
UNIVERSIDADE FEDERAL DE OURO PRETO

INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS

DEPARTAMENTO DE COMPUTAÇÃO

SAMUEL DA SILVA

CRIPTOGRAFIA E SEGURANÇA APLICADA À INDÚSTRIA TÊXTIL:
BLOCKCHAIN APLICADA NA AUTENTICAÇÃO DE DOCUMENTOS

Ouro Preto, MG
2025

SAMUEL DA SILVA

CRIPTOGRAFIA E SEGURANÇA APLICADA À INDÚSTRIA TÊXTIL:

BLOCKCHAIN APLICADA NA AUTENTICAÇÃO DE DOCUMENTOS

Monografia apresentada ao Curso de Ciência da Com-
putação da Universidade Federal de Ouro Preto como
parte dos requisitos necessários para a obtenção do grau
de Bacharel em Ciência da Computação.

Orientador: Prof. Dr. Carlos Frederico Marcelo
da Cunha Cavalcanti

Ouro Preto, MG
2025

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE OURO PRETO

REITORIA
INSTITUTO DE CIENCIAS EXATAS E BIOLOGICAS

DEPARTAMENTO DE COMPUTACAO

FOLHA DE APROVAÇÃO

SAMUEL DA SILVA

Criptografia e Segurança aplicada à indústria têxtil: Blockchain aplicada na autenticação de documentos

Monografia apresentada ao Curso de Ciência da Computação da Universidade Federal
de Ouro Preto como requisito parcial para obtenção do título de Bacharel em Ciência da Computação

Aprovada em 08 de Setembro de 2025.

Membros da banca

Doutor Carlos Frederico Marcelo da Cunha Cavalcanti (Orientador) - Universidade Federal de Ouro Preto
Doutor Ricardo Augusto Rabelo Oliveira (Examinador) - Universidade Federal de Ouro Preto

Doutor Fernando Cortez Sica (Examinador) - Universidade Federal de Ouro Preto

Prof. Dr. Carlos Frederico Marcelo da Cunha Cavalcanti, orientador do trabalho, aprovou a versão final e autorizou seu
depósito na Biblioteca Digital de Trabalhos de Conclusão de Curso da UFOP em 28/10/2025.

Documento assinado eletronicamente por Carlos Frederico Marcelo da Cunha Cavalcanti, PROFESSOR DE
MAGISTERIO SUPERIOR, em 18/12/2025, às 16:08, conforme horário oficial de Brasília, com fundamento
no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0 ,
informando o código verificador 1034774 e o código CRC AE2F9525.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.008731/2025-57 SEI nº 1034774

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35402-163
Telefone: 3135591692 - www.ufop.br

Este trabalho é dedicado primeiramente à minha mãe Neide Xavier da Silva e meu pai Edson
José da Silva que sempre me apoiaram. Em especial dedico a você Ane Karoline, que nunca

deixemos de estar lado a lado.

Agradecimentos

A todos os professores do Departamento de Ciência da Computação, que sempre propor-
cionaram saber e conhecimento inigualáveis.

Aos meus amigos e colegas da academia, com quem compartilho objetivos e sonhos. Aos
meus amigos de infância, que acompanharam, mutuamente, nosso desenvolvimento pessoal e as
bifurcações dos caminhos

A todos os profissionais do Instituto de Ciências Exatas e Biológicas, que tornaram
possível a existência de um ambiente de estudos excelente.

A cada escolha que fazemos, mil outras deixamos de fazer. A todos que ainda assim
cruzaram o meu destino, sou grato por tê-los conhecido.

"Tudo o que temos de decidir é o que fazer com o tempo que nos é dado." (TOLKIEN, 1954,
p. 52)

Resumo
A fim de buscar uma forma eficiente de gestão de transações digitais, esta pesquisa explora o uso
da tecnologia blockchain e Smart Contract como soluções para garantir segurança e confiabilidade
em ambientes B2B (Business-to-Business). Com o objetivo de atender a esses requisitos, propõe-
se a implementação de um sistema baseado em uma blockchain permissionada e privada, capaz de
armazenar acordos firmados entre clientes e fornecedor, possibilitando auditorias detalhadas de
requisições e assegurando registros imutáveis de transações realizadas. O estudo se concentra na
aplicabilidade prática dessa tecnologia em contextos corporativos, destacando como os contratos
inteligentes podem automatizar e reforçar a integridade de processos negociais. Além disso, a
solução visa promover maior transparência nas relações comerciais, reduzir a necessidade de
intermediários e mitigar riscos operacionais, contribuindo, para uma infraestrutura digital mais
robusta e escalável.

Palavras-chave: autenticação digital, blockchain, smart contract.

Abstract
In order to pursue an efficient approach to managing digital transactions, this research explores the
use of blockchain technology and Smart Contracts as solutions to ensure security and reliability in
B2B (Business-to-Business) environments. To meet these requirements, the implementation of a
system based on a private and permissioned blockchain is proposed, capable of storing agreements
established between clients and suppliers, enabling detailed audits of requests and ensuring
immutable records of completed transactions. The study focuses on the practical applicability of
this technology in corporate contexts, highlighting how smart contracts can automate tasks and
strengthen the integrity of business processes. Furthermore, the proposed solution aims to foster
greater transparency in commercial relationships, reduce the need for intermediaries, and mitigate
operational risks, thereby contributing to a more robust and scalable digital infrastructure.

Keywords: digital authentication, blockchain, smart contract.

Lista de Figuras

Figura 3.1 – Fluxo de requisições - Do próprio autor (2025) 8
Figura 3.2 – Fluxograma de sucesso de inserção de solicitação - Do próprio autor (2025) 10
Figura 4.1 – Contêineres docker em execução - Do próprio autor (2025) 19
Figura 4.2 – Página de envio de pedidos - Do próprio autor (2025) 20
Figura 4.3 – Página de revisão de pedidos - Do próprio autor (2025) 21
Figura 4.4 – Página de envio de comprovantes de entrega - Do próprio autor (2025) . . . 21
Figura 4.5 – Teste da rota /auth - Do próprio autor (2025) 22
Figura 4.6 – Teste da rota /auth - Do próprio autor (2025) 23
Figura 4.7 – Teste da rota /order/submit - Do próprio autor (2025) 23
Figura 4.8 – Teste da rota /order/submit - Do próprio autor (2025) 24
Figura 4.9 – Teste da rota /order/submit - Do próprio autor (2025) 24
Figura 4.10–Teste da rota /delivery/submit - Do próprio autor (2025) 24
Figura 4.11–Teste da rota /delivery/submit - Do próprio autor (2025) 25
Figura 4.12–Teste da rota /order/review - Do próprio autor (2025) 25
Figura 4.13–Teste da rota /delivery/approve - Do próprio autor (2025) 25
Figura 4.14–Teste de estresse/carga na blockchain - Do próprio autor (2025) 26
Figura 4.15–Teste de estresse/carga no IPFS - Do próprio autor (2025) 26
Figura 4.16–Teste de estresse/carga no Servidor externo - Do próprio autor (2025) 27
Figura 4.17–Benchmark de desempenho - Do próprio autor (2025) 27
Figura A.1– Inicialização de nó principal – do próprio autor (2025) 34
Figura A.2– Inicialização de nó secundário – do próprio autor (2025) 35
Figura A.3– Inicialização de Streams – do próprio autor (2025) 36
Figura B.1 – Rota /’login’ – do próprio autor (2025) . 37
Figura B.2 – Encriptação e Decriptação de dados – do próprio autor (2025) 38
Figura B.3 – Recuperação de dados na IPFS – do próprio autor (2025) 38
Figura B.4 – Submissão de pedido – do próprio autor (2025) 39
Figura B.5 – Submissão de Entrega – do próprio autor (2025) 40
Figura B.6 – Revisão de Pedido – do próprio autor (2025) 41
Figura B.7 –Aprovação de Entrega – do próprio autor (2025) 42
Figura C.1 –Token de autenticação – do próprio autor (2025) 43
Figura C.2 – Evento de submissão de pedido – do próprio autor (2025) 44
Figura C.3 – Rota proxy de submissão de pedido – do próprio autor (2025) 45
Figura C.4 – Métodos de submissão e obtenção de dados na blockchain – do próprio autor

(2025) . 46
Figura C.5 – Método obtenção de pedidos na API NOMUS – do próprio autor (2025) . . 47

