

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS DEPARTAMENTO DE GEOLOGIA

Mariana Sampaio de Oliveira

CARACTERIZAÇÃO ESPECTRAL DAS CANGAS FERRUGINOSAS E QUARTZITOS DOS CAMPOS RUPESTRES DA SERRA DA BRÍGIDA, QUADRILÁTERO FERRÍFERO, OURO PRETO, MINAS GERAIS

MONOGRAFIA nº 551

OURO PRETO

Junho 2025

Mariana Sampaio de Oliveira

CARACTERIZAÇÃO ESPECTRAL DAS CANGAS FERRUGINOSAS E QUARTZITOS DOS CAMPOS RUPESTRES DA SERRA DA BRÍGIDA, QUADRILÁTERO FERRÍFERO, OURO PRETO, MINAS GERAIS

Monografia do Projeto Final de Curso apresentado ao Departamento de Geologia da Escola de Minas da Universidade Federal de Ouro Preto como requisito parcial para avaliação da disciplina Projeto Final de Curso II – GEO144, 2025/1 Orientadora: Prof^a. Dr^a. Maria Augusta Gonçalves

Fujaco Coorientadoras: Prof^a. Dr^a. Mariangela Garcia Praça

Leite e Dr^a. Rosa Correa Pabón

OURO PRETO

SISBIN - SISTEMA DE BIBLIOTECAS E INFORMAÇÃO

O482c	Oliveira, Mariana Sampaio de. Caracterização espectral das cangas ferruginosas e quartzitos dos campos rupestres da Serra da Brígida, Quadrilátero Ferrífero, Ouro Preto, Minas Gerais. [manuscrito] / Mariana Sampaio de Oliveira 2025. 143 f.: il.: color., tab., mapa. + Quadro.
	Orientadora: Profa. Dra. Maria Augusta Gonçalves Fujaco. Coorientadores: Profa. Dra. Mariangela Garcia Praça Leite, Dra. Rosa Elvira Correa Pabón. Monografia (Bacharelado). Universidade Federal de Ouro Preto. Escola de Minas. Graduação em Engenharia Geológica .
	 Sensoriamento remoto - Espectrorradiometria. 2. Solos - Biblioteca espectral. 3. Campos rupestres. 4. Quadrilátero Ferrífero (MG). I. Fujaco, Maria Augusta Gonçalves. II. Leite, Mariangela Garcia Praça. III. Pabón, Rosa Elvira Correa. IV. Universidade Federal de Ouro Preto. V. Título.
	CDU 528.8

Bibliotecário(a) Responsável: Sione Galvão Rodrigues - CRB6 / 2526

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO REITORIA ESCOLA DE MINAS DEPARTAMENTO DE GEOLOGIA

FOLHA DE APROVAÇÃO

Mariana Sampaio de Oliveira

Caracterização Espectral das Cangas Ferruginosas e Quartzitos dos Campos Rupestres da Serra Brígida, Quadrilátero Ferrífero, Ouro Preto, Minas Gerais

> Monografia apresentada ao Curso de Engenharia Geológicada Universidade Federal de Ouro Preto como requisito parcial para obtenção do título de Engenheira Geóloga.

Aprovada em 13 de junho de 2025

Membros da banca

[Dra.] - Maria Augusta Gonçalves Fujaco - Orientadora - Unuiversidade Federal de Ouro Preto [Dra.] - Maria Eugênia Silva de Souza - Universidade Federal de Ouro Preto [Dra.] - Flávia Compassi da Costa - Universidade Federal de Ouro Preto

Maria Augusta Gonçalves Fujaco, orientadora do trabalho, aprovou a versão final e autorizou seu depósito na Biblioteca Digital de Trabalhos de Conclusão de Curso da UFOP em 22/06/2025

Documento assinado eletronicamente por Maria Augusta Goncalves Fujaco, PROFESSOR DE MAGISTERIO SUPERIOR, em 22/06/2025, às 13:47, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site <u>http://sei.ufop.br/sei/controlador_externo.php?</u> <u>acao=documento_conferir&id_orgao_acesso_externo=0</u>, informando o código verificador **0932073** e o código CRC **147D2C31**.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.007659/2025-41

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35402-163 Telefone: 3135591600 - www.ufop.br SEI nº 0932073

AGRADECIMENTOS

A realização deste trabalho representa muito mais do que o encerramento de uma etapa acadêmica. É também o resultado do apoio, incentivo e parceria de muitas pessoas que caminharam comigo até aqui.

Agradeço, primeiramente, à minha família: meu pai Wanderley de Oliveira Filho, minha mãe Marjara Sousa Sampaio Castilho e meu irmão Daniel Sampaio de Oliveira, por todo amor, apoio e incentivo ao longo dessa jornada.

Às minhas orientadoras, Maria Augusta Gonçalves Fujaco, Mariangela Garcia Praça Leite e Rosa Correa Pabón, pelo acompanhamento e suporte. Em especial à Maria Augusta, que me guiou com paciência e dedicação durante as etapas deste trabalho.

Ao Instituto Tecnológico Vale (ITV), por possibilitar a iniciação científica que se transformou no presente projeto final de curso. Agradeço ao Laboratório Hiperespectral do ITV por acolher minha pesquisa e a toda a equipe que contribuiu para a realização das análises. Em especial, agradeço à Ianka Celestino Almeida Oliveira pelo auxílio direto nas análises espectrais, e à Yasmim Alvim Cardoso pela colaboração nos trabalhos de campo e nas análises, que foram fundamentais para o desenvolvimento desta pesquisa.

Ao Daniel Augusto Gonçalves, por compartilhar comigo a caminhada do projeto final de curso, pela parceria e troca de aprendizados ao longo do processo.

Ao Laboratório de Geoquímica do Departamento de Geologia (DEGEO), por todo o suporte técnico e prático ao longo do trabalho. Meus agradecimentos especiais à Adriana Trópia de Abreu, Leonardo Brandão Nogueira e Antônio Celso Torres, pela disponibilidade e atenção em todos os momentos.

Agradeço aos técnicos Antônio Pedro de Freitas e Mariana Caroline Andrade Silva, do Laboratório de Tratamento de Minérios do Departamento de Engenharia de Minas (DEMIN), pela contribuição na preparação das amostras. Agradeço também ao técnico Flávio Luiz Martins, do Laboratório de Microscopia Óptica, Difratometria de Raios X e Fluorescência de Raios X do DEMIN, pelo suporte nas análises de difratometria de raios X.

Agradeço à Sociedade de Geofísica Aplicada (SGA), tanto aos membros quanto aos mentores, pelo apoio e os ensinamentos ao longo dessa jornada. Sua contribuição foi essencial para o meu crescimento acadêmico e profissional

À minha turma 18.2, por tantos aprendizados e vivências compartilhadas ao longo desses anos, em especial ao grupo "Escadaria", que marcou minha trajetória. Minha gratidão mais sincera aos amigos Bárbara Maria de Paula Botaro e Robert Saymon Alves Vieira, que foram, sem dúvida, os maiores presentes que Ouro Preto me deu. Companheiros em todas as fases do curso, nos campos, nos trabalhos e nas dificuldades do dia a dia. Foi na amizade de vocês que encontrei abrigo, coragem e motivos para sorrir mesmo nos dias mais desafiadores.

Ao DEGEO e à UFOP, pelo ensino público de qualidade que me proporcionaram, permitindo-me crescer como profissional. Agradeço aos professores e profissionais excepcionais, cujos ensinamentos e dedicação foram fundamentais para minha formação.

Às amigas queridas de Ouro Preto, Livia Batista de Lima, Maria Clara de Abreu Maia Faria e Aline Vasconselhos Bonifácio, agradeço pela amizade, pelo apoio e por todos os momentos compartilhados ao longo dessa caminhada. Às amigas de Caraguatatuba, Amanda Gomes, Emilly Althman, Luana Delmondes, Ludmilla Gomes, Maria Eduarda Santana e Victoria Santos, que sempre torceram por mim, mesmo à distância, meu sincero agradecimento. Agradeço também à Escola Dr. Eduardo Corrêa da Costa Jr., em especial à professora Liliam Taborda, por ter me incentivado, desde o início, a seguir o caminho da Engenharia Geológica.

À minha família do coração, a República Água na Boca, onde morei, amadureci e me tornei uma nova versão de mim mesma. Mais do que um lar, foi um espaço de amor, união e acolhimento. Obrigada por cada conversa ao fim de um dia difícil, cada risada que tornou a rotina mais leve e por cada gesto de cuidado. Foi entre essas paredes que aprendi o valor da amizade verdadeira e do apoio incondicional. A cada dia vivido ali encontrei força para continuar e coragem para ser quem sou. Vocês são a parte mais bonita da minha história. Levo comigo cada lembrança com o coração cheio de gratidão, porque foi nesse lar que encontrei não apenas apoio, mas o amor que me sustentou nos momentos mais difíceis.

Minha eterna gratidão a todas essas pessoas e instituições, que tornaram essa jornada possível.

LISTA DE ILUSTRAÇÕES

Figura 1 - Mapa de localização da área de estudo situada na Serra da Brígida19
Figura 2 - Espectro Eletromagnético
Figura 3 - Representação do espectro, sem escala, onde, em A), tem-se um exemplo multiespectral, com 5 bandas largas; e em B) um exemplo hiperespectral, com várias bandas estreitas que, geralmente, se estendem a centenas ou milhares delas
Figura 4 - Teoria do campo cristalino para complexos octaédricos
Figura 5 - Teoria do campo cristalino para complexos tetraédricos
Figura 6 - Localização dos pontos de coleta das amostras de rocha na Serra da Brígida34
Figura 7 - Localização dos pontos de coleta das amostras de solo na Serra da Brígida38
Figura 8 - Amostras de solo sob diferentes condições de rugosidade. Em A), amostras in situ; em B), amostras peneiradas; e em C), amostras de granulometria superior a 2 mm41 Figura 9 - Equipamento Fieldspec com o acessório Turntable em leitura de amostra de solo.42
Figura 10 - Equipamento Fieldspec utilizando um sensor conectado a fibra ótica em leitura de amostra de rocha
Figura 11 - Pesagem de amostras para início do procedimento de digestão total. Em A), bancada com os materiais organizados para a realização da pesagem, com cada item separado para cada amostra; em B), pesagem do frasco Savillex; em C), pesagem do béquer antes da adição da amostra; e, em D), a amostra é colocada no béquer para posterior transferência ao frasco Savillex
Figura 12 – À esquerda, HCl 10 mol/L, e à direita, HNO3 10 mol/L. Ácidos utilizados durante o procedimento
Figura 13 – Savillex levados à secura sobre a placa aquecedora após adição de 1 mL de HNO ₃ 10 mol/L, seguido de 3 mL de HCl 10 mol/L45
Figura 14 – Segunda adição de 2 mL de HF concentrado, onde os frascos Savillex foram fechados e mantidos na placa aquecedora por cerca de 30 horas. Em A) o HF concentrado e em B) as amostras sobre a placa secadora
Figura 15 – Amostras após adição de 2 mL de HCl 10 mol/L levados à secura, evidenciando a reação que exibe cores características para os elementos contidos em cada amostra

