3.3 Redes neurais convolucionais

As redes neurais convolucionais (CNNs) avangaram significativamente no campo do
reconhecimento de fala, aprimorando a capacidade de aprender caracteristicas complexas
dos sinais de fala. Esses avancos foram aplicados a varios aspectos do reconhecimento de
fala, incluindo reconhecimento automatico de fala, andlise de dependéncias temporais na
fala e interpretacao de dados de fala complexos, para melhorar a precisao e a eficiéncia.

Os ASRs baseados em CNN necessitam de uma etapa de pré-processamento do
sinal falado acompanhada da etapa de extracao de caracteristicas a fim de preparar a base
de dados para que a rede neural seja capaz de realizar as etapas de treinamento e a etapa
de testes.

Para o presente trabalho foi construido um modelo de reconhecimento de fala base-
ado no CNN através do ambiente de c6digo aberto Google Colab. A ferramenta, juntamente
com as bibliotecas disponiveis, em especifico a biblioteca PyTorch, escrita na linguagem
de Python, permite a construcao de modelos de aprendizado profundo que exigem um
maior poder computacional. Devido ao aumento dessa complexidade de processamento,

os experimentos das CNNs foram realizados em Python e nao no Matlab.

3.3.1 Pré-processamento

Os sinais gravados passaram por pré-processamento com o objetivo de reduzir as
perturbacgoes e ressaltar as informacoes tuteis. Assim como no modelo anterior, a primeira
etapa é vista como um tratamento da base de dados a ser utilizada a fim de neutralizar
os erros dos sinais de fala corrompidos por ruidos.

Para o presente trabalho, os sinais de audio foram adquiridos através do microfone
de um computador, o qual ndao garante perfeicao e remocao dos ruidos, e foi aplicada a
técnica de remogao de siléncio. O recorte de siléncio tem como base a fungao de energia
de um sinal de audio onde ela é calculada para cada janela do sinal. Para cada posicao
da janela, a energia é calculada somando-se os quadrados dos valores das amostras dentro
da janela. Em seguida, o limiar é aplicado a essa energia para determinar se a regiao é
considerada como siléncio ou nao.

A esta rede neural, durante alguns experimentos, foi aplicada a técnica de distensao
temporal com o objetivo de aumentar a base de dados e analisar o desempenho do sistema
de reconhecimento de fala com uma variagdo do sinal de entrada. Esta técnica nao altera
a informacgao contida no audio.

A distensao temporal é uma técnica usada em varios campos, do processamento de
audio a imagem O6ptica, para manipular as caracteristicas temporais de sinais ou dados.
Esse processo envolve estender ou comprimir o tempo de duragao de um sinal sem alterar

seu tom ou outras caracteristicas essenciais. Para o presente trabalho, foi aplicado um
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fator de variacao aleatorio nos testes realizados entre 0.8 e 1.2 de forma uniforme em todo
o sinal de entrada.
Por fim, a técnica de adigao de zeros ao sinal de audio foi aplicada a todos os sinais

para garantir que todos tenham o mesmo tamanho antes de serem tratados.

3.3.2 Extracao de caracteristicas

Os sinais de audio foram convertidos para representagoes espectrais adequadas a
entrada da rede convolucional onde foram utilizadas duas representacdes complementares:
o espectrograma Mel (Mel spectrogram) e os Coeficientes Mel-Cepstrais (MFCC, do inglés
Mel-frequency cepstral coefficients). Ambas as transformagoes foram aplicadas a cada sinal
de audio e, em seguida, concatenadas ao longo da dimensao da frequéncia, formando a
matriz final de entrada da CNN.

O espectrograma Mel é uma representacao do espectro de frequéncias em uma
escala perceptiva baseada na forma como o ouvido humano percebe o som. Nesta im-
plementagao, foram utilizadas 80 bandas Mel, definidas de forma empirica, resultando
em uma matriz de dimensdes (80, T), onde T representa o ntimero de quadros temporais.
Cada elemento dessa matriz representa a energia do sinal de d4udio em determinada banda
de frequéncia em instante de tempo.

Os MFCCs sao extraidos a partir do espectrograma Mel por meio de operacoes de
logaritmo e Transformada Discreta de Cosseno (DCT), com o objetivo de obter uma re-
presentacao mais compacta do envelope espectral do sinal. Foram extraidos 12 coeficientes
para cada quadro temporal, gerando uma matriz de dimensao (12, T).

As duas matrizes (espectrograma Mel e MFCC) foram entéo concatenadas ao longo
da dimensao de frequéncia, formando um tnico tensor de dimensao (92, T) por amostra
de dudio. Dessa forma, os 92 canais de entrada da CNN correspondem a combinacao de
80 bandas de frequéncia na escala Mel (valores de energia) e 12 coeficientes cepstrais
(MFCCs) por quadro temporal.

A dimensao temporal representa a evolucao do sinal ao longo de janelas sucessivas.
Neste trabalho, o nimero de quadros temporais resultantes foi 241, ap6s normalizacao da
duragao do audio por zero-padding e truncamento.

Essa representagao combinada permite que a rede convolucional capture tanto
informagoes espectrais detalhadas (via espectrograma Mel), quanto padroes acisticos mais
globais e robustos (via MFCCs). A CNN ¢, entao, capaz de aprender a partir desses 92
vetores caracteristicas ao longo do tempo, promovendo uma classificacdo eficiente dos
sinais de fala.

E essa representacio que serd usada como entrada para a rede neural e, é dada por
um tensor. A primeira dimensao é uma dimensao unitaria para ser tratado apenas um
sinal de dudio por vez. A segunda dimensao é composta pelas 92 caracteristicas extraidas

e a terceira é a dimensao temporal definida pelo tamanho total de 241 amostras de cada
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sinal. Os dados de entrada da CNN do presente trabalho foram definidos como um tensor
de medidas 1 x 92 x 241.

3.3.3 Estrutura da CNN

Para o presente trabalho, tem-se o objetivo de fazer o reconhecimento de um sinal
de dudio através da classificagdo do mesmo entre as classes pré-determinadas.
Para atingir o objetivo, a rede neural convolucional foi construida utilizando 13

camadas, definidas a partir de experimentos e ela pode ser visto na Figura 16.

Figura 16 — Estrutura da rede neural convolucional do presente trabalho.
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Fonte: Do autor.

O sistema foi desenvolvido em Python, utilizando principalmente a biblioteca Py-
Torch, que oferece recursos completos para criagao, treinamento e validagao de redes neu-
rais. Também foram empregadas bibliotecas complementares como torchaudio, voltada
ao processamento e analise de dados de audio, scikit-learn para avaliagdo de desempenho
do modelo e matplotlib para geragao de gréaficos e visualizacoes. Essas bibliotecas foram

escolhidas por serem amplamente utilizadas em pesquisa e desenvolvimento de solucoes
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com inteligéncia artificial, possuirem codigo aberto e documentacao acessivel, permitindo
total transparéncia e reprodutibilidade dos resultados apresentados neste trabalho.

A rede convolucional implementada neste trabalho segue uma arquitetura sequen-
cial, composta por camadas convolucionais, func¢oes de ativagao, camadas de agrupamento
(pooling), regularizacdo via abandono (dropout) e camadas totalmente conectadas (fully

conected). A entrada de cada amostra na rede possui formato (1,92,241), onde:

o valor 1 refere-se ao canal da amostra (mono),

« o valor 92 representa os canais de caracteristicas, compostos por 80 bandas espectrais

da transformada de Mel e 12 coeficientes cepstrais (MFCCs),

e e o valor 241 corresponde ao niumero de quadros temporais extraidos do sinal de

audio.

Antes de ser processada pela primeira camada convolucional, a entrada é reduzida
para (92, 241) por meio da operacao .squeeze(1), eliminando a dimensao adicional do
canal. A operacao .squeeze(1) em Python, é utilizada na bibliotecas PyTorch, ela é usada
para remover uma dimensao de tamanho 1 de um array ou tensor ao longo de um eixo
especifico. O 1 em squeeze(1) indica que a operacao tem como alvo a segunda dimensao
que ¢é indicada pelo indice 1.

Em uma CNN, a dimensao de profundidade indica quantos mapas de caracteris-
ticas (feature maps) estdo sendo processados em determinada camada. A camada Conv1
recebe como entrada os 92 mapas de caracteristicas e aplica 64 filtros convolucionais (ou
neurdnios), cada um capaz de convoluir toda a profundidade de entrada. Como resultado,
essa camada gera 64 novos mapas de saida, cada um representando um padrao espectro-
temporal aprendido pela rede. Essa transformacao permite que a CNN extraia combina-
¢oes entre bandas Mel e coeficientes cepstrais na dimensao de profundidade, enfatizando
os aspectos mais relevantes para a tarefa de classificacdo, sem perda de informacao.