Lista de Tabelas

Tabela 3.1 – Tabela de rotas do Servidor de Autenticação 12
Tabela 3.2 – Tabela de rotas do Servidor de requisição 12
Tabela 3.3 – Tabela de rotas do Servidor de requisição - Cliente (views) 13
Tabela 3.4 – Tabela de rotas do Servidor de requisição - Cliente (proxy) 13
Tabela 3.5 – Tabela de rotas do Servidor de requisição - Financeiro (views) 13
Tabela 3.6 – Tabela de rotas do Servidor de requisição - Financeiro (proxy) 14
Tabela 3.7 – Tabela de rotas do Servidor de requisição - Entregador (views) 14
Tabela 3.8 – Tabela de rotas do Servidor de requisição - Entregador (proxy) 14
Tabela 3.9 – Tabela de rotas do Servidor Integração - Apoio 15
Tabela 3.10–Tabela de rotas do Servidor integração - Fluxo de pedidos 15
Tabela 3.11–Tabela de rotas do Servidor integração - Fluxo de entregas 16
Tabela 4.1 – Benckmark comparativo de componentes 27
Tabela 4.2 – Tabela de comparativo de desempenho . 28
Tabela 4.3 – Comparativo de abordagens em trabalhos correlatos 28

Lista de Abreviaturas e Siglas

API Application Programming Interface

ERP Enterprise Resource Planning

JSON JavaScript Object Notation

PoS Proof of Stake ou Prova de participação

PoW Proof of Work ou Prova de trabalho

REST Interface de programação de aplicações (API ou API web)

UFOP Universidade Federal de Ouro Preto

HTTP Hypertext Transfer Protocol

WSGI Web Server Gateway Interface

Sumário

1 Introdução . 1
1.1 Justificativa . 1
1.2 Objetivos . 2

1.2.1 Objetivo geral . 2
1.2.2 Objetivos específicos . 2

1.3 Organização do trabalho . 3
2 Revisão Bibliográfica . 4

2.1 Trabalhos relacionados . 4
2.2 Fundamentação Teórica . 5

3 Desenvolvimento . 8
3.1 Arquitetura . 8

3.1.1 Cenário de execução . 9
3.2 Especificação de requisitos . 10

3.2.1 Requisitos funcionais . 11
3.2.2 Requisitos não funcionais . 11

3.3 Rotas . 12
3.3.1 Servidor de autenticação . 12
3.3.2 Servidor de requisição . 12
3.3.3 Servidor de integração . 16

3.4 Implementação . 16
3.4.1 Servidor de autenticação . 16
3.4.2 Servidor de integração . 17
3.4.3 Servidor de requisição . 18

4 Resultados . 19
4.1 Validação da Infraestrutura . 19
4.2 Ciclo de Vida de um Pedido . 20
4.3 Testes de rotas e Benchmark de desempenho 22

5 Considerações Finais . 29
5.1 Conclusão . 29
5.2 Trabalhos Futuros . 30

Referências . 31

Anexos 33
ANEXO A Inicialização . 34

ANEXO B Servidor de Integração . 37
ANEXO C Servidor de Requisição . 43

1

1 Introdução

O avanço tecnológico contínuo exige novas formas de autenticação, registro e armazena-
mento digital. Os métodos tradicionais, como registros físicos e autenticação cartorial, em uso
no Brasil há mais de 460 anos (ANOREG-CE, 2022), têm se mostrado cada vez menos eficientes
diante das demandas contemporâneas. Entre os principais problemas enfrentados, destacam-se
o alto consumo de tempo de trabalho, vulnerabilidades relacionadas à espionagem industrial,
facilidade de adulteração, extravio, deterioração e a constante necessidade de espaços físicos para
armazenamento. Nesse cenário, tornam-se prioridades a eficiência e a segurança da informação,
e a adoção de soluções digitais. Entretanto, a sofisticação das fraudes também evoluiu para atingir
novos patamares.

Com a migração de operações contratuais e financeiras para o meio digital, diversas
fraudes ocorrem ano após ano. De acordo com (CNN, 2024), um grupo criminoso aplicou um
golpe milionário em Hong Kong por meio de falsificação da assinaturas de voz e imagem de
membros da diretoria financeira da empresa vítima. Situações como essa reforçam a necessidade
de novas políticas de segurança e sistemas de validação mais eficientes no meio empresarial.

Originalmente cunhado por Nick Szabo nos anos 90, o termo smart contract refere-se
à automação de contratos legais. Atualmente, smart contracts também podem ser definidos
como programas autoexecutáveis operando em uma blockchain, avaliando regras pré-definidas e
realizando ações automáticas (tasks) caso condições sejam atingidas (ZOU et al., 2021).

Neste contexto, a tecnologia blockchain, também conhecida como livro-razão, surge
como uma solução promissora para o problema, possibilitando a criação de bancos de dados
transparentes e confiáveis na maioria das condições. Por meio de uma arquitetura distribuída e
descentralizada, são garantidas a imutabilidade das informações, rastreamento, prevenção contra
adulterações ou perdas de dados. A propagação de novos estados depende de um consenso entre
nós participantes da rede PoW 1, PoS2 ou de nós avaliadores em caso de redes permissionadas
(PILKINGTON, 2016).

1.1 Justificativa

Erros, fraudes e falsificações em contratos geram prejuízos financeiros incalculáveis todos
os anos, afetando tanto a credibilidade das partes quanto a estabilidade de processos internos.
Nesse contexto, o reconhecimento digital legalmente válido das partes envolvidas mostra-se
1 PoW Proof of Work: mecanismo de consenso utilizados em redes blockchain que valida transações por meio da

resolução de problemas matemáticos complexos, exigindo alto poder computacional.
2 PoS Proof of Stake: mecanismo de consenso utilizados em redes blockchain que seleciona validadores com base

na quantidade de tokens em posse e em stake, em vez de poder computacional.

2

fundamental para garantir a segurança e a confiabilidade em transações contratuais.

Na indústria de manufatura, em especial, a adoção de métodos digitais de autenticação e
validação de transações pode mitigar o risco de adulteração, extravio e retrabalho. Além disso,
possibilita rastreabilidade mais eficiente e auditorias mais ágeis, assegurando transparência entre
as partes. Assim, a autenticação digital de documentos de contratos de manufatura proposta
neste trabalho visa resguardar os envolvidos e assegurar o cumprimento dos termos previamente
assentidos.

Especificamente no segmento têxtil voltado à confecção de uniformes industriais, os
desafios relacionados à transparência extrapolam as etapas de manufatura. A produção é destina
ao uso pessoal de terceiros e as aquisições ocorrem por meio de intermediários, se estabelece um
cenário em que a desconfiança entre as partes tende a ser a norma. Para mitigar ativamente esse
ponto de ruptura, se torna necessária a adoção interfaces e órgãos mediadores imparciais.

1.2 Objetivos

A seguir são apresentados o objetivo geral e os específicos deste trabalho.

1.2.1 Objetivo geral

A pesquisa proposta tem como objetivo desenvolver um protótipo de aplicação validadora
de transações cliente-servidor, utilizando smart contracts autoexecutáveis baseada em uma
infraestrutura blockchain privada e permissionada, fundamentado em testes e na análise de dados
coletados em uma indústria têxtil, Maximiano Uniformes e Confecções, na situada região dos
Inconfidentes onde serão aplicados testes de funcionalidade através de abordagens qualitativas.
O estudo busca garantir autenticidade e segurança em transações de equivalência contratual,
valendo-se da tecnologia blockchain e integrando a API REST fornecida pelo sistema de gestão
empresarial NOMUS, já adotado pela empresa.

1.2.2 Objetivos específicos

Pretende-se, primeiramente, identificar trabalhos correlatos e aplicações semelhantes,
bem como definir os requisitos necessários à construção de uma arquitetura adequada. Em
seguida, busca-se planejar a integração e a entrega contínua de funcionalidades, ao mesmo tempo
em que se organizam e implementam as aplicações propostas. Para avaliar a eficácia do que foi
desenvolvido, serão realizados testes de usabilidade, culminando na apresentação do protótipo.

3

1.3 Organização do trabalho

Este documento encontra-se estruturado em cinco capítulos. Esse capítulo introduz o
trabalho situando o problema de pesquisa e descrevendo os objetivos. Em seguida, o Capítulo 2
reúne a revisão bibliográfica e o embasamento teórico, apresentando conceitos fundamentais.
No Capítulo 3, aborda-se a metodologia empregada e os procedimentos de desenvolvimento.
Os resultados e discussões são apresentados no Capítulo 4, contemplando análises e reflexões
sobre o protótipo proposto. Por fim, no Capítulo 5, expõem-se as conclusões gerais do estudo e
as possibilidades de trabalhos futuros.

4

2 Revisão Bibliográfica

Neste capítulo, são apresentados os trabalhos que fundamentam esta pesquisa, seguidos
pelos conceitos teóricos que sustentam a arquitetura desenvolvida.

2.1 Trabalhos relacionados

A literatura sobre o uso de blockchain para validação de documentos e processos tem se
expandido, com abordagens que variam em complexidade e escopo de aplicação. A análise desses
trabalhos é fundamental para contextualizar as decisões de design e a contribuição específica
desta monografia em relação ao estado-da-arte da tecnologia.