Figura 16 – Amostras após a adição de 25 mL de HCl 2 mol/L mantidas por 4 horas sobre a
placa aquecedora
Figura 17 - Digestão total finalizada e amostras encaminhadas para análise por ICP-OES48
Figura 18 - Reconstrução de Gondwana Ocidental, mostrando os crátons do São Francisco e
Congo e a localização do cinturão Mineiro e do Quadrilátero Ferrífero50
Figura 19 - Coluna estratigráfica do Quadrilátero Ferrífero52
Figura 20 - Espectro da amostra SB_Rocha_0155
Figura 21 - Espectros de reflectância de minerais da classe dos filossilicatos, grupo das micas:
(1) montmorillonita e (2) caulinita (grupo da argila); (3) antigorita (grupo da serpentina); (4)
clorita e (5) talco verde (grupo da clorita) (6) pirofilita; (7) fuchsita; (8) biotita; (9) muscovita;
(10) lepidolita
Figura 22 - Bandas vibracionais de absorção da molécula de água em minerais. Os retângulos
pretos medem a largura da banda de absorção
Figura 23 - Espectro da amostra SB_Rocha_0260
Figura 24 - Espectro da amostra SB_Rocha_0361
Figura 25 - Espectro da mistura de caulinita e muscovita retirada da biblioteca espectral da
USGS em comparação com a região interna da amostra SB_Rocha_0361
Figura 26 – Comparação entre os espectros de reflectância dos óxidos de ferro férrico goethita
e hematita
Figura 27 - Espectro da amostra SB_Rocha_0463
Figura 28 - Espectro da amostra SB_Rocha_04 em região de veio (SBR04V) e porção
ferruginosa (SBR04S)64
Figura 29 - Espectro da amostra SB_Rocha_0565
Figura 30 - Espectro da amostra SB_Rocha_0666
Figura 31 - Espectro da amostra SB_Rocha_0767
Figura 32 - Espectros na faixa do SWIR de minerais de alteração argílica em sistema de
alteração do tipo pórfiro
Figura 33 - Padrões espectrais representativos do horizonte superficial de solos: (A) dominado
pela matéria orgânica em solos argilosos; (B) pouco alterado; (C) influenciado pela presença de

ferro; (D) afetado pela matéria orgânica em solos arenosos; (E) dominado por minerais opacos
Figura 34 - Espectro da amostra SB_Solo_0172
Figura 35 - Espectro da amostra SB_Solo_0272
Figura 36 - Espectro da amostra SB_Solo_0373
Figura 37 - Comparação entre as amostras SB_Solo_01, SB_Solo_02, SB_Solo_03 e duas amostras de illita da Biblioteca Espectral da USGS. As linhas verticais cinzas indicam as duas feições de absorção características da illita nessas amostras
Figura 38 - Espectro da amostra SB_Solo_0475
Figura 39 - Espectro da amostra SB_Solo_0576
Figura 40 - Comparação entre as amostras SB_Solo_04, SB_Solo_05 e duas amostras de illita da Biblioteca Espectral da USGS. As linhas verticais cinzas indicam as duas feições de absorção características da illita nessas amostras
Figura 41 - Espectro da amostra SB_Solo_0678
Figura 42 - Espectro da amostra SB_Solo_0778
Figura 43 - Espectro da amostra SB_Solo_0879
Figura 44 - Comparação entre as amostras SB_Solo_06, SB_Solo_07 e SB_Solo_08 e uma amostra de caulinita e uma de gibbsita da Biblioteca Espectral da USGS
Figura 45 - Análise de picos de difração de raios X da amostra SB_Rocha_0188
Figura 46 - Análise de picos de difração de raios X da amostra SB_Rocha_02
Figura 47 - Análise de picos de difração de raios X da amostra SB_Rocha_0390
Figura 48 - Análise de picos de difração de raios X da amostra SB_Rocha_0490
Figura 49 - Análise de picos de difração de raios X da amostra SB_Rocha_0591
Figura 50 - Análise de picos de difração de raios X da amostra SB_Rocha_0692
Figura 51 - Análise de picos de difração de raios X da amostra SB_Rocha_0792
Figura 52 - Análise de picos de difração de raios X da amostra SB_Solo_0193
Figura 53 - Análise de picos de difração de raios X da amostra SB_Solo_0294
Figura 54 - Análise de picos de difração de raios X da amostra SB_Solo_0394

Figura 55 - Análise de picos de difração de raios X da amostra SB_Solo_049	5
Figura 56 - Análise de picos de difração de raios X da amostra SB_Solo_059	6
Figura 57 - Análise alternativa de picos de difração de raios X da amostra SB_Solo_059	7
Figura 58 - Análise de picos de difração de raios X da amostra SB_Solo_069	8
Figura 59 - Análise de picos de difração de raios X da amostra SB_Solo_079	8
Figura 60 - Análise de picos de difração de raios X da amostra SB_Solo_089	9

LISTA DE QUADROS

Quadro 1 - Amostras de rocha e suas especificações
Quadro 2 - Amostras de solo e suas especificações
Quadro 3 - Dados dos espectros de diferentes filossilicatos da biblioteca espectral mineral
IG/UnB. As intensidades das bandas de absorção são classificadas segundo os seguintes
códigos: mm (muito muito), m (muito), F (forte), f (fraco), md (médio), om (ombro), sec
(secundárias) e inf (inflexão). As bandas de absorção individuais são separadas por ponto e
vírgula, e o hífen é utilizado para indicar a associação da banda principal com ombros ou
inflexões. Bandas consideradas diagnósticas são destacadas em negrito56

LISTA DE TABELAS

Tabela 1 – Localização dos centros das bandas de absorção dos minerais óxidos de ferro férrico
da FIG. 24
Tabela 2 - Resultados de ICP-OES das amostras de solo, rocha e MRC em percentual
Tabela 3 – Fatores de conversão de elementos para óxidos
Tabela 4 - Resultados de ICP-OES das amostras de solo, rocha e MRC em percentual de óxidos
Tabela 5 – Taxa de recuperação para MRCs antes e após a correção por subtração dos valores
do Branco
Tabela 6 - Resultados de ICP-OES em percentual de óxidos corrigidos com os valores do
Branco

RESUMO

O Quadrilátero Ferrífero (QFe), importante província mineral localizada no centro-sul de Minas Gerais, destaca-se por abrigar campos rupestres sobre formações quartzíticas e ferruginosas. A pressão sobre essas áreas e a consequente degradação desses ecossistemas tendem a acompanhar a expansão da mineração. Diante desse cenário, compreender detalhadamente esses ambientes é essencial para promover a recuperação ou restauração dos ecossistemas e suas funcionalidades. O sensoriamento remoto surge como uma ferramenta eficaz para a obtenção de dados precisos da superfície terrestre, sem a necessidade de contato físico entre sensor e alvo. A espectrorradiometria, por sua vez, permite caracterizar alvos com base na interação da radiação eletromagnética (REM) com suas superfícies, em comprimentos de onda específicos, possibilitando, no caso de rochas e solos, a identificação mineralógica e a caracterização físico-química a partir de curvas espectrais detalhadas. Para o desenvolvimento deste trabalho, foi escolhida a região da Serra da Brígida, com o objetivo de produzir bibliotecas espectrais de solos e rochas dos campos rupestres ferruginosos e quartzíticos, utilizando um espectrorradiômetro de campo. A fim de aprimorar a interpretação das feições de absorção das curvas espectrais, foram realizadas análises geoquímicas e de difração de raios X (DRX), que auxiliaram na identificação dos elementos e minerais responsáveis por essas feições. O objetivo principal de construir bibliotecas espectrais foi alcançado com sucesso. A integração dos dados espectrais com as análises geoquímicas e de DRX reforçou a interpretação mineralógica das amostras, identificando, por exemplo, caulinita, illita, montmorillonita, gibbsita, quartzo, muscovita e hematita como principais minerais presentes. Esses resultados contribuem para o avanço do conhecimento sobre os campos rupestres da Serra da Brígida e oferecem uma base sólida para aplicações futuras em monitoramento ambiental e pesquisas relacionadas. De modo geral, a criação de bibliotecas espectrais colabora para o avanço do conhecimento necessário à recuperação de áreas degradadas, ao mesmo tempo em que fornece dados técnicos consistentes para uma gestão mais eficiente e para a aplicação da metodologia na prospecção mineral.

Palavras-chave: Sensoriamento remoto; espectrorradiometria; biblioteca espectral; campos rupestres; Quadrilátero Ferrífero.

ABSTRACT

The Quadrilátero Ferrífero (QFe), a major mineral province located in the south-central region of Minas Gerais, is notable for hosting rupestrian grasslands on quartzitic and ferruginous formations. Pressure on these areas and the subsequent degradation of their ecosystems tend to follow the expansion of mining activities. In this context, a detailed understanding of these environments is essential to promote the recovery or restoration of ecosystems and their functionalities. Remote sensing emerges as an effective tool for obtaining precise data on the Earth's surface without requiring physical contact between the sensor and the target. Spectroradiometry, in turn, enables the characterization of targets based on the interaction of electromagnetic radiation (EMR) with their surfaces at specific wavelengths, allowing for the mineralogical identification and physicochemical characterization of rocks and soils through high-resolution spectral curves. For this study, the Serra da Brígida region was selected with the purpose of generating spectral libraries of soils and rocks from ferruginous and quartzitic rupestrian grasslands using a field spectroradiometer. To improve the interpretation of absorption features in the spectral curves, geochemical analyses and X-ray diffraction (XRD) were conducted, helping to identify the elements and minerals responsible for these features. The main objective of constructing spectral libraries was successfully achieved. The integration of spectral data with geochemical and XRD analyses strengthened the mineralogical interpretation of the samples, identifying kaolinite, illite, montmorillonite, gibbsite, quartz, muscovite, and hematite as the main minerals present. These results contribute to advancing knowledge about the rupestrian grasslands of the Serra da Brígida and provide a solid foundation for future applications in environmental monitoring and related research. In general, the creation of these spectral libraries contributes to advancing the knowledge required for restoring degraded areas while providing consistent technical data for more efficient management and the application of this methodology in mineral exploration.

Keywords: Remote sensing; spectroradiometry; spectral libraries; rupestrian grasslands; Quadrilátero Ferrífero.