A dimensao temporal da saida da primeira convolucao é calculada pela equacao

abaixo:

Saida = <(W;F) + 1> = <(2411_5) + 1) — 237 (3.1)

Considerando o tamanho da entrada W=241, o tamanho do filtro F=5 e o passo
(stride) S=1, a saida da Conv1 apresenta dimensoes (64,237). A essa camada é aplicada
uma func¢ao de ativagao ReLU, que introduz nao linearidade ao modelo, seguida por uma
camada de agrupamento maximo (MaxPoolinglD) com filtro de tamanho 2x2 e passo 2.
Essa etapa reduz pela metade a dimensao temporal, resultando em uma saida de (64,118),
além de contribuir para a redugao computacional e mitigacao de overfitting. Em seguida,
uma camada de abandono (Dropout) com taxa de 20% é aplicada, sem altera¢do nas

dimensoes.
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Na segunda etapa da rede, aplica-se novamente uma convolucao (Conv2) com 0s
mesmos parametros da anterior. Porém, ao contrario da primeira camada convolucional,
que opera diretamente sobre a entrada bruta, essa convolugao atua sobre os mapas de ati-
vacao produzidos anteriormente, extraindo padrdes mais abstratos e especificos. A entrada
dessa camada possui dimensoes (64,118), sendo reduzida para (64,114) apds a aplicagao
dos filtros 5x5. Em seguida, repetem-se as camadas ReLU, MaxPooling e Dropout, resul-
tando em uma saida com 64 mapas de caracteristicas e 57 quadros temporais (64,57).

Posteriormente, é aplicada uma operagao de pooling global (GlobalAveragePoolinglD),
que reduz a dimensao temporal ao calcular a média ao longo do tempo para cada mapa
de caracteristica. O resultado é um vetor unidimensional com 64 valores, representando a
consolidagao final dos padroes aprendidos ao longo do espectro e do tempo.

Esse vetor é transferido para a primeira camada totalmente conectada (FC1), com-
posta por 32 neurénios. Cada neur6nio nesta camada estd completamente conectado a
todos os 64 elementos da saida anterior, o que permite ao modelo associar combinacoes
especificas de caracteristicas extraidas para diferentes padroes de fala. Em seguida, aplica-
se uma fungao de ativagao ReLU, resultando em um vetor de ativagdo com 32 valores.

A etapa final do processo de classificagdo ocorre na camada totalmente conectada
FC2, que recebe a saida dos 32 neur6nios da camada FC1 e se conecta aos 5 neurdnios da
camada FC2. E gerado um novo vetor com cinco valores, cada um correspondente a uma
das classes previstas pelo modelo. Esses valores indicam a ativacao da rede em relagao a
cada classe possivel. Ao final do processamento, a rede neural escolhe a classe associada
ao valor mais alto e a define como a predi¢ao para a amostra de dudio analisada.

A Tabela 1 resume as entradas e saidas da rede CNN projetada no presente tra-

balho.
Etapa Camada Tipo Entrada Saida Observagoes
1 Entrada Pré-processamento (1, 92, 241) (92, 241) Canal removido com .squeeze(1)
2 Convl Convolucional 1D (92, 241) (64, 237) 64 filtros, kernel=5, stride=1, sem padding
3 ReLU1l Ativagao (64, 237) (64, 237) Fungao nao linear aplicada ponto a ponto
4 MaxPooll Pooling 1D (64, 237) (64, 118) Kernel=2, stride=2, reduz temporalidade pela metade
5 Dropoutl Regularizagio (64, 118) (64, 118) Dropout com p = 0,2 durante o treino
6 Conv2 Convolucional 1D (64, 118) (64, 114) Novo kernel=5, stride=1, sem padding
7 ReLU2 Ativacao (64, 114) (64, 114) Funcao ReLU aplicada novamente
8 MaxPool2 Pooling 1D (64, 114) (64, 57) Redugao temporal adicional
9 Dropout2 Regularizagio (64, 57) (64, 57) Dropout adicional com p = 0,2
10 Pooling Global Redugiao com média (64, 57) 64 Média ao longo da dimensao temporal
11 FC1 Camada densa 64 32 64 — 32 neurdnios totalmente conectados
12 ReLU3 Ativagao 32 32 Ativagao aplicada antes da saida final
13 FC2 Camada de saida 32 5 5 neurdnios para classificagdo de 5 classes

Fonte: Do autor.

Tabela 1 — Estrutura da rede projetada
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3.3.4 Treinamento da rede convolucional

Assim como no modelo oculto de Markov, o modelo de rede neural convolucional
foi aplicado em cima de uma divisao de k-folds para ser feita a validacao cruzada ao fim
do teste. Com isso, temos a certeza de que toda a base de dados foi avaliada e sem a
repeticao dos mesmos sinais de dudios utilizados no treinamento para o teste. Para tal,

as folds e nimeros de amostras foram divididas da seguinte forma:

e Base I - Palavras

Fold 1: Amostras de treino: 110, Amostras de teste: 40

— Fold 2: Amostras de treino: 110, Amostras de teste: 40

Fold 3: Amostras de treino: 110, Amostras de teste: 40

Fold 4: Amostras de treino: 110, Amostras de teste: 40

— Fold 5: Amostras de treino: 110, Amostras de teste: 40

o Base II - Frases

Fold 1: Amostras de treino: 110, Amostras de teste: 40

— Fold 2: Amostras de treino: 110, Amostras de teste: 40

Fold 3: Amostras de treino: 110, Amostras de teste: 40

Fold /: Amostras de treino: 110, Amostras de teste: 40

— Fold 5: Amostras de treino: 110, Amostras de teste: 40

No aprendizado profundo, uma época do inglés, epoch é uma passagem completa
de todo o conjunto de dados de treinamento por meio de um algoritmo de aprendizagem.
O nuimero de épocas é um hiperparametro que determina quantas vezes o modelo passara
por todos os dados de treinamento. O niimero de épocas para o presente trabalho utilizado
foi 15 e a cada época o modelo fez o treinamento em cima das 150 amostras de treino.

Uma época é composta de lotes de dados, também conhecidos como batch. O
tamanho do lote é definido pelo niimero de amostras que sao aplicadas a rede neural de
uma s6 vez e o indicador batch/s é definido como a quantidade de amostras que o modelo,
projetado no presente trabalho, conseguiu analisar em 1 segundo.

Durante o treinamento, os pesos e bias aplicados aos filtros sao atualizados por
meio de retropropagacao, permitindo que a rede aprenda os recursos mais relevantes para
a tarefa em questdo. A cada época, a acuracia do modelo ficara mais precisa devido aos
ajustes de pesos provenientes dessa retropropagacao e o resultado final de acuracia é

definido apds a ultima época ter sido executada.
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3.3.5 Etapas de teste e afericdo dos resultados

Cada base de dados foi dividida em 5 folds onde cada fold abrange um certo nimero
de amostras para testes e estas nao serao utilizadas novamente como dados de teste na
fold seguinte.

Apébs o treinamento, durante a fase de testes, os dados separados para testes sao
classificados entre as 5 classes pré-definidas de cada uma das bases. A classificagao asser-
tiva significa que o neur6nio da camada de classificagdo com o maior valor probabilistico
é o neur6nio que classifica a entrada corretamente.

Pode-se citar um exemplo utilizando o classificador do presente trabalho. Dada
uma entrada da classe "Apagar', se um neurdnio classificador final mais ativo for da
classe "Apagar", a rede tem sucesso na classificacao. Mas se o neurdnio classificador ativo
para a mesma entrada for o neurénio que classifica a palavra "Quarto', a rede nao tem
sucesso na classificagao.

Para cada fold especifica, a rede neural convolucional projetada no presente tra-
balho teve 15 épocas de treinamento e testes executadas a fim de melhorar a acuracia
do modelo. Ao final das 15 épocas, o modelo retorna a acuracia final que foi melhorada
para cada época. Ao final das 5 folds, foi feita a média de acuracia de cada fold para ser
definido a acurécia total do modelo.

Conforme visto no secao 2.7, acuracia de cada fold e, para cada modelo, foi cal-
culada com base na taxa de erro e o desempenho de cada modelo foi definido com base
nessa taxa. O modelo com zero erros, tem uma taxa de acuracia de 100% e o melhor

desempenho no reconhecimento de fala.
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4 Resultados

4.1 Modelo Oculto de Markov - HMM

No presente trabalho, as classes de palavras (Base I) e de frases(Base II) tive-
ram suas caracteristicas extraidas conforme descrito na subsecao 3.2.2. O formato da
extragao de caracteristica nao varia em fun¢do do modelo. Essas informacoes sao usadas
em conjunto com o HMM para realizar a tarefa de classificacdo e, consequentemente, o
reconhecimento do sinal de fala.