A necessidade de garantir a autenticidade de documentos digitais é um tema recorrente.
Em (CHAUHAN et al., 2021), por exemplo, é proposto um framework genérico que explora o uso
de funções hash e blockchain para facilitar o processo de autenticação, abordando o problema de
forma mais ampla. Uma aplicação mais específica é apresentada em (SOMBRIO; ANTUNES;
CASAGRANDE, 2024), onde é proposta uma solução para a autenticação de certificados e
diplomas em instituições de ensino. Este trabalho utiliza a mesma plataforma de blockchain
permissionada adotada aqui, a MultiChain, demonstrando sua viabilidade para criar registros
imutáveis de documentos em cenários de baixa complexidade.

Em contraste, o estado da arte para cenários de alta complexidade, como as cadeias de
suprimentos, aponta para soluções mais elaboradas. O framework proposto em (MANOHARAN,
2025) para a rastreabilidade de documentos na indústria química representa uma abordagem
tecnologicamente mais avançada. Este trabalho utiliza a plataforma Hyperledger Fabric, um
padrão para aplicações de blockchain empresarial, que oferece suporte nativo a smart contracts
complexos e canais privados. Isso permite que a lógica de negócio seja executada de forma
distribuída e validada pela própria rede (on-chain). Esta solução, foca em criar um sistema de
rastreabilidade completo e trustless1, onde a confiança é depositada no protocolo da blockchain,
e não em um intermediário.

A principal contribuição deste trabalho não reside em um avanço no estado-da-arte
da tecnologia blockchain em si, mas em seu valor como um estudo de caso sobre a aplicação
específica. Ele oferece um modelo para empresas que buscam uma melhoria incrementar a
segurança e auditabilidade de seus processos, transformando a blockchain em um uma fonte de
registro que cria um dossiê digital auditável para cada transação, possibilitando a integração com
sistemas de gestão centrais, sem a necessidade de uma substituição disruptiva.
1 Trustless: Sistema onde os participantes não precisam confiar uns nos outros para validar transações.

5

2.2 Fundamentação Teórica

A construção de sistemas de software modernos, especialmente aqueles que gerenciam
dados sensíveis, demanda a interação entre múltiplas camadas tecnológicas. A camada visível
ao usuário, denominada front-end, é responsável pela interação direta e se manifesta, no con-
texto deste trabalho, como a interface de comunicação acessada pelo navegador. Ela engloba
tanto a interface de usuário (UI) quanto a experiência de uso (UX), sendo implementada com
tecnologias padrão da web: o HTML estrutura o conteúdo e os elementos visuais das páginas,
como formulários e tabelas, definindo cada componente. Em complemento, o JavaScript adiciona
interatividade e dinamismo, permitindo a captura de dados, validação de em tempo real e a
comunicação assíncrona com o back-end para o envio e recebimento de informações sem a
necessidade de recarregar a página (FREEMAN; ROBSON, 2020).

A segurança de sistemas digitais é fundamentada na criptografia, que provê mecanismos
para assegurar a confidencialidade e a integridade dos dados. Para a confidencialidade, se destaca
o uso de algoritmos de cifragem simétrica, como o AES (Advanced Encryption Standard). O AES
é um padrão de cifra de bloco adotado mundialmente que opera sobre blocos de dados de tamanho
fixo e utiliza chaves de diferentes comprimentos para realizar múltiplas rodadas de substituição e
permutação, garantindo um alto nível de segurança (STANDARDS; TECHNOLOGY, 2001). Já
para a integridade e a autenticidade, o objetivo é a validação da origem e da inalterabilidade de
documentos. Nesse contexto, a assinatura digital surge como uma solução robusta, vinculando
criptograficamente a identidade de um autor a um documento por meio de algoritmos específicos
(MONTEIRO; MIGNONI, 2007). Para alcançar essa garantia, a assinatura digital emprega um
conjunto de ferramentas criptográficas, dentre as quais se destacam as funções de hash. Um
algoritmo como a hash SHA-256, utilizado neste trabalho, processa uma entrada de dados para
gerar uma "impressão digital"de tamanho fixo, que é então utilizada para garantir, de forma
eficiente e segura, a integridade do documento original.

A execução dessas operações criptográficas e a gestão segura dos dados ocorrem na
camada de back-end, que, em contrapartida ao front-end, constitui a parte não visível da apli-
cação. Essa camada arquitetural é responsável por gerenciar o processamento de informações,
a lógica de negócio e a integração com bancos de dados (RICHARDS; FORD, 2020). A sepa-
ração entre cliente (front-end) e servidor (back-end) é um princípio fundamental no design de
arquiteturas de software distribuídas, pois permite a evolução independente dos componentes
(FIELDING, 2000). A segurança e a confiabilidade das operações no back-end são cruciais, e é
nessa camada que os princípios de criptografia são aplicados para proteger os dados processados.
A aplicação desses mesmos conceitos em um ambiente de servidor distribuído é uma das bases
da tecnologia blockchain, um sistema baseado em cadeias de blocos de informação interligados e
descentralizados.

Também designada como "livro-razão distribuído", a blockchain é caracteriza por utilizar
bases de registro e dados compartilhados entre múltiplos participantes (FERREIRA et al., 2017).

6

Sua estrutura é composta por cadeias de dados na qual nenhum bloco pode ser removido ou
alterado sem invalidar toda a sequência subsequente. Para que um novo bloco seja adicionado,
é necessário que um consenso seja alcançado entre os membros da rede denominados como
nós. Todos os blocos são cifrados e convertidos em sequências hash, garantindo que os registros
anteriores sempre representem um conjunto de dados válido e criptografado.

Para assegurar a integridade e a segurança na adição de novos blocos, as blockchains
utilizam mecanismos de consenso. O mais conhecido é o Proof of Work (PoW), que se baseia
na resolução de problemas matemáticos computacionalmente intensivos (NAKAMOTO, 2008).
Em função de seu alto custo computacional, o PoW previne ataques de negação de serviço
(DDoS), limitando o número de transações e garantindo segurança robusta. Como alternativa mais
eficiente e sustentável, desenvolveu-se o Proof of Stake (PoS), que substitui o poder computacional
pela participação financeira. Nesse modelo, os participantes da rede com maior quantidade de
tokens (participação) possuem maior probabilidade de serem selecionados para validar um bloco,
sendo implementados protocolos de aleatoriedade para evitar conluios (JUNIOR; DAHAB;
HENRIQUES, 2023).

Sobre a infraestrutura da blockchain, é possível executar lógicas de negócio automatizadas
por meio dos smart contracts. Originalmente definidos como um acordo mútuo com regras pré-
estabelecidas, os smart contracts são programas de computador que se autoexecutam quando
condições predefinidas são atendidas. Eles operam com base no princípio de "código como
lei", no qual os termos de um acordo são traduzidos diretamente em código e armazenados na
blockchain. Uma vez implantado, o smart contract torna-se imutável, e sua execução é distribuída
e verificável por todos os participantes da rede, o que permite a validação de transações em
ambientes sem confiança mútua (trustless), eliminando a necessidade de uma autoridade externa
(ZOU et al., 2021). Embora a execução da lógica on-chain (diretamente na blockchain) seja o
paradigma ideal, a implementação prática em ambientes corporativos frequentemente adota uma
abordagem híbrida. O conceito de smart contract é aplicado para descrever a lógica de negócio
automatizada que opera off-chain (no servidor da aplicação), utilizando a blockchain como uma
camada de registro imutável para ancorar e auditar os resultados dessas operações.

A Multichain é uma plataforma de código-aberto baseada na blockchain do Bitcoin
(POLGE; ROBERT; TRAON, 2021). Ela oferece flexibilidade em configurações como disponibi-
lidade de acesso, tamanho de bloco e recompensas de mineração. Sua API JSON-RPC permite
que clientes, desenvolvidos em diversas linguagens, executem comandos como criação de streams
de dados, publicação de blocos e consulta de informações. Essa versatilidade a torna viável
para aplicações como rastreamento de cadeia de suprimentos e, em especial, autenticação de
documentos.

Devido à necessidade de propagação e validação dos blocos de dados o uso de apli-
cações blockchain leva outro desafio, o armazenamento de arquivos de grande volume. Para

7

solucionar essa questão o IPFS (InterPlanetary File System), um protocolo peer-to-peer2 para
armazenamento distribuído e descentralizado de arquivos se torna uma opção viável. Empregando
endereçamento baseado em hashes criptográficas, o IPFS garante a integridade dos dados e
oferece resiliência à censura e a falhas. Essa abordagem tem se mostrado eficiente para diminuir
latências ao aproveitar cachescaches3 locais, se tornando ideal para cenários corporativos que
demandam alta disponibilidade e versionamento de documentos (BENET, 2014; ALI; KUMAR;
SHARMA, 2020).