SUMÁRIO

1 IN	ITRODUÇÃO17
1.1	Apresentação17
1.2	Localização19
1.3	Objetivos
1.4	Justificativa
2 ES	SPECTRORRADIOMETRIA2
2.1	Princípios de Espectrorradiometria2
2.1.1	Radiação eletromagnética (REM)2
2.1.2	Espectro Eletromagnético (EEM)
2.1.3	Sensores Multiespectrais e Hiperespectrais
2.2	Interações da Radiação com os Materiais24
2.2.1	Interações Macroscópicas
23	Bibliotecas Espectrais 30
2.5	Dienoteeus Espectaus
3 M	ATERIAIS E MÉTODOS
3 M3.1	ATERIAIS E MÉTODOS
 3 M 3.1 3.2 	CATERIAIS E MÉTODOS
 3 M 3.1 3.2 3.3 	ATERIAIS E MÉTODOS 32 Saídas de Campo 32 Descrição das Amostras 32 Preparação das Amostras 42
 3 M 3.1 3.2 3.3 3.4 	ATERIAIS E MÉTODOS 33 Saídas de Campo 33 Descrição das Amostras 33 Preparação das Amostras 34 Aquisição de dados Espectrais 4
 3 M 3.1 3.2 3.3 3.4 3.5 	ATERIAIS E MÉTODOS 33 Saídas de Campo 33 Descrição das Amostras 33 Preparação das Amostras 33 Aquisição de dados Espectrais 43 Processamento de Dados Espectrais 43
 3 M 3.1 3.2 3.3 3.4 3.5 3.6 	ATERIAIS E MÉTODOS 33 Saídas de Campo 33 Descrição das Amostras 33 Preparação das Amostras 33 Preparação das Amostras 41 Aquisição de dados Espectrais 41 Processamento de Dados Espectrais 42 Geoquímica 42
 3 M 3.1 3.2 3.3 3.4 3.5 3.6 3.7 	ATERIAIS E MÉTODOS 33 Saídas de Campo 33 Descrição das Amostras 33 Preparação das Amostras 34 Aquisição de dados Espectrais 44 Processamento de Dados Espectrais 44 Geoquímica 44 Difratometria de Raios X (DRX) 45
 3 M 3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 Co 	ATERIAIS E MÉTODOS
 3 M 3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 Co 4.1 	ATERIAIS E MÉTODOS 33 Saídas de Campo 33 Descrição das Amostras 33 Preparação das Amostras 33 Preparação das Amostras 43 Aquisição de dados Espectrais 44 Processamento de Dados Espectrais 44 Geoquímica 44 Difratometria de Raios X (DRX) 49 ONTEXTO GEOLÓGICO 50 Quadrilátero Ferrífero (QFe) 50
 3 M 3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 Co 4.1 4.2 	ATERIAIS E MÉTODOS 32 Saídas de Campo 32 Descrição das Amostras 32 Preparação das Amostras 32 Preparação das Amostras 41 Aquisição de dados Espectrais 41 Processamento de Dados Espectrais 42 Geoquímica 42 Difratometria de Raios X (DRX) 45 ONTEXTO GEOLÓGICO 50 Quadrilátero Ferrífero (QFe) 50 Estratigrafia da área de estudo 52

5 RESULTADOS E DISCUSSÃO	.54
5.1 Curvas Espectrais	.54
5.1.1 Rochas	.54
5.1.2 Solos	.68
5.2 Análise de ICP-OES	.81
5.3 Análise de DRX	.87
6 CONCLUSÃO	101
REFERÊNCIAS	103
ANEXOS	110
ANEXO A – Modelo de planilha de coleta de amostras	110
ANEXO B – Resultados de ICP-OES	111
ANEXO C – Material de Referência Certificado GBW 07406	112
ANEXO D – Material de Referência Certificado G5P.2	116
ANEXO E – Relatórios das análises de DRX de rochas e solos	118

1 INTRODUÇÃO

1.1 Apresentação

O Brasil é um dos principais produtores de minério de ferro no cenário mundial. De acordo com o IBRAM (2025), no primeiro trimestre de 2025, o minério de ferro foi responsável por 53% do faturamento do setor mineral brasileiro. Das 87,7 milhões de toneladas de produtos minerais exportados neste período, o minério de ferro representou 63,9% do total. Esses números ressaltam a significativa dependência do país em relação a esse recurso.

O Quadrilátero Ferrífero (QFe) é de extrema importância para o setor mineral, destacando-se como uma das regiões mais amplamente estudadas do Brasil. Sua relevância se deve à longa tradição de mineração de ouro e ferro que perdura por mais de três séculos, resultando em um profundo conhecimento geológico e econômico da área (Caxito; Dias, 2018).

Os campos rupestres caracterizam-se por uma vegetação herbácea e arbustiva altamente heterogênea, apresentando um ecossistema de alta diversidade e endemismo, fenômenos que são atribuídos a condições ambientais restritivas, incluindo solos pobres em nutrientes, variações sazonais e climáticas ligadas a grandes diferenças de altitude e latitude (Fernandes *et al.*, 2014; Negreiros *et al.*, 2014; Fernandes, 2016, *apud* Fernandes *et al.*, 2018).

Com a expansão das atividades de mineração, a pressão sobre novas áreas de campos rupestres em áreas ferruginosas se intensificará, resultando na degradação progressiva desses ambientes à medida que a mineração avança. Essa prática causa a remoção da vegetação e das camadas superficiais do solo, levando à perda significativa da biodiversidade e do ecossistema, o que afeta negativamente a qualidade de vida das comunidades locais. Além disso, o solo exposto após a mineração enfrenta grandes desafios para a regeneração natural, tornando-se vulnerável à erosão e exigindo a recuperação das áreas degradadas (Yan *et al.*, 2013; Sousa *et al.*, 2020). Entretanto, para restaurar um ecossistema e suas funções é essencial compreendê-lo. Nesse contexto, dentre as várias metodologias disponíveis, o sensoriamento remoto (SR) se destaca como uma ferramenta eficaz, permitindo a coleta de dados da superfície terrestre sem contato físico direto entre o sensor e o alvo, possibilitando a obtenção de informações em grandes escalas geográficas (McKenna *et al.*, 2022).

O SR evoluiu significativamente com o desenvolvimento de plataformas e sensores, como os multiespectrais e hiperespectrais. Esses avanços possibilitam uma caracterização detalhada dos alvos com base em suas propriedades físicas, químicas e biológicas (Reif; Theel, 2017). Um exemplo de grande relevância é o mapeamento hiperespectral, no qual são usados sensores imageadores, como o EnMap e o PRISMA, com centenas de bandas e os sensores não imageadores, como o *FieldSpec*, com milhares de bandas ao longo do espectro eletromagnético (EEM). Estes sensores permitem caracterizar os diferentes alvos da superfície terrestre por meio da espectrorradiometria e têm sido cada vez mais empregados em aplicações como mapeamento geológico, prospecção mineral, identificação de espécies vegetais e análise de solos.

A espectrorradiometria tem como objetivo a discriminação espectral dos alvos por meio de suas assinaturas espectrais, as quais estão condicionadas a processos eletrônicos na região do visível e infravermelho próximo – *Visible and Near-Infrared* (VNIR) e vibracionais na região do infravermelho de ondas curtas – *Short-Wave Infrared* (SWIR), resultantes da interação da REM com os átomos que constituem os alvos. Com isso, as curvas espectrais oferecem uma abordagem rápida e econômica para analisar a mineralogia e a composição química das amostras, devido às interações entre energia e matéria que geram feições de absorção específicas para diferentes minerais e outros componentes relevantes (Baptista, 2006).

De acordo com McKenna *et al.* (2022), a combinação de avanços tecnológicos e a revolução nos equipamentos, como plataformas aéreas, satélites, drones e a miniaturização de sensores, além da disponibilidade de dados, muitos deles gratuitos, impulsionou, nas últimas duas ou três décadas, um movimento global focado na quantificação de diversas variáveis ecológicas por meio de métodos de SR. No entanto, estudos que utilizam espectrorradiômetros de campo ainda são raros, e até onde se tem conhecimento, não há registros de pesquisas nesse âmbito com foco em campos rupestres.

A área de estudo localiza-se na Serra da Brígida, inserida no QFe, em Ouro Preto, Minas Gerais, na qual estão localizados campos rupestres sobre regiões quartzíticas e ferruginosas. Este estudo pretende elaborar uma biblioteca espectral dos solos e rochas que constituem este bioma, tão único a nível de biodiversidade e importância econômica, e deste modo suprir parte da lacuna existente no conhecimento hiperespectral, para que futuramente possa ser usado para outros estudos ambientais ou de prospecção. Uma vez criadas as bibliotecas espectrais, futuramente será possível, por exemplo, analisar se a cobertura vegetal reage espectralmente de maneira semelhante às variações químicas e mineralógicas do solo em ambos os ecossistemas. Isso permitirá automatizar o mapeamento e monitorar mudanças na cobertura vegetal, além de estimar os estoques e o sequestro de carbono. Também possibilitará verificar a equivalência desses ecossistemas para fins de compensação legal, promovendo a sustentabilidade na mineração. Portanto, a caracterização e o mapeamento dos campos rupestres tornam-se fundamentais para a conservação e gestão sustentável desses ecossistemas, e neste contexto, os resultados desta pesquisa servirão como base para aprimorar projetos de recuperação de áreas degradadas e avaliar a efetividade das ações de restauração ambiental. Por outro lado, os estudos também servirão de apoio para a aplicação da metodologia em explorações minerais.

1.2 Localização

A área de estudo está situada na Serra da Brígida (FIG. 1), parte integrante da Serra de Ouro Preto, inserida no contexto geológico do QFe, localizada no flanco sul do Anticlinal de Mariana. Nessa região, encontram-se os campos rupestres, habitats importantes que abrigam uma variedade de espécies vegetais endêmicas, as quais desempenham um papel crucial na complexidade ecológica da área.

Figura 1 - Mapa de localização da área de estudo situada na Serra da Brígida

Fonte: Elaborada pela autora.

1.3 Objetivos

O objetivo geral deste trabalho é a construção de bibliotecas espectrais das rochas e dos solos de áreas de cangas ferruginosas e quartzitos encontrados nos campos rupestres da Serra da Brígida. Essa iniciativa busca criar uma base sólida para futuras pesquisas no monitoramento ambiental da região, bem como na prospecção mineral.

Para alcançar esse objetivo, serão estabelecidos os seguintes objetivos específicos: 1 - correlacionar os dados espectrais com os dados geoquímicos; 2 - analisar os materiais por difratometria de raios X, a fim de corroborar os resultados espectrais obtidos.