Nesta secao serao descritos os resultados encontrados para os diferentes experi-
mentos realizados com base no HMM. Foram variados o limiar do recorte de siléncio e o

numero de gaussianas a fim de encontrar o modelo com maior indice de acertos.

4.1.1 Limiar do recorte do siléncio

Como descrito no Capitulo 2, o recorte do siléncio é uma etapa importante para o
modelo oculto de Markov(HMM) projetado no presente trabalho.

O recorte de siléncio foi feito com o auxilio da fungdo de energia do sinal e sob
esta, foi aplicado um limiar de valor fixo durante toda a amostra do sinal para remover
o siléncio. Esse limiar foi determinado de forma empirica e todo dado do sinal que ficou
abaixo desse limiar foi removido antes da extracao de caracteristicas.

Para o experimento de variacdo do limiar de recorte do siléncio, o modelo foi
inicializado com um valor alto do limiar de energia no recorte de siléncio a fim de mensurar
as informagoes contidas no sinal de audio de entrada. Posteriormente, de maneira empirica,
foi diminuido este valor até que o sistema encontrasse a melhor taxa de acerto. A partir
do momento em que o sistema comegou a cometer mais erros com a diminuigao do limiar,
significa que o limiar do siléncio nao estava removendo somente o siléncio e ruidos do
sinal. Uma vez que segmentos do sinal actstico associados ao siléncio estao presentes em
todas as gravagoes, as informacgoes neles contidas podem ser incorporadas aos modelos,
contribuindo para a ocorréncia de erros de classificacdo ao remové-las.

No presente trabalho, utilizou-se da validacao cruzada de 5 folds onde se tem toda
a varredura dos sinais de audio da base de dados. Conforme visto no Capitulo 3, para
cada palavra ou frase, sao utilizados 22 sinais de dudio para o treinamento e os demais 8
dados sao utilizados para os testes.

Para seguir com outros experimentos, apenas o parametro do limiar de recorte de
siléncio foi alterado sendo aumentado a cada experimento de forma empirica. Os demais
parametros ficaram constantes ao longo deste experimento, a fim de se validar o impacto

da variacao do limiar de recorte de siléncio.
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4.1.1.1 Limiar do recorte do siléncio - Base 1

Para o primeiro experimento, foi utilizado um limiar de energia fixo de 2,9614 x
10792 a fim de recortar o siléncio existente antes e depois da palavra contida na elocucao.

A partir dos dados de entrada, o sistema fez a classificacao de 40 locucoes durante
a etapa de testes de cada fold, sendo 8 locugoes de cada classe. A Figura 17 mostra todas
as classificacoes feitas pelo modelo para cada sinal de entrada. A matriz confusdo enumera
os erros cometidos pelo modelo ao comparar o sinal de entrada com o sinal predito (sinal
de saida).
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Figura 17 — Matriz confusdo para o experimento do HMM com remocao de siléncio e
limiar de recorte 2,9614 x 107 - Base I - Palavras.
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Confusion Matrix
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Acender Sala Cozinha Quarto  Apagar
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(b)

Confusion Matrix - Base | - Fold 4
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(d)

- Base | - Fold 5
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Cozinha

Classe de entrada

Quarto

Apagar

Acender Sala

Cozinha

Quarto

Classe reconhecida

Fonte: Do autor.

Apagar

Como pode ser observado nas Figuras 19(c) e 17(e), o sistema fez a confusao na

classificagdo das palavras "Cozinha'e "Apagar'nas folds 2 e 5. Um total de 4 erros foi

identificado no sistema e a taxa de acerto final do modelo foi de 98%. A Tabela 2 mostra

os resultados obtidos para cada fold deste experimento com remocao de siléncio aplicada

na base de palavras.
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Tabela 2 — Taxa de acerto do modelo HMM com remocao de siléncio e limiar de recorte
2,9614 x 10792 - Base I - Palavras.

Fold | Acertos | Erros | Taxa de Acerto
1 40 0 1,000
2 40 0 1,000
3 38 2 0,950
4 40 0 1,000
5] 38 2 0,950
Total 196 4 0,980

Fonte: Do autor.

Para os experimentos seguintes, o limiar de recorte de siléncio foi diminuido em
100 vezes o valor do experimento anterior. A Tabela 3 mostra a taxa de acerto do modelo
para cada fold no segundo experimento com o limiar de recorte sendo 2,9614 x 107%. A
taxa de acerto final do modelo neste experimento encontrada foi de 98,5%. A Figura 18

detalha a matriz de confusao desse experimento.

Tabela 3 — Taxa de acerto do modelo HMM com remocao de siléncio e limiar de recorte
29614 x 1079 - Base I - Palavras.

Fold | Acertos | Erros | Taxa de acerto
1 39 1 0,975
2 40 0 1,000
3 39 1 0,975
4 39 1 0,975
5 40 0 1,000
Total 197 3 0,985

Fonte: Do autor.
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Figura 18 — Matriz confusdo para o experimento do HMM com remocao de siléncio e
limiar de recorte 2,9614 x 10~% - Base I - Palavras.
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Fonte: Do autor.

Para o terceiro experimento, tem-se a diminuicdo do limiar para 2,9614 x 107,
A Tabela 4 mostram as taxa de acertos do sistema para o terceiro experimento com este
limiar. A taxa de acerto final do modelo neste experimento encontrada foi de 99,5%. A

matriz de confusao desse experimento é plotada em sequéncia na figura Figura 19.
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Tabela 4 — Taxa de acerto do modelo HMM com remocao de siléncio e limiar de recorte
2,9614 x 1079 - Base I - Palavras.

Fold | Acertos | Erros | Taxa de acerto
1 40 0 1,000
2 40 0 1,000
3 40 0 1,000
4 39 1 0,975
5] 40 0 1,000
Total 199 1 0,995

Fonte: Do autor.
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Figura 19 — Matriz confusdo para o experimento do HMM com remocao de siléncio e
limiar de recorte 2,9614 x 107% - Base I - Palavras.
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Fonte: Do autor.

A partir do quarto experimento, o limiar se tornou tao baixo que a taxa de acerto do

modelo HMM comegou a decair bruscamente e notou-se que o limiar nao estava removendo

o siléncio e ruidos que impactaram a extracao de caracteristicas e, consequentemente, a

classificacao do modelo.

Assim como no primeiro experimento, a matriz de confusao foi montada para se

analisar os erros do sistema. A Figura 18 mostra a matriz de confusao resultante do

segundo experimento e podemos observar que um fator comum as trés folds é o erro na

classificagdo entre as palavras 'Cozinha’ e "Apagar’. A Figura 19 mostra a tnica fold que
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teve erro no terceiro experimento e podemos notar que o erro acontece quando ocorre
confusdo entre as classes 'Cozinha’ e ’Apagar’ também observada nos dois experimentos
anteriores.

Com a diminuicao do limiar do siléncio em 100 vezes o seu valor a cada experi-
mento, o modelo oculto de Markov do presente trabalho obteve um acréscimo de 0,5% no
segundo experimento e de 1% no terceiro experimento para a Base I. A taxa de acerto
final de 99,5% define o melhor limiar de recorte de siléncio.

Apesar da diminui¢ao do limiar do recorte do siléncio, o sistema de reconhecimento
projetado continuou a confundir as classes de ’Apagar’ e 'Cozinha’ mas com taxas de erros

inferiores a 1,5% e demonstrou um excelente desempenho para a base de palavras.

4.1.1.2 Limiar do recorte do siléncio - Base 11

Para a base II, foram classificadas 5 frases e, para fins explicativos dos experimen-

tos, utilizaremos as seguintes abreviaturas:
o AcLuQ - Acender Luz Quarto
o ApLuQ - Apagar Luz Quarto
o DesArQ - Desligar Ar Quarto
e DesTvS - Desligar TV Sala
o LiArQ - Ligar Ar Quarto

Para o primeiro experimento, utilizou-se o mesmo limiar de energia fixo de 2,9614 x
10792 a fim de recortar o siléncio existente antes e depois da palavra contida na elocucao.
A partir dos dados de entrada, o sistema foi utilizado para classificar 40 locugoes
durante a etapa de testes de cada fold. A Figura 20 mostra todas as classificagoes feitas
pelo modelo para cada sinal de entrada e as confusdes do sistema entre as classes dos

audios de entrada e predigoes realizadas.
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Figura 20 — Matriz confusdo para o experimento do HMM com remocao de siléncio e
limiar de recorte 2,9614 x 107°2 - Base II - Frases.
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AcluQ ApLuQ
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Fonte: Do autor.