Para o desenvolvimento da camada de aplicação que possibilita a interação entre o
usuário e infraestrutura distribuída o Flask, um framework4 web em Python baseado no padrão
WSGI, oferece um núcleo essencial para aplicações HTTP, permitindo a construção de sistemas
modulares com APIs REST (GRINBERG, 2018). A organização do código em rotas denominadas
Blueprints promove a modularidade e facilita a manutenção, possibilitando que diferentes partes da
aplicação sejam desenvolvidas e testadas de forma isolada (RELAN, 2019). Essa camada também
se integra a sistemas externos, como a ERP Nomus, um software de gestão empresarial focado
em indústrias. Fundada em 2005, a ERP Nomus oferece uma plataforma web para planejamento e
controle de processos produtivos, abrangendo desde controles financeiros à operações de chão-de-
fábrica (PORTALERP, 2025). Sua API REST, autenticada por chave única, permite inserções e
requisições em seu banco de dados utilizando o formato JSON (NOMUS, 2020; TECNOLOGIA,
2025). Através dessa integração novos usos para os dados armazenados são possibilitados.

Lançado em 2013, o Docker viabiliza a virtualização baseada em contêineres, que isolam
processos e encapsulam aplicações em ambientes autossuficientes, viabilizando a consistência
de ecossistema distribuídos. Ao compartilhar o kernel5 do sistema operacional hospedeiro, os
contêineres reduzem a sobrecarga de recursos e aceleram a inicialização (MERKEL, 2014). Por
fim, para testes e avaliação de APIs REST, a ferramenta Insomnia possibilita simular requisi-
ções HTTP, inspecionar respostas de servidores, verificação de falhas, e realizar benchmarks,
proporcionando agilidade na validação de integrações entre sistemas (INC., 2025).

2 Peer-to-Peer: Arquitetura de rede em que cada nó funciona tanto como cliente quanto como servidor, permitindo
a troca direta de dados sem a necessidade de um servidor central.

3 Cache: Armazenamento temporário de dados que visa agilizar o acesso a informações já processadas ou solicitadas
anteriormente.

4 Framework: Conjunto de bibliotecas, ferramentas e boas práticas que fornece uma base estruturada para o
desenvolvimento de aplicações.

5 Kernel é o núcleo do sistema operacional, sendo responsável por gerenciar recursos e comunicação entre hardware
e software.

8

3 Desenvolvimento

Este trabalho foi desenvolvido em duas partes. Na primeira, foi planejado o funcionamento
e a arquitetura do servidor, bem como a interface de requisições. Na segunda, abordou-se a criação
do ambiente de acesso para os clientes. Tais etapas são descritas ao longo deste capítulo, incluindo
a metodologia empregada e as ferramentas necessárias.

3.1 Arquitetura

A arquitetura demonstrada na Figura 3.1, mostra a interação planejada dos usuários com
o servidor de requisições.

Figura 3.1 – Fluxo de requisições - Do próprio autor (2025)

O sistema é composto por dois grandes módulos: o módulo Client e o módulo Server. O
Client submete requisições ao servidor e pode consultar requisições efetivadas, desde que sua

9

autenticação seja válida.

O módulo server é responsável por gerir usuários, conteúdos, acessos e restrições, devendo
garantir que apenas usuários previamente autorizados realizem requisições. Ele é dividido em
cinco submódulos:

• Servidor de autenticação: Responsável por verificar a autenticação do cliente, registrar
eventos de acesso e gerenciar suas permissões.

• Servidor de requisições: Recebe requisições, executa regras definidas em smart contracts,
e consultas a requisições anteriores para o client. Encaminha requisições confirmadas para
o Servidor de integração e consulta seu status.

• Servidor de integração: Envia requisições recebidas, e verifica status de requisições ativas
no módulo Servidor externo ERP.

• Blockchain: Armazena todos as requisições, atualizações, além das hashes contendo o
caminho de acesso para dados armazenados de forma segura e imutável.

• IPFS: Armazena todos os arquivos registrados na blockchain.

• Servidor externo ERP: Representa um ambiente de integração de alto nível com o banco
de dados externo utilizado pela ERP Nomus.

A implementação da lógica de negócio, foi aplicada ao diretamente ao servidor (off-
chain). A principal razão para esta abordagem reside no não oferecimento de suporte nativo na
MultiChain para a execução de smart contracts. Essa abordagem oferece gerenciamento ativo
de dados e streams, controle granular de permissões e maior flexibilidade no desenvolvimento.
Além disso, simplifica a integração com sistemas externos, como a API NOMUS empregada no
servidor, garantindo uma comunicação mais robusta e eficiente.

3.1.1 Cenário de execução

Em um cenário de inserção de uma nova solicitação pelo client, o fluxo de execução será:
Requisição de conexão pelo cliente, autenticação pelo servidor. Envio da nova solicitação ao
servidor, recebimento pelo servidor de requisições. Execução do smart contract no servidor de
requisições, envio de solicitação validada ao servidor de integração para o inserção de novo bloco
de dados criptografado para a blockchain/IPFS. Inserção da solicitação no servidor externo ERP
realizada pelo servidor de integração. Envio de informações de status ao servidor de integração
pelo servidor externo ERP. Envio de informações de status ao cliente. Como pode ser visto na
figura 3.2.

10

Figura 3.2 – Fluxograma de sucesso de inserção de solicitação - Do próprio autor (2025)

3.2 Especificação de requisitos

Esta seção tem como objetivo detalhar os requisitos do sistema, especificando as funcio-
nalidades que precisam ser implementadas no software, bem como o comportamento esperado
de cada uma.

11

3.2.1 Requisitos funcionais

Os requisitos funcionais descrevem especificações das funcionalidades de um sistema,
detalhando o comportamento esperado de seus componentes.

• Servidor de autenticação: Deve ser capaz de permitir o login de usuários(cliente, finan-
ceiro ou entregador), registar eventos de autenticação, validar credenciais de representante,
cliente e senha. Também deve gerar um token de acesso para requisições futuras, permitir
que usuários encerrem sua sessão de forma segura e buscar informações de nome, CNPJ, e
representante na API Nomus.

• Servidor de requisições: Deve ser capaz de receber e processar solicitações dos usuários,
redirecionar usuários para páginas permitidas com base no seu perfil, enviar e receber
status de solicitações para o Servidor de integração, atuando como um proxy seguro com o
frontend.

• Blockchain/IPFS: Deve ser capaz de receber e armazenar solicitações de forma segura.
Disponibilizar, listar, solicitações e atualizar solicitações já armazenadas.

• Servidor de integração: Deve ser capaz de processar a submissão de novas solicitações
pelos usuários atualizando a stream correspondente na blockchain. Deve ser capaz de
permitir a avaliação de solicitações efetuadas e exibir alertas de novas solicitações para o
usuário correspondente, além de consultar e registar status de solicitações com o Servidor
externo ERP.

• Servidor externo ERP: Deve ser capaz de integrar-se ao Servidor de integração. Também
deve enviar status, e receber solicitações.

3.2.2 Requisitos não funcionais

Diferentemente dos requisitos funcionais, que focam no que deve ser feito, os requisitos
não funcionais representam características e atributos de como as funcionalidades devem operar.

• Servidor de autenticação: Cada usuário deve possuir um identificador de autenticação e
id1 de acesso únicos. O servidor deve possuir disponibilidade de horários restrita, registro
de logs para auditoria e rastreamento.

• Servidor de requisições: Para cada solicitação registrada, o usuário deve ter acesso as
informações geradas, e status. Todo pedido recebido pelo Servidor de requisições deve ser
avaliado utilizando regras de negócio relacionadas com o usuário (smart contracts).

1 ID (Identifier): valor único atribuído a um elemento para identificá-lo dentro de um sistema ou base de dados.

12

• Servidor de integração: Toda solicitação recebida recebida deve ser válida, deve ser garan-
tida a sincronização e consistência de dados entre o Servidor externo ERP e a blockchain.
Deve consultar status de pedidos ativos e enviar para o servidor de requisições.

• Blockchain/IPFS: Todo conteúdo armazenado deve ser criptografado para garantir a
segurança. A estrutura deve ser tolerante a falhas, assegurando a imutabilidade e integridade
dos dados registrados.

• Servidor externo ERP: Para cada alteração de status o Servidor de integração deve ser
comunicado. Falhas de comunicação devem ser informadas ao usuário.

3.3 Rotas

Cada módulo componente do servidor será uma API REST que responderá a chamadas
usando protocolo HTTP. Através destas chamadas o sistema será integrado, acessando o conteúdo
armazenado, e realizando consultas no Servidor externo ERP. Esta seção irá descrever as rotas
de cada módulo do servidor.