1.4 Justificativa

A exploração mineral é uma atividade vital para a economia brasileira, especialmente no que diz respeito ao minério de ferro, que, como já citado, representa uma parcela significativa do faturamento e das exportações do setor mineral. Entretanto, o avanço das atividades minerárias, particularmente na região do QFe, pode trazer impactos relevantes para a conservação dos ecossistemas locais.

Nesse cenário, torna-se urgente compreender as interações entre as características geológicas e as propriedades espectrais das cangas ferruginosas e quartzitos. O uso de técnicas de SR, especialmente a espectrorradiometria nas faixas do visível e do infravermelho, pode fornecer informações cruciais para a caracterização mineralógica de solos e rochas (Bedine, 2017). No entanto, a escassez de estudos que aplicam essas técnicas em campos rupestres destaca uma lacuna significativa no conhecimento, tornando a realização desta pesquisa ainda mais pertinente.

Além de contribuir para o avanço do conhecimento científico, a construção de bibliotecas espectrais das rochas e solos da região permitirá o monitoramento das mudanças na cobertura vegetal, a estimativa de estoques de carbono e a avaliação da equivalência funcional entre diferentes ecossistemas. Essas informações são fundamentais para a formulação de estratégias de compensação ambiental e para a recuperação de áreas degradadas, promovendo uma abordagem mais sustentável na prática minerária. O uso do mapeamento hiperespectral também tem uma elevada potencialidade em áreas mais específicas da geologia, como mapeamento litológico e exploração mineral (Peyghambari; Zhang, 2021).

Ao integrar a caracterização espectral com análises geoquímicas e de difração de raios X, este estudo não apenas fornecerá uma base sólida para futuras investigações, mas também se tornará uma ferramenta importante para a gestão e conservação dos campos rupestres.

2 ESPECTRORRADIOMETRIA

2.1 Princípios de Espectrorradiometria

2.1.1 Radiação eletromagnética (REM)

O SR baseia-se na interação da REM com a superfície terrestre, captando essa energia por meio de sensores para gerar imagens (Meneses; Almeida, 2019, cap. 1). A radiação consiste na propagação de energia pelo espaço ou por um meio material, ocorrendo a uma determinada velocidade, sendo classificada em dois tipos principais: a REM e a radiação por emissão de partículas (Meneses; Almeida, 2019, cap. 1).

A radiação por emissão de partículas está associada ao fenômeno da radioatividade, que ocorre quando núcleos atômicos instáveis emitem partículas ou REM para atingir um estado de maior estabilidade, em um processo conhecido como decaimento radioativo, que pode envolver a emissão de partículas alfa (núcleos de hélio), partículas betas (elétrons ou pósitrons) ou radiação gama (ondas eletromagnéticas) (Halliday; Resnick; Walker, 2023). Embora a radiação gama seja uma forma de REM, ela não é utilizada na espectrorradiometria, que opera nas faixas do visível e do infravermelho, interagindo com a superfície dos objetos.

James Clerk Maxwell unificou os fenômenos elétricos e magnéticos nas "equações de Maxwell", que descrevem como os campos elétricos e magnéticos interagem e se propagam (Halliday; Resnick; Walker, 2023). De acordo com o físico, a luz é a propagação de campos elétricos e magnéticos oscilantes no espaço, perpendiculares entre si e à direção de propagação da onda, na velocidade da luz, variando ao longo do tempo (Halliday; Resnick; Walker, 2023). Essas oscilações dos campos elétrico e magnético são chamadas de ondas eletromagnéticas (Halliday; Resnick; Walker, 2023). As ondas eletromagnéticas são caracterizadas pelo seu comprimento de onda (λ) e frequência (f), relacionados pela equação 1:

$$\lambda = cf$$
 (1)

Onde c é a velocidade da luz no vácuo e f é a frequência.

A descrição das ondas eletromagnéticas, proposta por Maxwell, mostrou-se insuficiente para explicar fenômenos como a radiação de um corpo negro, um objeto teórico que absorve toda a radiação incidente e emite radiação térmica em um espectro contínuo dependente apenas de sua temperatura (Halliday; Resnick; Walker, 2023). Em 1900, Max Planck propôs que a energia é emitida em quantidades discretas (equação 2), chamadas de *quanta*, com:

$$E=hf$$
 (2)

Onde E, representa a energia; \mathbf{h} é a constante de Planck e \mathbf{f} é a frequência, marcando assim o início da mecânica quântica.

Essa ideia foi ampliada por Albert Einstein em 1905, ao explicar o efeito fotoelétrico, propondo que a luz é composta por partículas chamadas fótons, cada uma carregando um *quantum* de energia. Esse conceito consolidou a dualidade onda-partícula, em que a luz exibe comportamento ondulatório em fenômenos como interferência e comportamento corpuscular no efeito fotoelétrico (Halliday; Resnick; Walker, 2023).

2.1.2 Espectro Eletromagnético (EEM)

A REM de maior importância para os seres humanos é a proveniente do Sol, onde, dentro do EEM (FIG. 2), a região conhecida como "luz visível" abrange comprimentos de onda aproximadamente de 400 nm até 700 nm, faixa à qual o ser humano é sensível (Meneses; Almeida, 2019, cap. 1). Além da luz visível, o Sol emite radiação em outras faixas espectrais, como o ultravioleta, com comprimentos de onda inferiores a 400 nm, e o infravermelho, com comprimentos de onda superiores a 700 nm, incluindo o infravermelho próximo e o infravermelho de ondas curtas (Meneses; Almeida, 2019, cap. 1).

A Terra também emite REM, especialmente na faixa do infravermelho termal, que possui comprimentos de onda consideravelmente maiores que os da radiação solar. Essa radiação é resultante da energia absorvida pela superfície terrestre e reemitida na forma de calor. Além das fontes naturais, há também fontes artificiais de REM, como as microondas, que possuem comprimentos de onda ainda maiores e são amplamente utilizadas em tecnologias de comunicação e aquecimento (Meneses; Almeida, 2019, cap. 1).

Figura 2 - Espectro Eletromagnético

Fonte: Halliday, Resnick e Walker (2023).

No contexto da espectrorradiometria, a REM classificada como óptica abrange a faixa entre o visível ao infravermelho de ondas curtas, compreendendo comprimentos de onda entre 450 nm e 2500 nm (Jensen, 2009). Essa delimitação se deve ao fato de que, neste intervalo, a radiação possui a característica de ser refletida pelas superfícies dos materiais, obedecendo aos princípios ópticos de reflexão, dispersão e refração (Meneses; Almeida, 2019, cap. 1).

2.1.3 Sensores Multiespectrais e Hiperespectrais

Segundo Baptista (2006), embora os sensores multiespectrais e hiperespectrais compartilhem princípios semelhantes, as suas características técnicas distintas influenciam suas aplicações. Os sensores multiespectrais são amplamente utilizados para a identificação e detecção de alvos específicos, como solo, rocha, vegetação, entre outros. Já os sensores hiperespectrais possibilitam análises mais detalhadas, como o monitoramento da "saúde" da vegetação, a determinação da composição química e mineralógica de solos e rochas, entre outras aplicações.

Como pode ser visto na FIG. 3, que ilustra as diferenças entre imagens multiespectrais e hiperespectrais, os autores Adão *et al.* (2017) pontuam que as imagens multiespectrais geralmente contêm entre 5 e 12 bandas, enquanto as imagens hiperespectrais possuem um número muito maior, chegando a centenas ou até milhares, organizadas em faixas mais estreitas, de 5 a 20 nm. Dessa forma, segundo os autores, os dados hiperespectrais se destacam na caracterização de materiais e de suas assinaturas espectrais, pois seu espectro é praticamente contínuo. Essa alta resolução permite análises mais precisas e detalhadas dos materiais e alvos observados.

Figura 3 - Representação do espectro, sem escala, onde, em A), tem-se um exemplo multiespectral, com 5 bandas largas; e em B) um exemplo hiperespectral, com várias bandas estreitas que, geralmente, se estendem a centenas ou milhares delas.

Fonte: Adão et al. (2017).

2.2 Interações da Radiação com os Materiais

No SR, a REM interage com os materiais presentes na superfície terrestre em dois níveis distintos: macroscópico e microscópico. Essas interações são essenciais para compreender os processos de reflexão, absorção e transmissão da radiação, que por sua vez permitem a identificação e a caracterização de diferentes superfícies e composições materiais (Meneses; Almeida, 2019, cap. 2).

2.2.1 Interações Macroscópicas

As interações macroscópicas estão relacionadas às propriedades físicas da superfície, como textura e rugosidade, que determinam o comportamento da reflexão da radiação. Superfícies lisas refletem a radiação de forma especular, ou seja, em uma direção preferencial, enquanto superfícies rugosas promovem uma reflexão difusa, espalhando a radiação em múltiplas direções (Meneses; Almeida, 2019, cap. 2).

Além disso, a geometria de iluminação e observação desempenham um papel crucial, pois os ângulos de incidência e observação influenciam diretamente a quantidade de radiação refletida. As medidas espectrorradiométricas realizadas em diferentes posições podem revelar variações na reflectância, sendo ideal alinhar o equipamento à direção de maior intensidade da luz refletida (Meneses; Almeida, 2019, cap. 2).

A granulometria também impacta diretamente a reflectância. À medida que o tamanho das partículas diminui, a reflectância total aumenta, uma vez que materiais com partículas menores tendem a refletir mais radiação pois possuem uma área superficial maior em relação ao volume, o que aumenta as reflexões internas (Adams; Filice, 1967; Meneses; Almeida, 2019, cap. 2).

Adams e Filice (1967) mostram como a esfericidade e o empacotamento das partículas também afetam a reflectância espectral. Partículas mais esféricas e menos compactas permitem maior absorção de radiação, enquanto partículas menos esféricas e mais compactas tendem a refletir mais luz na superfície. No entanto, na faixa espectral entre 1000 nm e 2000 nm, a reflectância pode aumentar em materiais menos compactos, invertendo o padrão observado em outras faixas espectrais.

2.2.2 Interações Microscópicas

As interações microscópicas no SR ocorrem no nível atômico e molecular, onde a REM interage com os átomos e moléculas dos materiais, gerando bandas de absorção características dos espectros de reflectância (Meneses; Almeida, 2019). Essas bandas permitem identificar a composição química dos materiais, sendo resultantes de dois processos principais: transições eletrônicas e vibracionais (Hunt, 1977).

2.2.2.1 Transições Eletrônicas

As transições eletrônicas em íons com elétrons desemparelhados, como metais de transição, causam bandas de absorção no visível e infravermelho próximo (380 nm a 1300 nm). Essas transições, observadas em minerais e solos, dependem de mecanismos como campo cristalino, transferência de carga, bandas de condução e centro de cores (Hunt, 1977; Meneses; Almeida, 2019, cap. 2). No entanto, diversos elementos da tabela periódica, como silício, potássio e sódio, realizam transições eletrônicas em comprimentos de onda que não são detectáveis pela espectrorradiometria na faixa da luz óptica, ocorrendo principalmente em regiões como o ultravioleta ou o infravermelho termal, o que impede uma análise completa desses elementos por essa técnica (Meneses; Almeida, 2019, cap. 2).