Como pode ser observado na Figura 20, com excecao da fold 4 neste experimento,

todas as demais folds houve confusdo entre as classes de frases 'Desligar Ar Quarto’ e

"Ligar Ar Quarto’ Um total de 5 erros foram identificados no sistema e a taxa de acerto
final do modelo foi de 97,5%. A Tabela 5 mostra os resultados obtidos para cada fold

deste experimento com remocao de siléncio aplicada na base de palavras.
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Tabela 5 — Taxa de acerto do modelo HMM com remocao de siléncio e limiar de recorte
2,9614 x 10792 - Base II - Frases.

Fold | Acertos | Erros | Taxa de acerto
1 39 1 0,975
2 39 1 0,975
3 39 1 0,975
4 40 0 1,000
5] 38 2 0,950
Total 195 5 0,975

Fonte: Do autor.

Para os experimentos seguintes, limiar de recorte de siléncio foi reduzido do ex-
perimento anterior até que se atingisse uma taxa de acerto ideal para os objetivos deste
modelo. Foram realizados mais experimentos, um com o limiar de recorte definido como
2,9614 x 107, outro como 2,9614 x 107% e o tltimo como 2,9614 x 10797, A taxa de
acerto final destes modelos foi 98%, 98,5% e 100%, respectivamente. As Tabela 6, Ta-
bela 7 e Tabela 8 mostram os resultados obtidos para cada fold destes experimentos com

a remocao de siléncio variando sob a Base II.

Tabela 6 — Taxa de acerto do modelo HMM com remocao de siléncio e limiar de recorte
2,9614 x 1079 - Base II - Frases.

Fold | Acertos | Erros | Taxa de acerto
1 38 2 0,950
2 40 0 1,000
3 40 0 1,000
4 38 2 0,950
5] 40 0 1,000
Total 196 4 0,980

Fonte: Do autor.

Tabela 7 — Taxa de acerto do modelo HMM com remocao de siléncio e limiar de recorte
2,9614 x 1079 - Base II - Frases.

Fold | Acertos | Erros | Taxa de acerto
1 40 0 1,000
2 39 1 0,975
3 38 2 0,950
/ 40 0 1,000
5 40 0 1,000
Total 197 3 0,985

Fonte: Do autor.
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Tabela 8 — Taxa de acerto do modelo HMM com remocao de siléncio e limiar de recorte
2,9614 x 10797 - Base II - Frases.

Os experimentos variando o limiar de recorte do siléncio mostraram que a dimi-
nuicao do limiar para a base II resultou no aumento da taxa de acerto do modelo. As
Figura 21 e Figura 22 mostram as folds que tiveram erros na classificagao. O resumo dessa
matriz de confusao para o segundo e terceiro experimento com limiares de 2,9614 x 107%4
e 2,9614 x 107% evidencia que o modelo HMM projetado comete os mesmos erros do

primeiro experimento dessa base. Todos eles fazem a confusao entre as classes 'Ligar Ar

Quarto’ e "Desligar Ar Quarto’.

Figura 21 — Folds com erros na classificagao para o experimento do HMM com remocao

Fold | Acertos | Erros | Taxa de acerto
1 40 0 1,000
2 40 0 1,000
3 40 0 1,000
4 40 0 1,000
5 40 0 1,000
Total 200 0 1,000

Fonte: Do autor.

de siléncio e limiar de recorte 2,9614 x 107 - Base II - Frases.
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(a)

LiarQ

Fonte: Do

AplLuq)

DesArQ|

Classe de entrada

DesTvs|

LiArQf

Confusion Matrix - Base Il - Fold 4

autor.

AcluQ ApluQ  DesArQ  DesTvS LiArQ

Classe reconhecida

(b)



Capitulo 4. Resultados 47

Figura 22 — Folds com erros na classificacdo para o experimento do HMM com remocao
de siléncio e limiar de recorte 2,9614 x 107% - Base II - Frases.

Confusion Matrix - Base Il - Fold 2 Confusion Matrix - Base Il - Fold 3
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Classe reconhecida Classe reconhecida

(a) (b)

Fonte: Do autor.

O modelo chegou a taxa de acerto ideal de 100% para a classe de frases definida
na Base II e o recorte de siléncio aplicado ao sinal de dudio original fez com que apenas
informagoes importantes a classificagao fossem ressaltadas para o modelo. Quando se trata
de frases, o sinal de audio de entrada possui uma alta quantidade de informacoes variantes

dentro do mesmo comprimento de dudio.

4.1.2 Variacao no niumero de gaussianas

Como descrito no Capitulo 2, a variagdo no nimero de gaussianas esta relacionado
a complexidade do modelo actistico. A variagao no nimero de gaussianas pode melhorar
ou impactar o desempenho do sistema de reconhecimento de fala.

Assim como nos experimentos com variacao do limiar do recorte de siléncio , o
experimento ocorreu através da validacgao cruzada de 5 folds e cada fold teve 22 sinais de
audio utilizados para o treinamento e os demais 8 dados foram utilizados para os testes.

Para estes experimentos, o limiar do recorte de siléncio foi fixado no valor que
resultou na melhor taxa de acerto entre os experimentos de variacao do limiar da secao
anterior dado por 2,9614 x 1006 . Apenas o numero de gaussianas foi variado a fim de

mensurar o impacto na taxa de acerto do sistema.

4.1.2.1 Variagao no nimero de gaussianas - Base |

Para o primeiro experimento, foi utilizada apenas 1 gaussiana a fim de modelar a
distribui¢ao de probabilidades do modelo oculto de Markov (HMM).

A partir dos dados de entrada, o sistema fez a classificagdo de 40 locugoes durante
a etapa de testes de cada fold. A Figura 23 ilustra todas as classificagoes feitas pelo modelo

para cada sinal de entrada e plota a matriz confusao.
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Figura 23 — Matriz confusdo para o experimento do HMM com 1 gaussiana- Base I -
Palavras.
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Fonte: Do autor.

Observa-se na Figura 23 que o modelo HMM projetado com 1 gaussiana comete
um total de 16 erros e fez a confusao na classificacdo das palavras 'Cozinha’ e ’Apagar’
em todas as folds. O baixo nimero de gaussianas nao permite ao modelo se ajustar de
forma precisa as classes e isso ocasiona a confusao entre classes, fazendo com que o sistema
seja um sistema de reconhecimento de fala de baixa complexidade. A Tabela 9 mostra o

resultado de cada fold e a taxa de acerto final deste modelo com 1 gaussiana foi de 92%
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Tabela 9 — Taxa de acerto do modelo HMM com 1 gaussiana - Base I - Palavras.

Fold | Acertos | Erros | Taxa de acerto
1 38 2 0,950
2 33 7 0,825
3 35 5 0,875
4 39 1 0,975
5 39 1 0,975
Total 184 16 0,920

Fonte: Do autor.

Para os experimentos seguintes, o niimero de gaussianas foi elevado a fim de au-
mentar a complexidade de reconhecimento e melhoria de taxa de acerto. Nao existe o
numero perfeito para se definir a quantidade de gaussianas do HMM e para o segundo
experimento, realizou-se um ensaio com com 15 gaussianas. A complexidade do modelo se
elevou ao ponto de ser atingida a taxa de acerto de 100% no ASR projetado. A Tabela 10

e a Figura 24 detalham o resultado dessa taxa de acerto para cada fold.

Tabela 10 — Taxa de acerto do modelo HMM com 15 gaussianas - Base I - Palavras.

Fold | Acertos | Erros | Taxa de acerto
1 40 0 1,000
2 40 0 1,000
3 40 0 1,000
4 40 0 1,000
5] 40 0 1,000
Total 200 0 1,000

Fonte: Do autor.
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Figura 24 — Matriz confusao para o experimento do HMM com 15 gaussianas- Base I -
Palavras.
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Fonte: Do autor.

Porém, atingir essa taxa de acerto de 100%, o aumento do nimero de gaussianas
fez com que o custo computacional aumentasse. O tempo de execucao do modelo de HMM
com 15 gaussianas teve um aumento em 817% em comparacao ao modelo com 1 gaussiana,
passando de um tempo de execucao 13,23 segundos para 108,09 segundos.

No presente trabalho, um dos objetivos do sistema ASR projetado é otimizar o
custo computacional mantendo a taxa de acerto alta. Portanto, foram executados novos

experimentos de forma emirica, aumentando de 5 em 5 o nimero de gaussianas até se
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alcangar o nimero de gaussianas ideal para atender a tarefa de reconhecimento de fala.
O tultimo experimento na variagdo do ntimero de gaussianas definiu como sendo
5 a quantidade mais apropriada para ser utilizada, neste problema, no modelo HMM.
A Tabela 11 mostra os resultados obtidos para cada fold com este nimero de gaussianas
e a Figura 25 mostra a matriz de confusao com o tnico erro que o sistema cometeu. Ao

final, foi obtida uma taxa de acerto de 99,5% para a base I de palavras com 5 gaussianas.