3.3.1 Servidor de autenticação

Tabela 3.1 – Tabela de rotas do Servidor de Autenticação

Método Rota Descrição
POST /auth/login Esta rota envia as credenciais de autenticação do

usuário, e emite um token de acesso
GET /auth/logout Esta rota encerra a sessão do usuário
POST /api/person-details Esta rota envia o ID do usuário para o servidor

Externo e são retorna dados detalhados para o
servidor de Autenticação

Fonte: Do próprio autor (2025)

3.3.2 Servidor de requisição

Tabela 3.2 – Tabela de rotas do Servidor de requisição

Método Rota Descrição
GET /home Esta rota autentica e redireciona o usuário para

sua página inicial correspondente ao seu perfil
(cliente, financeiro, entregador)

Fonte: Do próprio autor (2025)

13

Tabela 3.3 – Tabela de rotas do Servidor de requisição - Cliente (views)

Método Rota Descrição
GET /dashboard/cliente Esta rota exibe a página inicial para o usuário

cliente
GET /orders/new Esta rota exibe a página de criação e submissão

de novos pedidos
GET /orders/finished Esta rota exibe o histórico de status e pedidos

para o usuário cliente
GET /finished/deliveries Esta rota exibe o histórico de entregas finalizadas

e aprovadas para o usuário cliente
GET /contract Esta rota exibide a página de visualização dos

detalhes do contrato mestre e iframe de controle
de peças para o usuário cliente

Fonte: Do próprio autor (2025)

Tabela 3.4 – Tabela de rotas do Servidor de requisição - Cliente (proxy)

Método Rota Descrição
POST /api-proxy/order/submit Esta rota encaminha a requisição de novo pedido

para o integration_server
GET /api-proxy/contract/status Esta rota busca o status atual do contrato e o

saldo de produtos na blockchain
Fonte: Do próprio autor (2025)

Tabela 3.5 – Tabela de rotas do Servidor de requisição - Financeiro (views)

Método Rota Descrição
GET /dashboard/financeiro Esta rota exibe a página principal para o usuário

financeiro
GET /orders/requests Esta rota exibe a página contendo a lista de pedi-

dos aguardando aprovação
GET /confirmation Esta rota exibe a página contendo a lista de ro-

maneios de entrega aguardando aprovação
GET /warnings Esta rota exibe a página contendo a lista de aler-

tas e notificações de solicitação
Fonte: Do próprio autor (2025)

14

Tabela 3.6 – Tabela de rotas do Servidor de requisição - Financeiro (proxy)

Método Rota Descrição
GET /api-proxy/orders/list Esta rota obtém a lista de pedidos pendentes de

avaliação do integration_server
POST /api-proxy/order/review Esta rota envia a decisão de aprovação de um

pedido para o integration_server
GET /api-proxy/orders

/view/<ipfs_hash>
Esta rota retorna o PDF de um pedido para ser
visualizado no modal

GET /api-proxy
/deliveries/pending-
approval

Esta rota obtém a lista de entregas que aguardam
aprovação do integration_server

POST /api-proxy/delivery/approve Esta rota envia a aprovação de uma entrega para
o integration_server

GET /api-proxy/deliveries
/view/<ipfs_hash>

Esta rota retorna o PDF de uma prova de entrega
para ser visualizado

GET /api-proxy
/notifications/consolidated

Esta rota obtém as lista de alertas e notificações
consolidados de várias fontes

Fonte: Do próprio autor (2025)

Tabela 3.7 – Tabela de rotas do Servidor de requisição - Entregador (views)

Método Rota Descrição
GET /dashboard/entregador Esta rota exibe a página principal para o usuário

entregador
GET /deliveries Esta rota exibe a página de lista romaneios aguar-

dando a submissão da prova de entrega
Fonte: Do próprio autor (2025)

Tabela 3.8 – Tabela de rotas do Servidor de requisição - Entregador (proxy)

Método Rota Descrição
GET /api-proxy/deliveries

/entregador
Esta rota obtém a lista de romaneios disponíveis
do integration_server.

POST /api-proxy/delivery/submit Esta rota envia a prova de entrega (PDF/imagem)
para o integration_server, que processa o arquivo
e atualiza a blockchain.

Fonte: Do próprio autor (2025)

15

Tabela 3.9 – Tabela de rotas do Servidor Integração - Apoio

Método Rota Descrição
POST /api/person-details Esta rota busca informações de uma pessoa (titu-

lar do contrato, representante) no Servidor Ex-
terno, durante o login

GET /api/contract/status Esta rota retorna metadados do contrato e status
atual do inventário de produtos na blockchain

GET /api/contract/view Esta rota retorna o PDF do contrato mestre des-
criptografado

GET /api/notifications
/consolidated

Esta rota busca e consolida alertas de todas as
streams armazenadas na blockchain

GET /api/notifications/list Esta rota retorna a lista detalhada do registro de
notificações

Fonte: Do próprio autor (2025)

Tabela 3.10 – Tabela de rotas do Servidor integração - Fluxo de pedidos

Método Rota Descrição
POST /api/order/submit Esta rota processa a submissão de um novo pe-

dido, gera PDF, realiza assinatura digital, cripto-
grafa, envia ao IPFS e registra hash na blockchain

GET /api/orders/list Esta rota retorna a lista completa de pedidos com
status mais recente

POST /api/order/review Esta rota recebe decisões de aprovação do usuá-
rio financeiro, atualiza status na blockchain e cria
notificação na pagina principal para o usuário
cliente

GET /api/orders/view <ipfs_hash> Esta rota retorna PDF de um pedido específico
após descriptografia

Fonte: Do próprio autor (2025)

16

3.3.3 Servidor de integração

Tabela 3.11 – Tabela de rotas do Servidor integração - Fluxo de entregas

Método Rota Descrição
GET /api/deliveries/entregador Esta rota retorna a lista de romaneios disponíveis

para a página de submissão para o usuário entre-
gador

POST /api/delivery/submit Esta rota processa submissão de prova de entrega
(PDF ou imagem), converte se necessário, adi-
ciona assinatura, envia ao IPFS e atualiza status
na blockchain

GET /api/deliveries/pending-
approval

Esta rota retorna romaneios já submetidos para
o usuário financeiro

POST /api/delivery/approve Esta rota processa a aprovação final de entrega
para o usuário financeiro, e atualiza o status na
blockchain

GET /api/deliveries/list Esta rota retorna a lista consolidada de entregas
aprovadas para a página correspondente do usuá-
rio cliente e financeiro

GET /api/deliveries/
view/<ipfs_hash>

Esta rota retorna o PDF de uma prova de entrega
a partir do IPFS

Fonte: Do próprio autor (2025)

3.4 Implementação

Nesta seção, são apresentados trechos e detalhamentos da implementação das principais
rotas e funcionalidades da aplicação proposta.

• Inicialização do ambiente: A base para a operação da aplicação proposta reside em uma
configuração composta por três pilares: a blockchain Multichain, o sistema de arquivos
distribuído IPFS e o servidor Flask ambos inicializados em contêineres através do Docker.
A figura A.1 mostra a inicialização da blockchain, logo em seguida os nós em secundá-
rios também são iniciados A.2 usando contêinere individuais para a construção da rede
denominada nomus_chain. Logo em seguida, como pode ser visto em A.3, as streams per-
tencentes à blockchain são criadas e iniciadas pelo contêiner auxiliar de setup, garantindo
a integridade e rastreabilidade das informações além de separação de dados categorias.

3.4.1 Servidor de autenticação

O servidor de autenticação é responsável por validar a identidade dos usuários e gerenciar
suas permissões e sessão de forma segura controlando o acesso à aplicação.

• Autenticação de usuário: O trecho de código da Figura B.1 mostra a como é feita a
autenticação do usuário. O processo de autenticação é iniciado quando são submetidas

17

as credenciais (login, representante, e senha) através da rota login. O sistema faz uma
pré carga de usuários autorizados e a senha fornecida pelo usuário é convertida para hash
SHA256 e comparada. Caso os dados fornecidos sejam inválidos, uma mensagem de erro
é exibida. Caso a autenticação seja bem-sucedida, o servidor de autenticação realizada
uma chamada ao Servidor externo para consultar, em tempo real, os dados cadastrais
correspondentes a API da ERP Nomus representada pelo Servidor Externo.

Com os dados validados uma sessão segura é criada, armazenando informações cruci-
ais(user_id, user_role) e um token de acesso é emitido e o usuário é redirecionado para
sua respectiva página inicial.

3.4.2 Servidor de integração

Este módulo é responsável pelo núcleo de lógica da aplicação, possibilitando interações
com a blockchain, o IPFS e o Servidor Externo.

• Criptografia: Para garantir a segurança de arquivos com conteúdo sensível foi usada o
a biblioteca "Fernet", que combina o algoritmo AES com HMAC usando SHA256 para
a autenticação da mensagem. Na figura B.2 está descrito o trecho de código usado para
criptografar, seguido do trecho de código para descriptografar um arquivo.

• Visualização de documentos: Para que todos os documentos enviados para a blockchain
possam ser exibidos de maneira segura o servidor utiliza a hash fornecida para requisitar o
arquivo criptografado na IPFS. A chave de descriptografia é então utilizada para decifrar o
conteúdo e transmiti-lo para o usuário sem realizar alterações, garantindo a integridade e
confiabilidade das informações. Conforme mostrado na Figura B.3.