A teoria do campo cristalino é fundamental para compreender as propriedades ópticas e eletrônicas dos minerais que contêm elementos de transição. Quando um metal está cercado por ligantes, os elétrons nos orbitais "d" do metal se organizam em diferentes níveis de energia devido à repulsão eletrostática entre os elétrons do metal e os dos ligantes, resultando em um desdobramento dos níveis de energia (Meneses; Almeida, 2019, cap. 2). Em complexos octaédricos, por exemplo, os orbitais "d" se dividem em dois grupos: os orbitais eg, que são orientados diretamente na direção d_z^2 e $d_x^{2-y^2}$, têm uma maior repulsão dos elétrons, e, com isso, há um aumento de energia, e os orbitais t_{2g} que se orientam entre os eixos dos orbitais d_{xy} , d_{yz} e d_{xz} , sofrem menor repulsão, e os elétrons do íon central têm suas energias diminuídas (Meneses; Almeida, 2019, cap. 2). Como consequência, o desdobramento dos orbitais "d", forma um triplete de orbitais dæ de menor energia e um par de orbitais d γ de maior energia, como mostrado na FIG. 4 (Baptista, 2006).

Figura 4 - Teoria do campo cristalino para complexos octaédricos

Fonte: Meneses e Almeida (2019, cap. 2).

Quando um íon metálico em um complexo absorve REM, os elétrons nos orbitais "d" de menor energia (d_{ϵ}) são excitados para orbitais de maior energia (d_{γ}) (Meneses; Almeida, 2019, cap. 2). A energia necessária para essa transição depende do desdobramento dos orbitais, que é influenciado pelos ligantes ao redor do metal (Meneses; Almeida, 2019, cap. 2). Quanto maior o desdobramento, maior a energia necessária, e menor o comprimento de onda da luz absorvida (Meneses; Almeida, 2019, cap. 2). Essa absorção de luz específica aparece como uma banda de absorção no espectro de luz e a cor que vemos é o resultado da luz que não foi absorvida (Meneses; Almeida, 2019, cap. 2). Isso explica as cores observadas em minerais como, por exemplo, a hematita (cor vermelha) e a goethita (cor amarela).

Nem todas as transições eletrônicas são permitidas, pois existem regras que determinam quais podem ocorrer. A regra de seleção de spin estabelece que uma transição é permitida

apenas se a soma de spins é igual a zero ($\Delta S = 0$), enquanto a regra de Laporte proíbe transições entre orbitais do mesmo tipo (como d-d) em complexos centrossimétricos (por exemplo, octaédricos) (Rossman, 1988 *apud* Meneses; Almeida, 2019, cap. 2). No entanto, nas transições proibidas, a intensidade das bandas de absorção é muito fraca, pois essas transições não obedecem às regras de seleção eletrônicas. Ainda assim, vibrações ou distorções na rede cristalina podem quebrar temporariamente a simetria, tornando-as fracamente permitidas (Meneses; Almeida, 2019, cap. 2).

Conforme Xavier (2018, *apud* Meneses; Almeida, 2019, cap. 2), nos complexos tetraédricos, a interação entre os ligantes e os orbitais "d" do metal ocorre de maneira menos intensa, pois os orbitais d_{xy} , d_{yz} e d_{xz} sofrem uma interação fraca, enquanto os orbitais d_z^2 e $d_x^{2-y^2}$ não sofrem interação. Isso resulta em um desdobramento menor entre os orbitais "d", que ocorre de forma invertida em relação aos complexos octaédricos, fazendo com que os complexos tetraédricos absorvam luz de menor energia, resultando em cores mais claras e distintas dos complexos octaédricos (FIG. 5).

Figura 5 - Teoria do campo cristalino para complexos tetraédricos

Fonte: Xavier (2018) apud Meneses e Almeida (2019, cap. 2).

Diferente das transições de campo cristalino, que envolvem a movimentação de elétrons dentro de um único átomo (como em transições d-d), a transferência de cargas ocorre entre átomos ou moléculas distintos, resultando em mudanças significativas nas propriedades ópticas e químicas dos materiais (Meneses; Almeida, 2019, cap. 2).

Esse fenômeno pode se manifestar de três formas principais: transferência de carga ligante-metal (TCLM), onde um elétron é transferido de um ligante para um metal; transferência de carga metal-ligante (TCML), onde um elétron é transferido de um metal para um ligante; e transferência de carga intervalência (TCMM), onde um elétron é transferido entre dois íons metálicos adjacentes com diferentes estados de oxidação (Meneses; Almeida, 2019, cap. 2).

Esses processos estão diretamente relacionados a reações de oxirredução, onde há mudanças nos estados de oxidação dos átomos envolvidos. As absorções de luz resultantes da transferência de cargas são muito intensas e frequentemente ocorrem na região do visível e do ultravioleta, sendo responsáveis pelas cores características de muitos minerais, como o vermelho da hematita, o preto da magnetita e o azul da safira (Meneses; Almeida, 2019, cap. 2).

Segundo Hunt (1977), outros fenômenos podem ser observados em alguns minerais, nos quais a proximidade entre muitos átomos faz com que os níveis de energia discretos se aproximem, formando bandas de energia praticamente contínuas. Essas bandas incluem a banda de condução, que corresponde a um estado de alta energia, onde os elétrons ganham mobilidade e podem se mover livremente pelo retículo cristalino, permitindo a transmissão de energia, e a banda de valência, associada a um estado de menor energia, na qual os elétrons permanecem fortemente ligados aos átomos.

Ainda segundo o autor, entre essas duas bandas, existe uma região chamada de intervalo proibido, onde os elétrons não podem existir. Sua largura varia dependendo do material: em metais, que são materiais condutores, ela é muito estreita ou inexistente, enquanto em dielétricos, é larga. Em semicondutores, a largura da banda proibida é intermediária, e a transição entre as bandas de valência e condução pode ser observada como uma forte absorção no infravermelho próximo.

Por fim, Nassau (1978) aborda um último fenômeno que ocorre em alguns minerais na faixa do espectro visível: os centros de cor. Esses centros são defeitos na estrutura cristalina, como vacâncias ou ausência de átomos na rede, que podem capturar elétrons, criando níveis de energia discretos que permitem a absorção de diferentes comprimentos de onda da luz, resultando na cor observada no mineral. Por exemplo, na fluorita e no zircão as diversas cores resultam dos centros de cor, onde átomos radioativos de urânio ou tório podem ser uma das causas possíveis para os defeitos na rede cristalina que dão origem às cores desses minerais (Meneses; Almeida, 2019, cap. 2).

2.2.2.2 Transições Vibracionais

Quando a REM interage com materiais terrestres, uma das formas de absorção de energia ocorre por meio das vibrações moleculares. Essas vibrações, que acontecem nas ligações químicas entre átomos, causam movimentos de distensão e compressão, sendo essenciais para entender como a energia é absorvida e refletida, especialmente na região do infravermelho (Meneses; Almeida, 2019, cap. 2).

Assim como nas transições eletrônicas, as vibrações moleculares são quantizadas, o que significa que só podem ocorrer em níveis de energia específicos. Como a energia necessária para essas transições é menor do que a requerida para excitar elétrons, as vibrações moleculares são mais comuns em comprimentos de onda maiores, como os do infravermelho (Meneses; Almeida, 2019, cap.2).

Segundo Clark (1999), as ligações químicas ocorrem como uma mola com pesos fixados em suas extremidades, fazendo com que todo o conjunto vibre. A frequência dessas vibrações depende de dois fatores principais: a massa dos átomos, onde átomos mais leves vibram mais rapidamente do que átomos pesados, e a força da ligação química, na qual ligações mais fortes vibram em frequências mais altas do que ligações fracas (Meneses; Almeida, 2019, cap. 2).

Em moléculas simples, como as diatômicas, o único modo de vibração possível é o estiramento da ligação entre os dois átomos, ou seja, uma deformação axial que envolve a variação da distância entre átomos. No entanto, em moléculas mais complexas, como as que têm três ou mais átomos, outros tipos de vibração podem ocorrer, como o dobramento das ligações, que alteram o ângulo entre as ligações, gerando uma deformação angular (Meneses; Almeida, 2019, cap. 2).

De acordo com Clark (1999) e Meneses e Almeida (2019, cap. 2), o número e a natureza das vibrações variam conforme a estrutura molecular, dependendo da quantidade de átomos, de sua geometria e da força da ligação química. Em um sistema com N átomos, os graus de liberdade total são 3N, no qual cada átomo pode se mover em x, y, z. Quando os átomos formam uma molécula, esses graus são divididos em dois tipos de movimento: translação (movimento do centro de massa, com 3 graus de liberdade) e rotação (giro da molécula, tendo 2 graus de liberdade para moléculas lineares ou 3 para não lineares). Assim, moléculas lineares, como por exemplo o dióxido de carbono (CO₂), têm 3N – 5 modos vibracionais, onde, 2 átomos resultam apenas 1 modo vibracional, enquanto moléculas não lineares, como a da água (H₂O), têm 3N – 6, neste caso, com 3 átomos, originam-se 3 modos vibracionais. Esses modos representam como os átomos se movem em conjunto.

Ainda segundo os autores, além das vibrações fundamentais, existem fenômenos como os sobretons (*overtones*) e as bandas de combinação (*combination bands*). Os *overtones* ocorrem quando uma molécula absorve energia suficiente para saltar direto para o segundo, terceiro ou até mesmo níveis vibracionais mais altos, em vez de apenas para o primeiro nível excitado, resultando em bandas de absorção em múltiplos da frequência fundamental (2v, 3v etc.). Já uma *combination band* surge quando duas ou mais vibrações fundamentais ou *overtones* ocorrem simultaneamente, gerando novas bandas de absorção que são a soma dessas frequências ($v_1 + v_2$, $2v_1 + v_2$ etc.).

Com isso, esses fenômenos têm grande importância na espectrorradiometria, pois permitem a identificação de materiais com base em suas assinaturas espectrais. Por exemplo, a água (H₂O) tem uma banda de absorção característica em 1900 nm, associada a uma *combination band*, enquanto a hidroxila (OH⁻) apresenta uma banda em 1400 nm, que corresponde a um *overtone* do modo de estiramento fundamental (Meneses; Almeida, 2019, cap. 2).