Tabela 11 — Taxa de acerto do modelo HMM com 5 gaussianas - Base I - Palavras.

Fold | Acertos | Erros | Taxa de acerto
1 40 0 1,000
2 40 0 1,000
3 40 0 1,000
4 39 1 0,975
5] 40 0 1,000
Total 199 1 0,995

Fonte: Do autor.
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Figura 25 — Matriz confusao para o experimento do HMM com 5 gaussianas- Base I -

Palavras.
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Fonte: Do autor.

4.1.2.2 Variagdo no nimero de gaussianas - Base 11

Para o primeiro experimento, foi utilizada apenas 1 gaussiana a fim de modelar a
distribuigao de probabilidades do modelo oculto de Markov (HMM). A Figura 26 mostra
todas as classificagoes feitas pelo modelo para cada sinal de entrada e define a matriz de

confusao para este modelo.



Capitulo 4. Resultados

53

Figura 26 — Matriz confusao para o experimento do HMM com 1 gaussiana- Base II -

Frases.
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Fonte: Do autor.

Observa-se na Figura 26 que o modelo HMM projetado com 1 gaussiana comete

um total de 14 erros, resultando em uma taxa de acerto final de 93%. Todas as 14 clas-

sificagOes incorretas foram entre as classes 'Desligar Ar Quarto’ e 'Ligar Ar Quarto’. A

proximidade destas frases exige um nimero maior de gaussianas para separar as distri-

buigoes probabilisticas. A Tabela 12 mostra as taxa de acertos obtidas em cada fold do

experimento.
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Tabela 12 — Taxa de acerto do modelo HMM com 1 gaussiana - Base II - Frases.

Fold | Acertos | Erros | Taxa de acerto
1 38 2 0,950
2 33 7 0,825
3 35 5 0,875
4 39 1 0,975
5 39 1 0,975
Total 186 14 0,930

Fonte: Do autor.

A abordagem utilizando apenas 1 gaussiana nao foi eficiente para diferenciar as
duas classes que possuem todos os fonemas em comum, com exce¢ao do fonema "Des'na
frase 'Desligar Ar Quarto’. Com isso, foram aumentados os nimeros de gaussianas para
os experimentos seguintes. Foram realizados mais dois experimentos apenas, o primeiro
com 5 gaussianas e o segundo com 15 gaussianas. As Tabela 13 e a Tabela 14 mostram

que ambos os modelos atingiram a taxa de acerto final de 100%.

Tabela 13 — Taxa de acerto do modelo HMM com 5 gaussianas - Base II - Frases.

Fold | Acertos | Erros | Taxa de acerto
1 40 0 1,000
2 40 0 1,000
3 40 0 1,000
4 40 0 1,000
5] 40 0 1,000
Total 200 0 1,000

Fonte: Do autor.

Tabela 14 — Taxa de acerto do modelo HMM com 15 gaussianas - Base II - Frases.

Fold | Acertos | Erros | Taxa de acerto
1 40 0 1,000
2 40 0 1,000
3 40 0 1,000
4 40 0 1,000
5 40 0 1,000
Total 200 0 1,000

Fonte: Do autor.

O modelo com 5 gaussianas foi escolhido como o mais apropriado para o sistema
de reconhecimento de fala ASR projetado no presente trabalho. Apesar do modelo com 15
gaussianas também ter atingido a taxa de acerto de 100%, este teve um custo computa-
cional aumentado em 250% quando comparado com o modelo de 5 gaussianas. Portanto,

com o objetivo de aplicar o sistema de reconhecimento da fala em atividades e areas da
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sociedade que exigem uma iteracao mais rapida, o modelo com 5 gaussianas se torna o

mais ideal.

4.1.3 Modelos finais e comparacoes HMM
4.1.3.1 Modelos finais HMM - Base I

Podemos perceber pela Tabela 15 que o sistema encontra uma taxa de acerto de
100%, mas, conforme visto durante os experimentos, o custo computacional foi alto e nao
condiz com o objetivo do trabalho.

O modelo mais adequado do sistema de reconhecimento de fala com HMM encon-
trado foi o0 modelo com 5 gaussianas e limiar do recorte de siléncio como 2,9614 x 10~%
onde a taxa de acerto final foi de 99,5%, encontrando apenas 1 erro dentro das 200 clas-
sificagoes realizadas. Este é o melhor resultado visto que nao teria como o sistema ter 0,5

erro e que ter zero erros tem um custo operacional alto.

Tabela 15 — Taxa de acerto dos modelos HMM - Base I - Palavras.

1 gaussiana | 5 gaussianas | 15 gaussianas
2,9614 x 10792 - 98% -
2,9614 x 10~% - 98,5% -
2,9614 x 1079 92% 99,5% 100%
2,9614 x 1077 - 98% -

Fonte: Do autor.

Vale ressaltar que todos os erros do sistema, independentemente da variacao dos
parametros citados, ocorreram na confusao de classificacao entre as palavras 'Cozinha’ e
"Apagar’ o que pode indicar uma mé qualidade nos sinais gravados destas duas classes. O
resultado de classificacao assertiva de 99,5% com os erros concentrados em uma mesma

classificacao se mostrou um resultado satisfatério no reconhecimento da fala para o modelo
HMM com a base I.

4.1.3.2 Modelos finais HMM - Base 11

Para a segunda base de dados, de frases, os experimentos também possibilitaram a
analise com relagao aos impactos do limiar de recorte do siléncio e da variacao do nimero
de gaussianas. Para este modelo, a complexidade do sinal reconhecido foi elevada ao ser
produzidos mais fonemas do que a base de palavras.

Podemos perceber pela Tabela 16 que o sistema encontra a taxa de acerto de 100%
em dois dos experimentos realizados. Conforme observado durante os experimentos, o

custo computacional foi alto para o modelo com 15 gaussianas e ndo condiz com o objetivo

do trabalho.
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O modelo ideal do sistema de reconhecimento de fala com HMM encontrado foi o
modelo com 5 gaussianas e limiar do recorte de siléncio como 2,9614 x 107°7, onde a taxa

de acerto final também foi de 100%, mas com custo operacional aceitével.

Tabela 16 — Taxa de acerto dos modelos HMM - Base II - Frases.

1 gaussiana | 5 gaussianas | 15 gaussianas
2,9614 x 10792 86,5% 97,5% -
2,9614 x 10~% - 98% -
2,9614 x 1079 - 98,5% -
2,9614 x 1077 93% 100% 100%

Fonte: Do autor.

Para esta base de dados, foi realizado um experimento final com os piores pa-
rametros encontrados nos experimentos anteriores. O resultado dessa taxa de acerto foi
de 86,5% onde o sistema cometeu 27 erros na classificacdo. Como podemos observar na
matriz de confusao plotada para este experimento na Figura 27, todas as classificagoes

erradas foram entre as classes 'Desligar Ar Quarto’ e 'Ligar Ar Quarto’.
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Figura 27 — Matriz confusao para o experimento do HMM com os piores pardmetros -

Base II - Frases.
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Esta classificacao errada é a tinica encontrada em todos os experimentos realizados

no HMM com a Base II. A similaridade dos fonemas das duas classes é a origem dos erros

de classificagao para o modelo. Porém, ao se aumentar o nimero de gaussianas, o modelo

foi capaz de classificar estas classes mesmo com alta complexidade. A taxa de acerto de

100% encontrada no HMM ajustada com o menor recorte de siléncio e 5 gaussianas atinge

todos os objetivos propostos de reconhecimento de fala para a base II.
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4.2  Redes Neurais Convolucionais - CNN

Nesta se¢ao serao descritos e discutidos os resultados encontrados para os diferen-
tes experimentos realizados com base no modelo criado utilizando a CNN construida para
a tarefa de reconhecimento automatico da fala. Em todos os experimentos que serdo discu-
tidos nesta secao, a extragao de caracteristicas foi feita apos a etapa de pré-processamento

dos dados e anterior a rede convolucional projetada.

4.2.1 Limiar do recorte do siléncio

Para o modelo de redes neurais convolucionais, foi aplicada a técnica de remocao
do siléncio com o limiar fixo, utilizando-se o0 mesmo limiar que obteve melhor resultados
nos experimentos com HMM. Esta remocao foi aplicada aos sinais audios da base de
dados durante a fase de pré-processamento e preparacao dos audios antes da extragao de

caracteristicas e insercao dos sinais da entrada na rede neural convolucional projetada.