• Submissão de pedido: Para que um pedido possa ser enviado para o servidor o primeiro
passo é a atualização do inventário. O servidor consulta a stream inventory_stream da
blockchain, incrementa o campo consumed_stock com a quantidade solicitada e publica o
novo registro. Em seguida é gerado um documento PDF, capturando as informações exibidas
no frontend juntamente uma assinatura capturada através da biblioteca signaturePad. Este
documento é então criptografado e inserido na IPFS. Finalmente, um registro completo
do pedido é criado em formato JSON, e publicado na orders_stream como pode ser visto
em B.4.

• Submissão de comprovante de entrega: Para lidar com eventos de confirmação de entrega,
o servidor solicita ao usuário com perfil entregador o envio de um comprovante(foto ou
PDF) através da interface. O servidor então, criptografa e envia o novo arquivo para a IPFS,
além de publicar o hash obtido na blockchain. B.5.

• Aprovação de pedidos e comprovantes de entrega: Pedidos e comprovantes submetidos
são listados para o usuário com perfil financeiro para que possa ser tomada decisão de

18

aceite ou recusa, sendo uma forma de three-way handshake2. O servidor localiza na stream
correspondente na blockchain o comprovante de entrega avaliado, e como poder visto na
Figura B.7, e atualiza seu status.

Já os registros de decisão de aprovação de pedidos são acionados pela rota vista na Fi-
gura B.6. Seu funcionamento é semelhante ao descrito anteriormente para a avaliação de
entregas. Adicionalmente, uma notificação da decisão é publicada na blockchain, para
consulta e registro de eventos.

3.4.3 Servidor de requisição

Para que seja possível a integração do frontend com o backend, o servidor de requisições
realiza dupla função, atuando como proxy seguro para chamadas ao servidor de integração e
controlando o acesso às páginas de navegação. O token de acesso fornecido pelo servidor de
autenticação é usando para restringir acesso a fluxos de execução de outros tipos de perfis C.1.
Quando uma ação que necessita de dados fornecidos pelo backend é realizada, o código JavaScript
na página correspondente realiza uma requisição proxy ao servidor de requisição que então repassa
a requisição para o servidor de integração C.2.

• Blockchain: A blockchain, como abordado anteriormente, é uma estrutura de dados
que garante a integridade e imutabilidade dos dados armazenados. Na Figura C.3. são
mostrados os métodos de inserção e recuperação de dados na Multichain, com destaque
para o componente get_stream_item que busca o item correspondente no data_stream. Já
as inserções de conteúdo são feitas pela chamada publish na API JSON-RPC da Multichain,
especificando a stream destinada C.4.

• Servidor Externo: Cada tipo de dado utilizado pela aplicação possui uma chamada
GET/POST diferente na Api Nomus, sendo retornados em ambos os casos em formato
JSON. Em C.5. é realizada uma requisição proxy pelo servidor de requisições, onde
podemos verificar também seu retorno.

2 three-way handshake: sequência de três mensagens trocadas entre cliente e servidor para estabelecer uma conexão
confiável.

19

4 Resultados

Este capítulo apresenta a validação empírica do protótipo desenvolvido, detalhando os
testes realizados para aferir a funcionalidade, a robustez e o desempenho da arquitetura proposta.

A metodologia de validação foi estruturada em três etapas principais: primeiramente, a
verificação da infraestrutura de contêineres. Em segundo lugar, a validação funcional do fluxo
de operações através de testes de API que simulam um ciclo de básico de vida do usuário. E
por fim, a análise de desempenho, que inclui testes de carga nos componentes individuais e um
benchmark comparativo com uma arquitetura de banco de dados tradicional. Os testes foram
executados utilizando a ferramenta Insomnia para a simulação de requisições HTTP e a inspeção
das respostas do servidor.

4.1 Validação da Infraestrutura

Antes de validar a aplicação, é fundamental garantir que a infraestrutura subjacente,
definida pelo Docker Compose, esteja operacional. A execução do comando docker-compose
up confirmou que todos os nove contêineres definidos (blockchain, node-1, node-2, node-3,
node-4, node-5, ipfs, initializer, dapp) foram iniciados com sucesso e se encontravam em estado
de execução (Up), com exceção do contêiner initializer utilizado para criar as streams e popular
a blockchain com os dados iniciais. Análises dos logs de cada contêiner não revelaram erros
críticos, confirmando a saúde e a estabilidade do ambiente de implantação como pode ser visto
na Figura 4.1.

Figura 4.1 – Contêineres docker em execução - Do próprio autor (2025)

20

4.2 Ciclo de Vida de um Pedido

• Submissão de Pedido: Com um token de acesso válido para um usuário com perfil de
"cliente", uma requisição POST para a rota /order/submit, contendo os itens do pedido
e a imagem da assinatura, foi processada com sucesso. O sistema retornou o documento
PDF gerado e assinado, confirmando que os dados foram enviados ao IPFS e o registro foi
armazenado na blockchain como pode ser visto na Figura 4.2.

Figura 4.2 – Página de envio de pedidos - Do próprio autor (2025)

• Revisão e Aprovação: Utilizando um token de um usuário "financeiro", uma requisição
POST para a rota /order/review com a decisão "approved"foi enviada, como pode ser visto
na Figura 4.3. O sistema respondeu com sucesso, indicando que o status do pedido foi
atualizado na blockchain e uma notificação foi gerada.

21

Figura 4.3 – Página de revisão de pedidos - Do próprio autor (2025)

• Submissão de Comprovante: Seguindo uma lógica similar, com um token de usuário
com perfil "entregador", uma requisição POST para a rota /delivery/submit, contendo a
chave da entrega e o arquivo de comprovante (PDF, JPG, PNG) como pode ser visto na
Figura 4.4, foi bem-sucedida, retornando o txid da transação na blockchain.

Figura 4.4 – Página de envio de comprovantes de entrega - Do próprio autor (2025)

Esta abordagem de testes em fluxo demonstrou que o sistema não apenas executa funções

22

individuais, mas também mantém o estado e a lógica de negócio de forma coesa através das
diferentes etapas do processo.

4.3 Testes de rotas e Benchmark de desempenho

Para contextualizar os resultados de desempenho e justificar a escolha da arquitetura,
foram realizados testes de estresse e resposta nas rotas da aplicação e conduzido um benchmark
comparativo entre a implementação atual blockchain e um banco de dados relacional para registro
de transações.

Os testes de estresse consistiram na execução de 100 transações para cada rota, utilizando
o executor de testes da ferramenta Insomnia. Os dados obtidos podem ser vistos a seguir.

• Servidor de autenticação

Autenticação de usuário :

A autenticação dos usuários previamente registrados, pode ser visto na Figura 4.5. Após o
sucesso do login o token de casso é armazenado na sessão do navegador.

Figura 4.5 – Teste da rota /auth - Do próprio autor (2025)

A Figura 4.6 mostra a falha de autenticação gerada por um usuário não registrado.

23

Figura 4.6 – Teste da rota /auth - Do próprio autor (2025)

• Servidor de requisição

Submissão de pedido: A Figura 4.7 mostra os arquivos de pedido enviados ao servidor,
onde o token do tipo especifico de usuário (cliente) é requerido.

Figura 4.7 – Teste da rota /order/submit - Do próprio autor (2025)

O teste onde o token é inválido é apresentado na Figura 4.8 onde temos um erro de
autenticação.

24

Figura 4.8 – Teste da rota /order/submit - Do próprio autor (2025)

Na Figura 4.9, se pode ver os testes de estressamento realizados.

Figura 4.9 – Teste da rota /order/submit - Do próprio autor (2025)

Submissão de comprovante de entrega: Na Figura 4.10 podemos observar à anexação e
envio de comprovantes de entrega. Também é necessário a validação do token do usuá-
rio(entregador).

Figura 4.10 – Teste da rota /delivery/submit - Do próprio autor (2025)

25

O teste onde o token é inválido é apresentado na Figura 4.11 onde temos um erro de
autenticação.

Figura 4.11 – Teste da rota /delivery/submit - Do próprio autor (2025)

Aprovação de pedidos e comprovantes de entrega: A Figura 4.12 mostra a requisição
enviada através da decisão tomada (Aprovar pedido).

Figura 4.12 – Teste da rota /order/review - Do próprio autor (2025)

Já na Figura 4.13 podemos observar a requisição enviada após decisão (Confirmar entrega).

Figura 4.13 – Teste da rota /delivery/approve - Do próprio autor (2025)

26

Ambas as rotas anteriores tem funcionamento parecido, sendo alterado principalmente o
tipo de usuário provedor dos dados avaliados.