2.3 Bibliotecas Espectrais

A criação de bibliotecas espectrais tem se mostrado um recurso importante na discriminação de alvos em estudos geológicos e pedológicos. Bellinaso (2009) destaca que a utilização de espectrorradiometria não apenas permite a identificação de minerais opticamente ativos, mas também acelera o processo de levantamento pedológico. Os dados obtidos são fundamentais para a avaliação da geodiversidade, pois possibilitam uma melhor compreensão da variabilidade dos solos em uma região.

Rossel *et al.* (2009) investigaram a aplicação da espectrorradiometria na faixa Vis-NIR para o sensoriamento proximal de propriedades do solo, como cor, composição mineral e teor de argila, em 10 perfis de solo na Austrália. Embora as medições *in situ* apresentassem menor reflectância, especialmente em comprimentos de onda relacionados à água, a técnica mostrouse eficaz na identificação de óxidos de ferro e argilominerais.

Bellinaso *et al.* (2010) criaram uma biblioteca espectral com amostras de 233 perfis de solo em diversas regiões agrícolas do Brasil. Utilizando um espectrorradiômetro na faixa de 350 nm a 2500 nm, os autores aplicaram a Análise de Componentes Principais (PCA) e identificaram que a intensidade da reflectância estava relacionada a teores de óxidos de ferro, argila e matéria orgânica. Essa abordagem facilitou a classificação de solos como Latossolos e Argissolos, refletindo suas propriedades físicas e químicas.

A discriminação de horizontes e classes de solos australianos foi explorada por Rossel e Webster (2011), que analisaram 13654 amostras e 1697 perfis da coleção do *CSIRO* e do Departamento de Gestão de Recursos de Queensland - *Queensland Department of Resource Management (QDRM)*. Os pesquisadores aplicaram análise de variáveis canônicas para distinguir entre horizontes superficiais e subsuperficiais, destacando a influência de fatores como matéria orgânica e óxidos de ferro. Demattê e Terra (2014) introduziram o conceito de "pedologia espectral", utilizando a espectroscopia Vis-NIR para detectar diferenças nos solos ao longo de uma toposequência em Piracicaba, SP. Os resultados mostraram que a reflectância variava de acordo com a granulometria e a mineralogia, com características espectrais distintas associadas a diferentes classes de solo.

A Biblioteca Espectral de Solos do Brasil (BESB), desenvolvida por Sato (2015), caracterizou espectros de diferentes classes de solo e quantificou atributos como argila e areia, resultando em 19.537 curvas espectrais. A PCA permitiu distinguir classes como Organossolos, Latossolos, Argissolos e Nitossolos, ressaltando a necessidade de expandir a BESB. Descrita por Demattê *et al.* (2019), esta reúne espectros de 39.284 amostras de solo de várias regiões do Brasil, com o objetivo de avaliar propriedades do solo utilizando espectroscopia VNIR-SWIR. A análise de PCA, revelou padrões de reflectância associados a fatores regionais e pedológicos, facilitando a estimativa de atributos e o manejo sustentável dos recursos do solo.

Em um outro estudo, Fang *et al.* (2018) revisaram a espectroscopia VNIR como uma alternativa promissora à difração de raios X para a análise mineral do solo, discutindo suas aplicações em estudos sobre intemperismo e paleoclimas.

No que diz respeito à caracterização de rochas, Perrota *et al.* (2013) apresentaram um conjunto de assinaturas espectrais de rochas metavulcânicas do Supergrupo Espinhaço Setentrional, incorporando essas informações à Biblioteca Espectral do Serviço Geológico do Brasil. Os resultados indicaram que a utilização de assinaturas espectrais de rochas alteradas pode ser extremamente útil para a identificação de depósitos metálicos, apoiando investigações metalogenéticas.

Binotto *et al.* (2015) realizaram análises espectrais em amostras de rochas sedimentares eo-paleozoicas na Mina Uruguai, que foram afetadas por alterações hidrotermais associadas a ocorrências de cobre. As curvas espectrais obtidas foram incorporadas à biblioteca espectral do Serviço Geológico do Brasil, oferecendo uma referência importante para futuras aplicações em mapeamento espectral utilizando dados de sensores, como o ASTER.

Silva *et al.* (2019) utilizaram dados espectroscópicos para identificar e caracterizar a bauxita na Serra do Caparaó, integrando análises de difração de raios X e imagens multiespectrais do sensor ASTER. A pesquisa revelou a presença de minerais como gibbsita, caulinita, hematita e goethita, utilizando assinaturas espectrais obtidas em laboratório para a classificação da imagem ASTER.

Coimbra *et al.* (2023) exploraram a Província Mineral de Carajás, concentrando-se na vetorização de minérios, especialmente cobre, e contribuindo para a caracterização espectral de rochas hidrotermalizadas. A classificação mineralógica foi realizada utilizando *softwares* especializados, com validação comparativa à biblioteca da USGS.

Esses estudos demonstram o potencial da espectrorradiometria na caracterização tanto de solos quanto de rochas e a importância da criação de bibliotecas espectrais. A continuidade dessas pesquisas é essencial para o desenvolvimento de métodos mais eficientes e sustentáveis, com a perspectiva de melhorar a gestão dos recursos naturais e a preservação do meio ambiente.

3 MATERIAIS E MÉTODOS

O desenvolvimento do trabalho seguiu as etapas descritas a seguir:

3.1 Saídas de Campo

Realizaram-se saídas de campo para reconhecimento das áreas e coleta das amostras, que foram devidamente ensacadas e etiquetadas para posterior transporte e armazenamento no laboratório, garantindo assim um armazenamento adequado. Durante a coleta, todos os dados obtidos, assim como as descrições dos materiais, foram registrados na planilha de coleta de amostras (ANEXO A).

3.2 Descrição das Amostras

As amostras coletadas foram separadas em amostras de rocha e de solo, estabelecendo códigos para diferenciá-las. Com isso, as amostras foram nomeadas da seguinte forma:

- SB_Rocha_0X
- SB_Solo_0X

Onde SB identifica a região da Serra da Brígida. Além disso, foram atribuídas subdivisões para as classes de rocha, sendo:

- SBR0XIN para identificar a região interna;
- SBR0XEX para identificar a região externa;
- SBR0XV para identificação de veio;
- SBR0XS para amostra representativa de uma porção.

A FIG. 6, a seguir, apresenta a localização dos pontos de coleta das amostras de rocha, e o QUADRO 1 detalha as especificações de cada uma delas.

Figura 6 - Localização dos pontos de coleta das amostras de rocha na Serra da Brígida

Fonte: Elaborada pela autora.

Fonte: Elaborada pela autora.

Quanto às amostras de solo, a FIG. 7 apresenta a localização dos pontos de coleta,

enquanto o QUADRO 2 reúne as especificações de cada uma das amostras analisadas.

Figura 7 - Localização dos pontos de coleta das amostras de solo na Serra da Brígida

Fonte: Elaborada pela autora.

Fonte: Elaborada pela autora.

Vale ressaltar que as amostras de solo foram coletadas superficialmente, com exceção da amostra SB_Solo_07, que foi retirada de um perfil de solo de 3 m de espessura e pode ser descrito como um latossolo vermelho pertencente à Fm. Cauê, onde o horizonte A foi removido pela atividade de mineração da região. Além disso, o perfil sofreu hidrólise total, removendo a sílica e resultando no enriquecimento de ferro e alumínio.

3.3 Preparação das Amostras

Para as análises espectrais, as amostras de rocha foram secas ao ar livre. Já as amostras de solo seguiram os protocolos da BESB, sendo igualmente secas ao ar livre, destorroadas e peneiradas em malha de 2 mm. Convém ressaltar que não foi utilizada estufa no processo de secagem, o que representa uma variável importante, pois a secagem ao ar livre pode influenciar na retenção de umidade e, consequentemente, nas propriedades espectrais. Após peneiradas, as amostras foram dispostas em placas de Petri de 12 cm de diâmetro e 1,5 cm de altura, com suas superfícies uniformizadas para minimizar a influência da rugosidade.

A fim de realizar uma análise comparativa das leituras espectrais sob diferentes condições de rugosidade (FIG. 8), as amostras de solo foram subdivididas em três categorias:

- 1. Amostras coletadas in situ;
- 2. Amostras peneiradas;
- 3. Material retido na peneira, com granulometria superior a 2 mm.

Figura 8 - Amostras de solo sob diferentes condições de rugosidade. Em A), amostras *in situ*; em B), amostras peneiradas; e em C), amostras de granulometria superior a 2 mm.

Fonte: Elaborada pela autora.

Para a análise geoquímica e a difratometria de raios X, as amostras de solo e rocha foram britadas e pulverizadas até atingir uma granulometria inferior a 400 mesh. Os procedimentos foram realizados no Laboratório de Tratamento de Minérios do Departamento de Engenharia de Minas da Universidade Federal de Ouro Preto.

3.4 Aquisição de dados Espectrais

As medições de reflectância nas faixas VNIR-SWIR foram realizadas com o espectrorradiômetro *FieldSpec 4 Hi-Res (Analytical Spectral Devices, ASD*), cobrindo o

espectro de 350 a 2500 nm, apresentando uma resolução espectral de 3 nm na faixa VNIR (350 - 1000 nm) e 8 nm na faixa SWIR (1000 - 2500 nm).

As leituras espectrais ocorreram num ambiente controlado, em uma sala escura, para evitar interferências de luz externa. Para as amostras de solo, utilizou-se o acessório *Turntable* (plataforma giratória) conectado ao *FieldSpec*, a fim de assegurar uma leitura mais consistente e representativa (FIG. 9).

Figura 9 - Equipamento Fieldspec com o acessório Turntable em leitura de amostra de solo

Fonte: Elaborada pela autora.

Nas amostras de rocha, tanto as partes internas quanto externas das amostras quebradas foram analisadas, permitindo comparações futuras entre os dados obtidos *in situ* e informações de espectroscopia de imageamento. As leituras espectrais das rochas também ocorreram em ambiente escuro, desta vez utilizando um sensor conectado a fibra óptica que é colocado em contato direto com as amostras (FIG. 10).

Figura 10 - Equipamento Fieldspec utilizando um sensor conectado a fibra ótica em leitura de amostra de rocha

Fonte: Elaborada pela autora.

Em ambos os casos, antes de iniciar as leituras, os acessórios foram calibrados utilizando uma placa *Spectralon* branca, que possui um padrão de reflectância de 100%. Para cada amostra, foram realizadas cinco leituras. Ao final do processo, todas as amostras foram ensacadas e identificadas para possível reanálise.

3.5 Processamento de Dados Espectrais

O software ViewSpec Pro 6.2 (ASD) foi utilizado para calcular a média entre as cinco leituras dos dados hiperespectrais e converter os arquivos ".asd" para ".txt". As curvas espectrais foram visualizadas no software Environment for Visualizing Images - ENVI 5.6.1 (SulSoft), e a mineralogia das amostras foi identificada com base na comparação com a biblioteca espectral da U.S. Geological Survey (USGS), além de referências da literatura, como os trabalhos de Baptista (2006) e Meneses et al. (2019).