4.2.1.1 Limiar do recorte do siléncio - Base 1

Para os testes na base I, realizou-se a validacao cruzada mencionada anteriormente
e os dados foram separados em 5 folds para que todos os dados passassem pelos testes,
garantindo assim a exclusao do fator aleatoriedade, uma vez que todos os sinais de audios
da base I foram utilizados nos testes. Conforme visto anteriormente, em cada fold os dados
utilizados no treinamento nao se repetem nos testes.

Para cada fold, foi gerado uma matriz de confusao a fim de identificar os erros
de classificagdo que o sistema obteve. As linhas desta matriz indicam a classe a qual o
sinal de entrada do teste pertence e as colunas indicam a classe a qual a rede neural faz a
classificagdo. A Figura 28 apresenta os resultados obtidos no reconhecimento do sinal de

fala para a base de palavras.
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Figura 28 — Matriz confusao para o experimento com remocao de siléncio - Base I - Pa-

lavras.
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A partir desta matriz de confusao, é possivel observar que o maior erro de classifi-

cagao da rede foi com as palavras 'Quarto’ e ’Sala’. Como pode ser visto na Figura 28(a),

em uma mesma fold, a rede neural cometeu o mesmo erro 4 vezes durante a fase de testes.

No total, a rede classificou erroneamente estas classes 8 vezes, representando um total de

67% de todos os erros para esta base e com a aplicacdo da remocao de siléncio.

Foram executadas 15 épocas a etapa de treinamento para que a rede neural apren-

desse conforme o avanco das épocas e leituras dos audios de entrada. Os neurénios da

rede tiveram seus pesos ajustados para classificacbes com base na retropropagacao da
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rede neural.

A Figura 29 apresenta o desempenho da rede neural convolucional do presente

trabalho ao longo das épocas e a melhoria desta rede.

Figura 29 — Taxa de acerto do modelo CNN com a remocao de siléncio - Base I - Palavras.
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Fonte: Do autor.

Como pode ser observado, um fator comum a todas as folds é a melhora de de-
sempenho da rede a cada época avancada durante os primeiros treinamentos. O sistema
executa o primeiro treinamento sem nenhum preparo ou sem ter tido contato com a base
de dados em estudo, e a taxa de acerto se aproxima de 0. Com o passar das épocas, a

taxa de acerto do modelo caminha para perto de 1. Isso se deve ao ajuste dos parametros
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da CNN, que ocorre durante a fase de treinamento, pela retropropagacao.

Para o experimento da CNN com a remocao de siléncio para a Base I, a fold 1
teve o pior resultado de taxa de acerto, conforme pode ser visto pela matriz de confusao
na Figura 28(a). Mas, como pode ser observado na Figura 29(a), a rede chegou a atingir
a taxa de acerto de 1 entre as épocas 9 e 12, tendo uma queda posterior.

A Tabela 17 mostra os resultados obtidos em cada fold e a taxa de acerto média

do modelo com a remocao do siléncio para esta base de palavras foi de 94%.

Tabela 17 — Taxa de acerto do modelo com recorte de siléncio - Base I - Palavras.

Fold | Acertos | Erros | Taxa de acerto
1 36 4 0,900
2 37 3 0,925
3 39 1 0,975
4 38 2 0,950
5] 38 2 0,950
Total 188 12 0,940

Fonte: Do autor.

4.2.1.2 Limiar do recorte do siléncio - Base 11

Para os testes na Base II, também foi feita a validagao cruzada de 5 folds com o
mesmo objetivo de varredura de toda a base de audio de entrada.

Para cada fold foi plotada uma matriz de confusao a fim de identificar os erros de
classificacdo que o sistema obteve. A Figura 30 mostra os resultados obtidos no reconhe-

cimento do sinal de fala para a base de frases com a remocao do siléncio.
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Figura 30 — Matriz confusdo para o experimento com remocao de siléncio - Base II -
Frases.
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Fonte: Do autor.

A partir desta matriz de confusao é possivel observar que o maior erro de classifi-
cagao da rede foi com as frases 'Desligar Ar Quarto’ e 'Ligar Ar Quarto’. A rede neural
cometeu esse erro em diferentes folds somando 11 erros para essa classificagao e todos eles
sendo a entrada como ’'Ligar Ar Quarto’. Estes erros representam um total de 85 % de
todos os erros para a base II com a aplicagao da remocao de siléncio.

Foram executadas 15 épocas a etapa de treinamento para que a rede neural apren-
desse conforme o avango das épocas e leituras dos dudios de entrada. A Figura 31 mostra o

desempenho da rede neural convolucional do presente trabalho em comparacao ao avango
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das épocas e a melhora dessa rede.

Figura 31 — Taxa de acerto do modelo CNN com a remocao de siléncio - Base II - Frases.
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Fonte: Do autor.

Como pode ser observado, todas as folds da base de frases (Base II) levaram

aproximadamente 6 épocas para atingirem uma taxa de acerto préxima a 90%, enquanto

os experimentos da base de palavras (Base I) levaram aproximadamente 3 épocas para

atingirem esse mesmo nivel de taxa de acerto. Esse resultado evidencia o aumento de

complexidade ao se passar de uma classificacdo de palavras para uma classificacao de

frases, onde o volume de dados ao longo do tempo é maior.

Para o experimento da CNN com a remocao de siléncio para a Base 11, a fold 2 teve
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o melhor resultado de taxa de acerto, conforme pode ser visto pela matriz de confusao na
Figura 30(b). Na Figura 31(b), a rede atinge a taxa de acerto de 1 na época 12 e mantém
esse resultado até o final das épocas, definindo a taxa de acerto dessa fold como 1.

A Tabela 18 mostra os resultados obtidos em cada fold e a taxa de acerto média

do modelo com a remocao do siléncio para esta base foi de 93,5%.

Tabela 18 — Taxa de acerto do modelo com recorte de siléncio - Base II - Frases.

Fold | Acertos | Erros | Taxa de acerto
1 37 3 0,925
2 40 0 1,000
3 36 4 0,900
4 37 3 0,925
5 37 3 0,925
Total 187 13 0,935

Fonte: Do autor.

4.2.2 Distensao Temporal

Neste experimento, foi aplicada somente a técnica de distensao temporal, do inglés
time stretch com um fator de variagao aleatorio entre 0.8 e 1.2. Esta distensao foi aplicada
aos sinais de audio da base de dados durante a fase de pré-processamento e preparacao dos
audios antes da extragao de caracteristicas e insercao dos dudios na rede neural convoluci-
onal projetada. Ela foi variada aleatoriamente para cada dudio, de forma que o tamanho
do audio nao fosse alterado, apenas acelerado e desacelerado e o objetivo dessa distencao

é aumentar a base de dados para a rede.

4.2.2.1 Distensao Temporal - Base 1

Para os testes de distensao temporal na base I, realizou-se a validagao cruzada
com 5 folds. Todos os dados foram utilizados tanto na etapa de treinamento quanto na
etapa de testes, sem que um mesmo audio fosse utilizado nas duas etapas dentro de uma
mesma fold.

Para cada fold foi plotada uma matriz de confusao a fim de identificar os erros de
classificagdo que o sistema obteve. A Figura 32 mostra os resultados obtidos no reconhe-

cimento do sinal de fala para a base de frases com a remocao do siléncio.
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Figura 32 — Matriz confusao para o experimento com distensao temporal - Base I - Pala-
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A partir desta matriz de confusao é possivel observar que os erros de classificacao

ficaram divididos entre a confusao entre ’Sala’ e ’Quarto’ e a confusao entre 'Cozinha’ e

"Acender’ onde cada confusao ocorreu 2 vezes e representam 50% dos 4 erros. Ressalta-se

que, no teste com remocao de siléncio para a Base I, o maior prejuizo para a taxa de

acerto da rede foi a confusao entre ’Sala’ e ’Quarto’.

Foram executadas 15 épocas a etapa de treinamento para que a rede neural apren-

desse conforme o avango das épocas e reconhecimento de palavras a partir dos audios

de entrada. A Figura 33 mostra o desempenho da rede neural convolucional do presente
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trabalho em comparacao ao avanco das épocas e melhora desta rede.

Figura 33 — Taxa de acerto do modelo CNN com a distensao temporal - Base I - Palavras.
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Fonte: Do autor.

Como pode ser observado nas Figuras 33(b), 33(c) e 33(e), as 3 folds alcangaram
a taxa de acerto 1 no sistema com o avango das épocas e assim se mantiveram até o final.
Podemos observar que entre as épocas 4 e 6, a rede neural atingiu uma taxa de acerto
préoxima de 90%, mostrando um leve atraso da rede para atingir uma taxa de acerto
proxima daquela atingida no experimento de remocao de ruido. Mas este experimento
mostra uma melhor taxa de acerto ao final das épocas.