• Servidor de integração

Blockchain:

Os testes de requisição na blockchain, como pode ser visto na figura 4.14, indicam o total
porcentagem de sucesso nas operações realizadas. O tempo médio de inserção dos dados
foi relativamente baixo e apresentando pouca variação com o aumento da latência máxima.

Figura 4.14 – Teste de estresse/carga na blockchain - Do próprio autor (2025)

IPFS: Os testes de requisição no IPFS, podem ser vistos na Figura 4.15. Sendo contabilizado
o tempo total necessário para a disponibilização de um arquivo PDF através de sua SHA256
previamente obtida na blockchain, seguido de sua descriptografia.

Figura 4.15 – Teste de estresse/carga no IPFS - Do próprio autor (2025)

Servir externo: Os testes de requisição ao Servidor Externo, podem ser vistos na Figura 4.16.
Diferentemente dos outros contêineres, as requisições a API NOMUS exigem um intervalo
de tempo (delay) elevado entre as requisições.

27

Figura 4.16 – Teste de estresse/carga no Servidor externo - Do próprio autor (2025)

Os testes de estresse, apresentados nesta seção, foram analisados para extrair métricas
quantitativas de desempenho para cada componente principal da arquitetura.

Tabela 4.1 – Benckmark comparativo de componentes

Componente Operação Duração Média (s) Vazão Média (TPS) Latência Média (ms)
MultiChain Escrita e Leitura 7,93 25,22 39,65
IPFS Recuperação e Decriptografia 14,07 14,21 70,36
Servidor Externo (API NOMUS) Consulta de Dados 138,40 0,60 1384,00

Fonte: Do próprio autor (2025)

O resultado mais significativo, como pode ser visto na Tabela 4.1 é a identificação do
Servidor Externo (API NOMUS) como o principal gargalo de desempenho e estabilidade do
sistema. Com uma vazão de apenas 0.60 TPS e uma latência média superior a 1.3 segundos,
os testes também revelaram uma taxa de falha significativa (16.7% em 300 iterações) sob
carga sustentada ao se diminuir o tempo máximo de resposta tolerado, indicando que a
API externa não é apenas lenta, mas também instável. Isso implica que, em um cenário de
produção, a escalabilidade da solução não seria limitada pela blockchain, mas sim pela
capacidade e confiabilidade do sistema ERP a qual ela se integra.

• Benchmark de desempenho

O teste consistiu na execução de 1.000 transações de "submissão de pedido"para cada
arquitetura, utilizando o executor de testes da ferramenta Insomnia, como pode ser visto
na Figura 4.17. As métricas coletadas foram a latência média por requisição (tempo de
ida e volta), a vazão do sistema (transações por segundo - TPS) e a taxa de sucesso das
requisições. Os resultados consolidados podem ser vistos na Tabela 4.2.

Figura 4.17 – Benchmark de desempenho - Do próprio autor (2025)

28

Tabela 4.2 – Tabela de comparativo de desempenho

Métrica Blockchain (Multichain) Banco de dados tradicional (Postgres)
Latência Média (ms) 6,540 2,958
Vazão (TPS) 0,15 0,34
Taxa de Sucesso (%) 100% 100%

Fonte: Do próprio autor (2025)

A análise dos dados evidencia que a arquitetura com banco de dados tradicional apresenta
um desempenho significativamente superior, com menor latência e maior vazão. Este
resultado é esperado, dado que operações em um banco de dados centralizado não incorrem
no overhead1 de comunicação em rede P2P(peer-to-peer) e do processo de consenso
distribuído.

Entretando, a perda de performance observada na arquitetura blockchain é um trade-off
deliberado e justificado pelos requisitos do problema. A utilização da MultiChain introduz
garantias de imutabilidade, transparência e auditabilidade. Juntamente com a capacidade de
provar criptograficamente a existência e a integridade de um documento em um determinado
momento, sem depender de uma autoridade central, é o benefício que fundamentalmente
justifica a adoção da arquitetura distribuída, atendendo ao objetivo principal deste trabalho.

• Comparativo de Arquiteturas

Por fim, para contextualizar a arquitetura proposta em relação as diferentes abordagens
discutidas na revisão bibliográfica, a comparação resumida, que pode ser vista na Tabela 4.3,
destaca o posicionamento deste trabalho.

Tabela 4.3 – Comparativo de abordagens em trabalhos correlatos

Característica Silva (Este traba-
lho)

Manoharan
(2025)

Sombrio et al.
(2024)

Plataforma Blockchain MultiChain Hyperledger Fabric MultiChain
Execução da Lógica Off-Chain (Servi-

dor Flask)
On-Chain (Smart
Contracts)

Off-Chain (Aplica-
ção)

Armazenamento Off-Chain IPFS IPFS Não especificado
Setor de Aplicação Indústria Têxtil

(B2B)
Cadeia de Supri-
mentos Química

Instituições de En-
sino

Modelo de Confiança Confiança no servi-
dor da aplicação;
verificação na
blockchain

Confiança distri-
buída na rede de
endossantes

Confiança no servi-
dor da aplicação;
verificação na
blockchain

Principal Contribuição Estudo de caso de
integração com
ERP

Framework de ras-
treabilidade

Protótipo para vali-
dação de certifica-
dos acadêmicos

Fonte: Do próprio autor (2025)

1 Overhead: refere-se ao aumento do espaço necessário para armazenar um dado após sua conversão, influenciado
por fatores como formatação, redundância e requisitos de compatibilidade.

29

5 Considerações Finais

Este capítulo final consolida as contribuições e os resultados obtidos ao longo do desen-
volvimento deste trabalho. A seção de conclusão sintetiza os principais achados, validando o
alcance dos objetivos propostos, enquanto a seção de trabalhos futuros delineia direções para a
continuidade e expansão da pesquisa.

5.1 Conclusão

O presente trabalho teve como objetivo o desenvolvimento e a validação de um protótipo
de aplicação para a autenticação de documentos na indústria têxtil, utilizando uma arquitetura que
integra tecnologias de blockchain, smart contract, e APIs externas. Os resultados apresentados
demonstram que a solução proposta é funcional e viável, que atende aos requisitos de segurança
e integridade para o registro de transações em um ambiente B2B.

A principal contribuição desta pesquisa reside na proposição de um modelo de arqui-
tetura para a integração de tecnologias de registro distribuído em ecossistemas corporativos
previamente existentes. Por meio de testes funcionais e de desempenho, foi possível extrair
conclusões significativas. O benchmark comparativo entre a arquitetura baseada em MultiChain e
uma alternativa com banco de dados tradicional quantificou o overhead de performance inerente
à solução distribuída. Embora a abordagem tradicional obtenha maior performance, a perda de
desempenho é um trade-off justificado pelos ganhos em imutabilidade, transparência e audita-
bilidade. Adicionalmente, a análise de carga nos componentes revelou que o principal gargalo
de desempenho e estabilidade do sistema não reside na blockchain, mas na conexão com a API
do sistema ERP externo (NOMUS), um achado fundamental para melhorar a capacidade geral.
Nesse contexto, a implementação da lógica de negócio de forma off-chain provou ser uma decisão
de design possível, equilibrando os benefícios da blockchain e mitigando limitações existentes na
capacidade de integração com sistemas externos.

O protótipo desenvolvido não apenas atendeu aos objetivos específicos de criar um sistema
de autenticação de documentos, mas também serviu como um estudo de caso prático, validando
um modelo de arquitetura que pode ser adaptado para outros cenários que buscam modernizar
processos e aumentar a confiança entre parceiros de negócio, sem desconsiderar as restrições do
mundo real.

30

5.2 Trabalhos Futuros

A partir dos resultados obtidos, diversas frentes de pesquisa e desenvolvimento podem
ser exploradas para a evolução deste projeto:

• Implementação de arquitetura assíncrona: Com base na identificação do gargalo de de-
sempenho na API do ERP NOMUS, uma evolução natural seria a implementação de uma
arquitetura orientada a eventos para gerenciar as requisições ao ERP. Buscando desaco-
plando os sistemas, e assim melhorar a resiliência, a escalabilidade e o tempo de resposta
da aplicação principal para o usuário.

• Migração dos smart contracts para on-chain: Se propõe a reimplementação da solução
em uma plataforma de blockchain permissionada que suporte smart contracts complexos
de forma nativa, como a Hyperledger Fabric1. Essa migração permitiria a execução da
lógica de negócio de forma on-chain possibilitando maior segurança, e complexidade de
desenvolvimento das regras de negócio.

• Expansão para rastreabilidade da cadeia de suprimentos: O framework desenvolvido pode
ser expandido para cobrir outros elos da cadeia de suprimentos têxtil como a rastreabilidade
da matéria-prima utilizada para o cliente específico, desde a origem (fábrica de tecidos), até
o consumidor final, permitindo a criação de um atestado digital para cada lote de produtos,
garantindo a qualidade dos materiais.

1 Hyperledger Fabric:Projeto open source da Linux Foundation para redes blockchain permissionadas, com suporte
a contratos inteligentes, modularidade e canais privados entre participantes.