3.6 Geoquímica

A caracterização geoquímica das amostras foi realizada no Laboratório de Geoquímica do Departamento de Geologia da Universidade Federal de Ouro Preto, através do método de digestão total, utilizando a técnica ICP-OES (*Inductively Coupled Plasma Optical Emission Spectrometry*) com o espectrômetro *Agilent* 725.

Na metodologia utilizada, inicialmente, um frasco Savillex foi pesado separadamente para cada amostra de rocha e solo, bem como para dois materiais de referência e um branco (FIG. 11A e B). Em seguida, determinou-se a massa de cada béquer antes da adição da amostra correspondente (FIG. 11C). Foram adicionadas cerca de 0,2500 g (variando entre 0,2490 e 0,2510 g) de cada amostra totalmente seca ao interior do respectivo béquer (FIG. 11D). Após isso, as amostras foram transferidas para o Savillex, e o resíduo restante no béquer foi pesado.

Figura 11 - Pesagem de amostras para início do procedimento de digestão total. Em A), bancada com os materiais organizados para a realização da pesagem, com cada item separado para cada amostra; em B), pesagem do frasco Savillex; em C), pesagem do béquer antes da adição da amostra; e, em D), a amostra é colocada no béquer para posterior transferência ao frasco Savillex.

Fonte: Elaborada pela autora.

Na etapa seguinte, adicionou-se 1 mL de HNO₃ 10 mol/L, seguido de 3 mL de HCl 10 mol/L (FIG. 12). Com os frascos abertos, a mistura foi levada à secura sobre a placa aquecedora (FIG. 13), mantida a aproximadamente 110 °C. Após essa etapa, acrescentaram-se 2 mL de HF concentrado, e, com os frascos abertos, foram novamente colocados sobre a placa aquecedora até secarem completamente, também a cerca de 110 °C. Repetiu-se a adição de 2 mL de HF concentrado, os frascos foram fechados e mantidos na placa aquecedora por 35 horas, à mesma temperatura (FIG. 14).

Figura 12 - À esquerda, HCl 10 mol/L, e à direita, HNO3 10 mol/L. Ácidos utilizados durante o procedimento

Fonte: Elaborada pela autora.

Figura 13 – Savillex levados à secura sobre a placa aquecedora após adição de 1 mL de HNO3 10 mol/L, seguido de 3 mL de HCl 10 mol/L

Fonte: Elaborada pela autora.

Figura 14 – Segunda adição de 2 mL de HF concentrado, onde os frascos Savillex foram fechados e mantidos na placa aquecedora por cerca de 30 horas. Em A) o HF concentrado e em B) as amostras sobre a placa secadora.

Fonte: Elaborada pela autora.

Após esse período, os frascos foram retirados da placa aquecedora, deixou-se que esfriassem e, em seguida, foram abertos. Com os frascos abertos, eles foram novamente colocados sobre a placa aquecedora até secarem, mantendo-se a temperatura em aproximadamente 110 °C. Adicionaram-se 2 mL de HNO₃ 10 mol/L, os frascos permaneceram abertos e foram novamente levados à secura na placa aquecedora. A adição de HNO₃ 10 mol/L foi repetida, e os frascos foram novamente secos na placa. Em seguida, adicionaram-se 2 mL de HCl 10 mol/L, os frascos permaneceram abertos e foram levados à secura mais uma vez, a aproximadamente 110 °C. Nessa etapa, é importante ressaltar a formação de cores distintas, resultantes das reações químicas de cada amostra, que auxiliam na identificação dos elementos presentes (FIG. 15). Posteriormente, os frascos foram retirados da placa aquecedora e deixados para esfriar.

Figura 15 – Amostras após adição de 2 mL de HCl 10 mol/L levados à secura, evidenciando a reação que exibe cores características para os elementos contidos em cada amostra

Fonte: Elaborada pela autora.

Por fim, adicionaram-se 25 mL de HCl 2 mol/L, os frascos foram fechados, agitados e mantidos em repouso por 4 horas sobre a placa aquecedora (FIG. 16). Após esse tempo, os frascos foram retirados da placa, mantidos fechados para o resfriamento e sua massa total (frasco + tampa + solução) foi determinada. Por fim, com a digestão total finalizada, as amostras foram transferidas para outro recipiente, que foi encaminhado para análise por ICP-OES (FIG. 17).

Figura 16 - Amostras após a adição de 25 mL de HCl 2 mol/L mantidas por 4 horas sobre a placa aquecedora

Fonte: Elaborada pela autora.

Figura 17 - Digestão total finalizada e amostras encaminhadas para análise por ICP-OES

Fonte: Elaborada pela autora.

Essa análise possibilitou a determinação da composição química dos solos e rochas, fornecendo dados complementares cruciais para corroborar as informações obtidas nas leituras espectrais, permitindo uma interpretação mais robusta sobre a relação entre a composição química e as características espectrais dos materiais.

3.7 Difratometria de Raios X (DRX)

A DRX foi realizada no Laboratório de Microscopia Ótica, Difratometria de Raio X e Fluorescência de Raio X do Departamento de Engenharia de Minas da Universidade Federal de Ouro Preto, utilizando o difratômetro de raios X *PanAlytical X'Pert Powder*. O processamento e a análise dos dados de DRX foram realizados utilizando o *software X'pert HighScore Plus*.

Inicialmente, o *background* foi ajustado manualmente utilizando os parâmetros *granularity* e *bending factor*, definidos como 20 e 7, respectivamente, com base nos espectros, a fim de assegurar uma identificação correta dos picos. Não foram aplicadas filtragens adicionais aos dados de difração nesta etapa.

Após a correção do *background*, os picos foram identificados automaticamente pelo *software X'pert HighScore Plus*. Quando necessário, foram realizados ajustes manuais, adicionando ou removendo picos nos casos em que o *software* não os detectava ou interpretava ruídos, como picos relevantes. A identificação mineralógica foi feita por meio da busca automática no banco de dados PDF-2.

Os resultados iniciais fornecidos pelo *software* foram avaliados de forma crítica e a identificação dos minerais foi refinada cruzando essas informações com conhecimentos prévios sobre a composição esperada das amostras, obtidos a partir da análise espectral e geoquímica. Assim, a análise não se restringiu às sugestões automáticas do *software*, mas utilizou-se um critério baseado em dados pré-existentes.

A integração dessas etapas permitiu a identificação dos minerais predominantes nas amostras por meio da comparação dos padrões de difração obtidos com bancos de dados de referência, aliada à análise espectral e geoquímica, garantindo um resultado confiável.

4 CONTEXTO GEOLÓGICO

4.1 Quadrilátero Ferrífero (QFe)

A região do QFe, situada no centro-sul de Minas Gerais, destaca-se como uma província mineral de grande importância, inserida no contexto geológico do cráton do São Francisco (FIG. 18). De acordo com Almeida (1977), o cráton do São Francisco é uma unidade tectônica consolidada durante o ciclo brasiliano, cuja estabilização ocorreu ao final do ciclo transamazônico.

Figura 18 - Reconstrução de Gondwana Ocidental, mostrando os crátons do São Francisco e Congo e a localização do cinturão Mineiro e do Quadrilátero Ferrífero

Fonte: Traduzido de Alkmim e Teixeira, 2016.

Ainda segundo o autor, ao sudeste desse cráton, encontra-se a Faixa Araçuaí, um cinturão orogênico associado ao ciclo brasiliano. Essa região é caracterizada pela presença de estruturas geológicas expressivas, como sistemas de falhas e dobras que afetaram tanto os gnaisses do embasamento quanto as rochas metassedimentares proterozoicas. Esses elementos estruturais se manifestam de maneira significativa ao longo do Espinhaço Meridional e na porção leste do QFe.

Do ponto de vista litoestratigráfico, o QFe é composto por unidades que abrangem desde o arqueano ao cenozoico (FIG. 19) (Endo *et al.*, 2020). De acordo com a atualização do estado

da arte da estratigrafia da região, realizada por Endo *et al.*, (2020), tais unidades foram submetidas a um metamorfismo de grau baixo a médio e estão organizadas na sequência estratigráfica descrita a seguir, refletindo a evolução geológica da região.

A sequência tem seu início com os complexos metamórficos de idade arqueana, que representam o embasamento cristalino, constituído por gnaisses bandados ou não, migmatitos, granitoides, anfibolitos e corpos máficos e ultramáficos.

Logo acima, encontra-se o Supergrupo Rio das Velhas, que constitui a sequência greenstone belt arqueana, onde estão presentes rochas metassedimentares clásticas e químicas, rochas metavulcanoclásticas e rochas metavulcânicas félsicas, máficas e ultramáficas.

O Supergrupo Minas, por sua vez, apresenta rochas metassedimentares clásticas e químicas de idade paleoproterozoica, enquanto o Supergrupo Estrada Real, possui rochas metassedimentares clásticas e químicas e rochas metavulcânicas félsicas, máficas e ultramáficas, também de idade paleoproterozoica.

Já o Supergrupo Espinhaço, é caracterizado por metarenitos e metaconglomerados de idade mesoproterozoica.

Por fim, Endo *et al.* (2020), também informam que as unidades cenozoicas consistem em depósitos sedimentares terrígenos que vão do Paleógeno ao Holoceno, além de cangas, aluviões e depósitos elúvio-coluvionares.

Figura 19 - Coluna estratigráfica do Quadrilátero Ferrífero

Fonte: Endo et al. (2019 apud Endo et. al., 2020).

4.2 Estratigrafia da área de estudo

Na área de estudo afloram rochas do Supergrupo Minas, uma sucessão estratigráfica composta por rochas metassedimentares clásticas e químicas datadas no paleoproterozoico que se dispõem em discordância sobre o Supergrupo Rio das Velhas (Dorr, 1969; Endo *et al.*, 2020).

Este Supergrupo é subdividido em diferentes grupos, onde, em uma sequência ascendente, compreendem os grupos Tamanduá, Caraça, Itabira e Piracicaba, representando uma sucessão de ambiente continental a marinho e um dos estágios de evolução de uma bacia de margem passiva (Alkmim; Martins-Neto, 2012).

No contexto das amostras analisadas ao longo do estudo, apenas os Grupos Caraça e Itabira foram considerados, mais especificamente as Formações Moeda e Cauê que estão presentes, respectivamente, nos grupos citados.

De acordo com Dorr (1969), a Formação Moeda, inserida no Grupo Caraça, é formada predominantemente por uma sucessão de quartzitos, quartzitos sericíticos, filitos e metaconglomerados, totalizando 500 m de espessura.