A Tabela 19 mostra os resultados obtidos em cada fold e a taxa de acerto média
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do modelo com a distensao temporal para esta base foi de 98%.

Tabela 19 — Distensao temporal - Base I - Palavras.

Fold | Acertos | Erros | Taxa de acerto
1 39 1 0,975
2 40 0 1,000
3 40 0 1,000
4 37 3 0,925
5] 40 0 1,000
Total 196 4 0,980

Fonte: Do autor.

4.2.2.2 Distensao Temporal - Base 11

Para os testes de distensao temporal na base II, também foi feita a validacao
cruzada com 5 folds. Para cada fold foi plotada uma matriz de confusao a fim de identificar
os erros de classificagdo que o sistema obteve. A Figura 34 mostra os resultados obtidos

no reconhecimento do sinal de fala para a base de frases com a remocao do siléncio.
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Figura 34 — Matriz confusao para o experimento com distensao temporal - Base II - Frases.
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Fonte: Do autor.

Assim como no experimento de remocao de siléncio, a rede apresentou um baixo
desempenho com um nimero elevado de erros na confusao entre as classes 'Ligar Ar
Quarto’ e 'Desligar Ar Quarto’. Neste experimento, a confusdo em questao apresentou um
total de 9 erros. Também podemos observar que a confusao teve a mesma origem do sinal
de dudio de entrada, sendo a classe de ’'Ligar Ar Quarto’.

Foram executadas 15 épocas na etapa de treinamento para que a rede neural
melhorasse o seu desempenho com a retropropagacao. A Figura 35 mostra o desempenho
da rede neural convolucional do presente trabalho em comparacao ao avanco das épocas

e a melhora desta rede.
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Figura 35 — Taxa de acerto do modelo CNN com
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Fonte: Do autor.

Como pode ser observado na Figura 35(c), a fold 3 obteve o pior resultado para o

experimento de distensao temporal aplicado a Base II. Nesta fold, a rede levou 13 épocas

para atingir uma taxa de acerto de 0,9 na tarefa de classificagdo e reconhecimento do sinal

da fala. Esse atraso especifico dessa fold também pode ser observado no experimento de

remocao de siléncio com as mesmas confusoes na classificagao.

A Tabela 20 mostra os resultados obtidos em cada fold e a taxa de acerto média

do modelo com a distensao temporal para esta base de frases foi de 94,5%.
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Tabela 20 — Distensao temporal - Base II - Frases.

Fold | Acertos | Erros | Taxa de acerto
1 38 2 0,950
2 39 1 0,975
3 36 4 0,900
4 38 2 0,950
5 38 2 0,950
Total 189 11 0,945

Fonte: Do autor.

4.2.3 CNN com remocao do siléncio e distensao temporal

Conforme mencionado no inicio desta secdo, a extracdo de caracteristicas é reali-
zada apds o tratamento de audio durante a etapa de pré-processamento. No experimento
da remocao do siléncio, estas caracteristicas foram extraidas do sinal sem o siléncio e, no
experimento de distensdo temporal, as caracteristicas foram extraidas do sinal alterado
temporalmente.

Estas caracteristicas extraidas formam a entrada na primeira camada convolucio-
nal, ou a entrada na rede neural convolucional uma vez que a camada convl é a primeira
camada da rede. Diferentemente dos primeiros experimentos em que o sinal original foi
alterado por apenas uma técnica, neste experimento, a rede neural atuou com a aplicacao
de ambas as técnicas combinadas. Primeiramente, foi aplicada a distensao temporal para

aumentar a base e depois removido o siléncio dos sinais.

4.2.3.1 CNN com remocao do siléncio e distensao temporal - Base [

Para os testes na base I, foi feita a validagao cruzada mencionada anteriormente e
os dados foram separados em 5 folds.Para cada fold foi plotada uma matriz de confusao
a fim de identificar os erros de classificacdo que o sistema obteve.

A Figura 36 mostra os resultados obtidos no reconhecimento do sinal de fala para

a base de palavras com ambas as técnicas combinadas.
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Figura 36 — Matriz confusao para o experimento da rede com remocao do siléncio e dis-
tensao temporal - Base I - Palavras.
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Como pode ser visto nas Figuras 36(b) e 36(d) os tunicos erros que a rede neural

convolucional cometeu foram a mesma confusao observada nos experimentos anteriores.

A classificacdo errada entre as palavras 'Sala’ e ’"Quarto’ representou aqui 100% dos erros

do sistema. Ao considerar todas as folds, dos 200 testes realizados, o sistema cometeu

este erro um total de 3 vezes. Isso pode identificar uma proximidade em algumas das

caracteristicas que compdem estas classes, uma vez que nenhuma outra confusao ocorreu

no experimento

sob os dados crus.

Foram executadas 15 épocas na etapa de treinamento para que a rede neural
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melhorasse o seu desempenho com a retropropagacao. A Figura 37 mostra o desempenho

da rede neural convolucional com ambas técnicas aplicadas sob dados de entrada.

Figura 37 — Taxa de acerto do modelo CNN scom remocao do siléncio e distensdo temporal
- Base I - Palavras.
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Fonte: Do autor.

Como pode ser observado na Figura 37, a rede neural projetada sob os dados
alcanca uma taxa de acerto aproximadamente de 0,8 em poucas épocas e em 3 das 5 folds
o sistema atinge a taxa de acerto de 1 por volta da décima época. Isso indica uma réapida
adequacgao dos neurénios sob os dados tratados. Apds remocao de siléncio e distensao

temporal aplicadas, a rede, através da retropropagacao, consegue fazer um rapido ajuste
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dos filtros (neurdnios da rede) para que os mesmos aprendam a classificar corretamente
as classes do modelo.
A Tabela 21 mostra os resultados obtidos em cada fold e a taxa de acerto média

do modelo com a classificacao sob os dados tratados para esta base foi de 98,5%.

Tabela 21 — CNN com remocao do siléncio e distensao temporal - Base I - Palavras.

Fold | Acertos | Erros | Taxa de acerto
1 40 0 1,000
2 39 1 0,975
3 40 0 1,000
4 38 2 0,950
5] 40 0 1,000
Total 197 3 0,985

Fonte: Do autor.

Durante os experimentos realizados neste trabalho, observou-se que o modelo de
rede neural convolucional obteve seu melhor desempenho ao ser treinado com espectro-
gramas construidos a partir de sinais de audio com a aplicagao de remocao de siléncio
e distensao temporal. A taxa de acerto atingiu 98,5% nesse cendrio, superando os resul-
tados obtidos com as técnicas de pré-processamento sendo aplicadas separadamente, que
variaram entre 93,5% e 94,5%.

Os resultados indicados na Tabela 22 que a combinacao das técnicas de remocao
de siléncio e distensdo temporal levou ao melhor desempenho da rede convolucional. A
remocao do siléncio contribuiu para eliminar trechos com baixa relevancia acustica, redu-
zindo redundancias e aumentando a relacao sinal-ruido, enquanto a distensao temporal
atuou como uma forma de data augmentation, ampliando a diversidade do conjunto de
treinamento e tornando o modelo mais robusto a variacoes na velocidade de fala entre
diferentes locutores. Assim, a aplicacao conjunta dessas técnicas produziu entradas mais
consistentes e informativas para a CNN, favorecendo a extracao de padroes espectro-
temporais mais discriminativos e, consequentemente, resultando em uma maior taxa de

acerto na tarefa de classificacao.

Tabela 22 — Taxa de acerto final do modelo - Base I - Palavras.

Experimento Taxa de acerto do modelo
CNN com Remocao do siléncio 0,940
CNN com Distensao temporal 0,980
CNN com remocao do siléncio e distensao temporal 0,985

Fonte: Do autor.

Este modelo de rede foi projetado com os hiperparametros ajustados para fazer a

classificacao de um niimero baixo de classes e uma base de dados relativamente pequena
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de 150 sinais de dudio. A rapida adequacao da rede ao treinamento para chegar em taxa
de acertos elevadas mostra um resultado da rede satisfatério na classificacao de palavras

e frases.

4.2.3.2 CNN com remocgao do siléncio e distensao temporal - Base 11

Para os testes na Base II, os dados tratados foram separados em 5 folds para
realizar a validacao cruzada. Para cada fold foi plotada uma matriz de confusao a fim de
identificar os erros de classificagdo que o sistema obteve.

A Figura 38 mostra os resultados obtidos no reconhecimento do sinal de fala para

a base de palavras com remocao do siléncio e distensao temporal.
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Figura 38 — Matriz confusao para o experimento da rede com remocao do siléncio e dis-
tensao temporal - Base II - Frases.
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Fonte: Do autor.