31

Referências

ALI, F.; KUMAR, S.; SHARMA, P. A survey on the interplanetary file system: Concepts,
applications, and challenges. Journal of Network and Computer Applications, Elsevier, v. 150, p.
102116, 2020.

ANOREG-CE. Cartórios no Brasil: conheça a história do primeiro car-
tório do Brasil. 2022. Disponível em: <https://www.anoregce.org.br/
cartorios-no-brasil-conheca-a-historia-do-primeiro-cartorio-do-brasil/>, note = Acesso em: 05
abr. 2025.

BENET, J. IPFS - Content Addressed, Versioned, P2P File System. 2014. Disponível em:
<https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6z7YQGd82WvH1dAsn1ph2jk6V7Ss>. Acesso
em: 13 jul. 2025.

CHAUHAN, P.; VERMA, J.; JAIN, S.; RAI, R. Blockchain based framework for document
authentication and management of daily business records. In: Blockchain for 5G-Enabled IoT.
[S.l.]: Springer, 2021. p. 497–517. ISBN 978-3-030-67489-2.

CNN. Golpistas usam deepfake de diretor financeiro e roubam US 25 mi-
lhões. 2024. Disponível em: <https://www.cnnbrasil.com.br/economia/negocios/
golpistas-usam-deepfake-de-diretor-financeiro-e-roubam-us-25-milhoes/>. Acesso em: 06 jan.
2025.

FERREIRA, E.; ALBUQUERQUE, C.; ROCHA, A.; ROCHA, L. Uso de blockchain para
privacidade e segurança em internet das coisas. In: Anais do XVII Simpósio Brasileiro de
Segurança da Informação e de Sistemas Computacionais. Brasília: Sociedade Brasileira de
Computação, 2017. p. 51. ISBN 9788576694106.

FIELDING, R. T. Architectural Styles and the Design of Network-based Software Architectures.
Tese (Tese de Doutorado) — University of California, Irvine, 2000.

FREEMAN, E. T.; ROBSON, E. Head First JavaScript Programming: A Brain-Friendly Guide.
2. ed. Sebastopol: O’Reilly Media, 2020.

GRINBERG, M. Flask Web Development: Developing Web Applications with Python. 2. ed.
[S.l.]: O’Reilly Media, 2018.

INC., K. Insomnia - API Design and Testing Tool. 2025. Disponível em: <https://insomnia.rest>.
Acesso em: 17 jul. 2025.

JUNIOR, G. G.; DAHAB, R.; HENRIQUES, M. A. A. Avaliação do mecanismo de consenso
para blockchain Committeeless Proof-of-Stake. [S.l.], 2023.

MANOHARAN, Y. Framework for document traceability in chemical supply chain using
blockchain and smart contracts. Preprint, Research Square, Version 1. 2025. Disponível em:
<https://doi.org/10.21203/rs.3.rs-1808889/v1>.

MERKEL, D. Docker: lightweight linux containers for consistent development and deployment.
Linux Journal, v. 2014, n. 239, p. 2, 2014.

https://www.anoregce.org.br/cartorios-no-brasil-conheca-a-historia-do-primeiro-cartorio-do-brasil/
https://www.anoregce.org.br/cartorios-no-brasil-conheca-a-historia-do-primeiro-cartorio-do-brasil/
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6z7YQGd82WvH1dAsn1ph2jk6V7Ss
https://www.cnnbrasil.com.br/economia/negocios/golpistas-usam-deepfake-de-diretor-financeiro-e-roubam-us-25-milhoes/
https://www.cnnbrasil.com.br/economia/negocios/golpistas-usam-deepfake-de-diretor-financeiro-e-roubam-us-25-milhoes/
https://insomnia.rest
https://doi.org/10.21203/rs.3.rs-1808889/v1

32

MONTEIRO, E. S.; MIGNONI, M. E. Certificados digitais: conceitos e práticas. [S.l.]: Brasport,
2007.

NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system. 2008. Disponível em:
<https://bitcoin.org/bitcoin.pdf>. Acesso em: 27 ago. 2025.

NOMUS. Introdução à integração com o ERP Nomus via REST + JSON. 2020. Disponível em:
<https://ajuda.nomus.com.br/support/solutions/articles/27000045974-introduc%C3%A3o>.
Acesso em: 06 abr. 2025.

PILKINGTON, M. Blockchain technology: principles and applications. In: Research handbook
on digital transformations. [S.l.]: Edward Elgar Publishing, 2016. p. 225–253.

POLGE, J.; ROBERT, J.; TRAON, Y. L. Permissioned blockchain frameworks in the industry: A
comparison. ICT Express, v. 7, n. 2, p. 229–233, 2021.

PORTALERP. Nomus. 2025. Disponível em: <https://portalerp.com/nomus>. Acesso em: 06 fev.
2025.

RELAN, K. Building REST APIs with Flask: Create Python Web Services with MySQL. [S.l.]:
Apress, 2019.

RICHARDS, M.; FORD, N. Fundamentals of Software Architecture: An Engineering Approach.
Sebastopol: O’Reilly Media, 2020.

SOMBRIO, M.; ANTUNES, L.; CASAGRANDE, R. A. Blockchain para autenticação de
documentos em instituições de ensino. Caderno Pedagógico, v. 21, n. 10, p. e9811, 2024.

STANDARDS, N. I. of; TECHNOLOGY. Advanced Encryption Standard (AES). Gaithersburg,
MD, 2001.

TECNOLOGIA, N. API Nomus ERP. 2025. Disponível em: <https://documenter.getpostman.
com/view/22813773/2s93JutNgM>. Acesso em: 10 mai. 2025.

TOLKIEN, J. R. R. O Senhor dos Anéis: A Sociedade do Anel. São Paulo: Editora Martins, 1954.
Tradução de Lenita Maria Rímoli Esteves e Almiro. 4ª tiragem.

ZOU, W.; LO, D.; KOCHHAR, P. S.; LE, X.-B. D.; XIA, X.; FENG, Y.; CHEN, Z.; XU, B.
Smart contract development: Challenges and opportunities. IEEE Transactions on Software
Engineering, v. 47, n. 10, p. 2084–2106, 2021.

https://bitcoin.org/bitcoin.pdf
https://ajuda.nomus.com.br/support/solutions/articles/27000045974-introduc%C3%A3o
https://portalerp.com/nomus
https://documenter.getpostman.com/view/22813773/2s93JutNgM
https://documenter.getpostman.com/view/22813773/2s93JutNgM

Anexos

34

ANEXO A – Inicialização

Figura A.1 – Inicialização de nó principal – do próprio autor (2025)

35

Figura A.2 – Inicialização de nó secundário – do próprio autor (2025)

36

Figura A.3 – Inicialização de Streams – do próprio autor (2025)

37

ANEXO B – Servidor de Integração

Figura B.1 – Rota /’login’ – do próprio autor (2025)

38

Figura B.2 – Encriptação e Decriptação de dados – do próprio autor (2025)

Figura B.3 – Recuperação de dados na IPFS – do próprio autor (2025)

39

Figura B.4 – Submissão de pedido – do próprio autor (2025)

40

Figura B.5 – Submissão de Entrega – do próprio autor (2025)

41

Figura B.6 – Revisão de Pedido – do próprio autor (2025)

42

Figura B.7 – Aprovação de Entrega – do próprio autor (2025)

43

ANEXO C – Servidor de Requisição

Figura C.1 – Token de autenticação – do próprio autor (2025)

44

Figura C.2 – Evento de submissão de pedido – do próprio autor (2025)

45

Figura C.3 – Rota proxy de submissão de pedido – do próprio autor (2025)

46

Figura C.4 – Métodos de submissão e obtenção de dados na blockchain – do próprio autor (2025)

47

Figura C.5 – Método obtenção de pedidos na API NOMUS – do próprio autor (2025)

	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de Figuras
	Lista de Tabelas
	Lista de Algoritmos
	Lista de Abreviaturas e Siglas
	Sumário
	Introdução
	Justificativa
	Objetivos
	Objetivo geral
	Objetivos específicos

	Organização do trabalho

	Revisão Bibliográfica
	Trabalhos relacionados
	Fundamentação Teórica

	Desenvolvimento
	Arquitetura
	Cenário de execução

	Especificação de requisitos
	Requisitos funcionais
	Requisitos não funcionais

	Rotas
	Servidor de autenticação
	Servidor de requisição
	Servidor de integração

	Implementação
	Servidor de autenticação
	Servidor de integração
	Servidor de requisição

	Resultados
	Validação da Infraestrutura
	Ciclo de Vida de um Pedido
	Testes de rotas e Benchmark de desempenho

	Considerações Finais
	Conclusão
	Trabalhos Futuros

	Referências
	Anexos
	Inicialização
	Servidor de Integração
	Servidor de Requisição