Como pode ser visto na Figura 38, com excecao da fold 1, todas as folds cometeram
a confusdo entre a entrada da classe "Ligar Ar Quarto'pela classe "Desligar Ar Quarto'.
No total, 7 erros com esta confusdao foram evidenciados ao longo dos 200 treinamentos.
Assim como nos demais experimentos, esta confusao pode ser explicada pela similaridade
entre as classes e, consequentemente, pela similaridade entre as caracteristicas extraidas
dos sinais de dudio destas frases.

Foram executadas 15 épocas a etapa de treinamento para que a rede neural me-

lhorasse o seu desempenho com a retropropagacao sob os dados tratados. A Figura 39
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mostra o desempenho da rede neural convolucional com tratamento dos dados de entrada.

Figura 39 — Taxa de acerto do modelo CNN com remocao do siléncio e distensao temporal
- Base II - Frases.
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Como pode ser observado na Figura 39, assim como nos experimentos anteriores,

a rede neural projetada sob os dados tratados precisa de um nimero maior de épocas para

atingir uma mesma taxa de acerto quando se compara o desempenho da base I e da base

II. A complexidade de uma frase é maior que a de uma palavra e, com isso, os neurdnios

da rede necessitam de mais treinamento para identificar as caracteristicas de mais alto

nivel.
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A Tabela 23 mostra os resultados obtidos em cada fold e a taxa de acerto média

do modelo atuando sob os dados tratados para a Base II foi de 96,5%.

Tabela 23 — CNN com remocao do siléncio e distensao temporal - Base II - Frases.

Fold | Acertos | Erros | Taxa de acerto
1 40 0 1,000
2 39 1 0,975
3 37 3 0,925
4 39 1 0,975
5 38 2 0,950
Total 193 7 0,965

Fonte: Do autor.

Este modelo de rede atuando sob os dados apés a aplicacao das técnicas de remocao
do siléncio e distensao temporal mostrou a melhor taxa de acerto para a base de palavras
(Base II) com um aumento de 3% em relac¢do ao experimento de remogao de siléncio e um
aumento de 2% em relacao ao experimento de distensdo temporal. A Tabela 24 apresenta
uma comparacao da taxa de acerto da rede neural convolucional para a base de frases e
evidencia o melhor resultado para o modelo atuando sob os dados com ambas técnicas

aplicadas aos sinais de audio.

Tabela 24 — Taxa de acerto final do modelo - Base II - Frases.

Experimento Taxa de acerto do modelo
CNN com Remocao do siléncio 0,935
CNN com Distensao temporal 0,945
CNN com remocao do siléncio e distensao temporal 0,965

Fonte: Do autor.

Assim como para a base I, o modelo de rede foi projetado com os hiperparametros
ajustados para fazer a classificacdo de um ntimero baixo de classes e uma base de dados
de 150 sinais de dudio, onde 110 vao para o treinamento e 40 para a etapa de testes. Apds
separar 26% dos dados para teste, a rede neural tem um baixo ntimero de amostras para
realizar o treinamento e aprender os padroes da rede, visto que cada sinal de audio foram
gravados somente 30 elocucoes.

Para o reconhecimento de frases, a complexidade e nivel das classes se tornam mais
altos para que a rede faca a classificacdo. Em comparacgao a base I, a rede apresentou um
melhor desempenho com a classificacao de palavras devido ao nivel de caracteristicas
(menor nimero de fonemas, duracao de fala menor, menos pitches) ser de menor comple-
xidade.

A rapida adequacgao da rede ao treinamento para chegar em taxa de acertos ele-

vadas mostra um resultado satisfatorio da rede para reconhecimento de palavras, com
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excecao dos erros de frases com alta verossimilhanca. A classificagdo com uma taxa de

acerto de 96,5% em cima de dados tratados mostrou um bom desempenho do sistema.

4.3 Consideragoes parciais

Comparando-se os resultados obtidos uma comparacao entre o modelo oculto de
Markov (HMM) e o modelo rede neural convolucional (CNN), pode-se perceber a ade-
quacao de cada modelo as bases I e II e como os modelos se comportaram para a base de
palavras e a base de frases.

A Tabela 25 mostra as taxa de acertos obtidas em cada modelo para cada base de
palavras. Como podemos perceber, o modelo HMM se mostrou mais eficaz para as classes

de palavras e para a classe de frases, contidas na Base I e na Base II, respectivamente.

Tabela 25 — Comparativo entre os modelos HMM e CNN.

HMM | CNN
Base I 99.5% | 98,5%
Base IT 100% | 96,5%

Fonte: Do autor.

O modelo HMM obteve apresentou melhores resultados e classificagdo para a base
de frases em comparacao a base de palavras. A Base II pode ser considerada mais complexa
pelo maior nimero de fonemas e similaridade de alguns dentro dessa classe. J& o modelo
CNN obteve a melhor taxa de acerto para a base de palavras e uma menor taxa de acerto
para a base de frases.

As matrizes de confusao obtidas nos experimentos da base I mostraram que o
modelo HMM cometeu todos os erros na classificacao entre ’Apagar’ e ’Cozinha’ enquanto
o modelo CNN cometeu todos os seus erros de classificagdo na confusao entre as classes
‘Sala’ e "Quarto’. Uma vez que a mesma base de dados foi utilizada nos dois modelos,
nao podemos atrelar os erros do sistema a base de audios gravados. O modelo HMM se
mostrou mais eficaz, com uma taxa de acerto de 99,5%.

Para os experimentos realizados com a base II, as matrizes de confusao de ambos os
modelos HMM e CNN identificaram todos os erros na confusao entre as mesmas classes
de ’Ligar Ar Quarto’ e 'Desligar Ar Quarto’. Uma vez que o modelo HMM atingiu a
taxa de acerto de 100% para a base II e essa foi a mesma utilizada no modelo CNN, nao
podemos atrelar os erros do sistema a base de audios gravada. O modelo HMM se mostrou

novamente mais eficaz no reconhecimento de fala no presente trabalho.
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5 Conclusao e trabalhos futuros

No presente trabalho foram realizados experimentos em dois modelos de reconhe-
cimento da fala a fim de apresentar um estudo comparativo entre os mesmos. Foi imple-
mentado um sistema de reconhecimento de fala baseado no HMM através do aprendizado
de maquina e um sistema de reconhecimento baseado nas redes neurais CNN através do
aprendizado profundo.

Para os experimentos de classificacao utilizando o HMM, a remocéao de siléncio se
mostrou crucial ao funcionamento do modelo e foi observado que o nimero de gaussianas
deste modelo define o comportamento dele no reconhecimento tanto na base I que é
composta de palavras quanto na base II composta por frases curtas. Para uma base
de 4dudios de menor complexidade, o nimero de 5 gaussianas foi utilizado, levando em
consideracao a nao necessidade de alta complexidade e alto custo operacional.

Para os experimentos de classificacao utilizando o CNN, a remocao do ruido e a
distensao temporal foram utilizadas, mas o melhor desempenho encontrado foi em cima
dos dados que tém as duas técnicas combinadas. Apds a insercao dos sinais de dudio na
rede neural, a rede mostrou uma rapida adaptacao dos parametros dos neurénios durante
as etapas de treinamento.

Por fim, os resultados obtidos pelos experimentos apresentados no Capitulo 4 mos-
traram que ambos os modelos atingiram uma taxa de acerto média de 98,65%. Isso significa
ter, em média, 3 erros de classificacdo a cada 200 elocugoes inseridas nos sistemas. Isso o
torna eficaz e aplicavel aos sistemas de reconhecimento de fala propostos. O modelo HMM
se mostrou mais eficaz do que o modelo CNN para ambas as bases e chegou a atingir a

acuracia de 100% com custo operacional baixo para a Base II.

5.1 Etapas futuras

No sistema de reconhecimento dependente de locutor, todo treinamento deve ser
realizado estritamente com sinais de audio provenientes deste locutor. Tal fato limita
algumas aplicagoes quando se deseja atrelar uma acao ou comando a qualquer individuo
com acesso a esta aplicacao. Como proposta para os proximos trabalhos, a aplicagao destes
sistemas em reconhecimento de fala independente de locutor.

Uma segunda proposta de continuidade é a aplicacao dos modelos a bases de dados
maiores para verificagdo do fenémeno de overfitting. A utilizacdo de uma base maior pode
obter uma acurdcia mais elevada, evidenciando a influéncia do owverfitting nos modelos
aplicados.

Por fim, a possivel integracao do classificador treinado a um sistema pratico que

acione dispositivos com comandos reais de voz valida a aplicacao em contexto real.
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