Já a Formação Cauê, presente no Grupo Itabira, é formada de itabiritos, itabiritos dolomíticos, itabiritos anfibolíticos e, de forma menos proeminente, são encontrados filitos, quartzitos e mármores, constituindo uma sequência de espessura de aproximadamente 350 m (Endo *et al.*, 2020).

Além disso, principalmente associadas à Formação Cauê, é frequente a ocorrência de áreas cobertas por cangas ferruginosas, especialmente localizadas nos topos e nas encostas das serras do QFe, formadas pelo processo de dissolução dos óxidos e hidróxidos de ferro, seguido pela reprecipitação, principalmente na forma de goethita (Ramanaidou *et al.*, 1996; Castro; Varajão, 2020).

4.3 Caracterização Física e Pedológica

Na Serra da Brígida, predominam solos pouco desenvolvidos, com forte influência do material de origem, onde os processos erosivos têm um maior domínio na formação dos solos (Filho *et al.*, 2010 *apud* Nascimento, 2016).

O Supergrupo Minas aflora nos flancos do Anticlinal de Mariana onde as coberturas de cangas ocorrem nos topos e nas vertentes desses morros e são resultantes da alteração supergênica em climas tropicais, impossibilitando o desenvolvimento do solo (Tavares, 2006, *apud* Nascimento, 2016). Já nas áreas de quartzitos da Formação Moeda, são encontrados solos pouco espessos de cor clara (Nascimento, 2016).

O relevo local é constituído de serras e escarpas sustentadas pelos itabiritos da Formação Cauê e por quartzitos da Formação Moeda. O topo possui vertente convexa, onde a formação ferrífera e as cangas proporcionam uma efetiva defesa contra a erosão, enquanto a escarpa limitadora deste topo é formada pelo quartzito Moeda (UFOP, 2001 *apud* Vale, 2013). Além disso, possui declives íngremes à meia encosta e relevo ondulado na base ou fundo do vale sendo moldados pelas características litológicas locais (Vale, 2013).

5 RESULTADOS E DISCUSSÃO

5.1 Curvas Espectrais

As curvas espectrais foram geradas após o processamento de dados no *software ViewSpec Pro* 6.2 e visualizadas através do *software* ENVI 5.6.1. A análise considerou as feições de absorção, que foram comparadas com a biblioteca espectral da USGS e com referências da literatura, especialmente os trabalhos de Baptista (2006) e Meneses *et al.* (2019).

5.1.1 Rochas

A análise de rochas por espectrorradiometria é um processo complexo devido às variações litológicas resultantes de pequenas mudanças na composição mineral, com isso, a análise espectral busca padrões de comportamento espectral aliada a uma descrição petrográfica macroscópica prévia da amostra para identificar as bandas de absorção relacionadas aos minerais presentes (Meneses; Almeida, 2019, cap. 4). Fatores como a composição mineral, textura, grau de cristalização, tamanho dos grãos e suas relações de contato influenciam diretamente o comportamento da reflectância de uma rocha (Meneses; Almeida, 2019, cap. 4).

Nos espectros, a presença de água é evidenciada por duas feições de absorção proeminentes, localizadas em 1400 nm e 1900 nm (Hunt; Salisbury, 1970; Hunt, 1980 *apud* Baptista, 2006). Quando agudas, as moléculas de água apresentam-se bem localizadas e definidas, enquanto, quando largas, as moléculas encontram-se desordenadas ou há sua presença em mais de um local (Baptista, 2006). Essas bandas de absorção indicam moléculas de água desassociadas da estrutura mineral, correspondendo à água de hidratação ou à água capturada no retículo cristalino (Baptista, 2006). Além disso, a presença da banda de absorção em 1400 nm sem o aparecimento da banda em 1900 nm sugere a existência de outros grupos de OH, como as hidroxilas (Hunt; Salisbury, 1970 *apud* Baptista, 2006).

Na amostra de quartzito SB_Rocha_01 (FIG. 20), a banda de absorção em 1412 nm é proeminente, enquanto a banda em 1930 nm encontra-se larga e pouco ressaltada, ambas indicam a presença de água. Segundo Baptista (2006), uma banda de absorção fraca próxima a 1900 nm indica a presença de água molecular absorvida, não constitucional.

Fonte: Elaborada pela autora.

Os filossilicatos, em sua maioria, exibem a banda da hidroxila, em aproximadamente 1400 nm, que se destaca por ser fina, lisa e proeminente (Meneses; Almeida, 2019, cap. 3). Quando a banda da água existe, esta tende a ser mais fraca que a banda da hidroxila e possuir uma forma assimétrica (Meneses; Almeida, 2019, cap. 3). As bandas de absorção dos filossilicatos estão situadas entre 2000 nm e 2500 nm, onde, num contexto geral, as absorções aluminosas (Al) ocorrem entre os comprimentos de onda de 2160 nm e 2230 nm, as absorções de ferro (Fe) entre 2230 nm e 2300 nm, e as absorções de magnésio (Mg) entre 2300 nm e 2360 nm (Meneses; Almeida, 2019, cap. 3).

Na FIG. 21, é possível observar os espectros de reflectância dos filossilicatos, destacando suas bandas de absorção características.

Figura 21 - Espectros de reflectância de minerais da classe dos filossilicatos, grupo das micas: (1) montmorillonita e (2) caulinita (grupo da argila); (3) antigorita (grupo da serpentina); (4) clorita e (5) talco verde (grupo da clorita) (6) pirofilita; (7) fuchsita; (8) biotita; (9) muscovita; (10) lepidolita

Fonte: (1, 2 e 5) biblioteca espectral mineral USGS e (3, 4, 6, 7, 8, 9 e 10) biblioteca espectral mineral IG/UnB *apud* Meneses e Almeida (2019, cap. 3).

Meneses e Almeida (2019, cap. 3), apresentam um quadro que relaciona as principais curvas de absorção referentes aos minerais desta classe com base nos dados da imagem anterior:

Quadro 3 - Dados dos espectros de diferentes filossilicatos da biblioteca espectral mineral IG/UnB. As intensidades das bandas de absorção são classificadas segundo os seguintes códigos: mm (muito muito), m (muito), F (forte), f (fraco), md (médio), om (ombro), sec (secundárias) e inf (inflexão). As bandas de absorção individuais são separadas por ponto e vírgula, e o hífen é utilizado para indicar a associação da banda principal com ombros ou inflexões. Bandas consideradas diagnósticas são destacadas em negrito.

(continua)

Mineral	Fórmula Química	Ocorrência	Bandas de absorção (nm)
Montmorillonita	(MgCa)O.Al ₂ O ₃ Si 5O ₁₀ nH ₂ O	Produto de alteração de rochas ígneas, metamórficas e sedimentares em ambiente mal drenado	645mf; 1414F- 1467om; 1910mmF ; 1945inf; 2205F

Minoral	Fórmula	Qaamaanaia	Bandas de absorção
winerai	Química	Ocorrencia	(nm)
Caulinita	Al ₂ Si ₂ O ₅ (OH) ₄	Formada pela alteração de feldspatos e outros silicatos durante intemperismo químico ou hidrotermal	970f; 1403-1413F dupla; 1810md; 1915f; 2169inf- 2205F ; 2.311f; 2355f; 2381f
Antigorita	(MgFe)3(Si2O5)(O H)4	Gerada por processos secundários, hidrotermais ou metamórficos	464mf; 734f; 904ml; 1116ml; 1396F ; 1915-1970F dupla; 2102f; 2.325mF ; 2382-2425-2452sec
Clorita	(Mg,Al,Fe) ₁₂ (Si,A l) ₈ O ₂₀ (OH) ₁₆	Formada por processos metamórficos e hidrotermais	720f; 933inf; 1135f; 1393f; 1985md; 2245inf-2295inf; 2325F ; 2466mf
Talco verde	Mg6(Si ₈ O ₂₀)(OH) 4	Formado por processos hidrotermais de minerais magnesianos e por metamorfismo de contato sobre calcários e rochas ultrabásicas	646md; 949md; 1392mF ; 2012f; 2078md; 2129- 2174sec; 2230md; 2311mF ; 2357om- 2389F ; 2426- 2465sec
Pirofilita	(Si4O ₁₀)Al ₂ (OH) ₂	Metamorfismo de baixo grau em sedimentos aluminosos e em ambientes hidrotermais	520md; 750md; 962f; 1334-1362inf; 1394mmF ; 1413inf; 1929md; 2065om- 2080md; 2166mF - 2208f; 2289om- 2319md; 2349- 2338sec
Fuchsita	K(AlCr) ₂ Si ₃ AlO ₁₀ (OHF) ₂	Formada por processos metamórficos,	630F -6860m; 962f; 1247mf; 1320f;

Fórmula	Deenvâncie	Bandas de absorção
Química	Ocorrencia	(nm)
	pneumatolíticos e	1409mmF; 1771inf;
	hidrotermais	1835mf; 1910mf;
		2120inf; 2196mF;
		2344md; 2429f
	Formada por processos	
	metamórficos e	
	hidrotermais; amplamente	
K ₂ (Mg,Fe) ₂ (OH) ₂	distribuída, ocorre	740f; 2325md;
$(AlSi_3O_{10})$	praticamente em todas as	2387md
	rochas ígneas e em xistos,	
	gnaisses e rochas de	
	metamorfismo de contato	
		474mf; 573mf; 900f;
	Formada por processos	963mf; 1139md;
	metamórficos,	1246mmf;
KAl ₂ (AlSiO ₁₀)(O	pneumatolíticos e	1298mmf; 1410mF ;
H)2	hidrotermais e na	1725mmf; 1764mf;
	cristalização de rochas	1837mf; 1912f;
	magmáticas ácidas	2119f; 2205mF ;
		2346f; 2435f
K ₂ (LiAl) ₅ Si ₆ Al ₂ O ₂₀ (OHF) ₁₆		463inf-563f; 946md;
	Formada por processos	1321mf; 1410mF ;
	pneumatolíticos e	1903md; 2011f;
	hidrotermais	2116f; 2205mF ;
		2353f; 2386-2437sec
	Fórmula Química K2(Mg,Fe)2(OH)2 (AlSi3O10) KAl2(AlSiO10)(O H)2 K2(LiAl)5Si6Al2O 20(OHF)16	Fórmula QuímicaOcorrênciaQuímicapneumatolíticos e hidrotermaispneumatolíticos e hidrotermaisFormada por processos

Fonte: Adaptado de Meneses e Almeida (2019, cap. 3).

Sendo assim, a amostra SB_Rocha_01 apresenta muscovita em sua composição, evidenciada pela presença das feições de absorção diagnósticas em 1414 nm e 2200 nm.

A amostra SB_Rocha_02 foi classificada como um veio de quartzo leitoso. Um material transparente, como o quartzo, apresenta altos valores de reflectância e ausência de bandas de

absorção ao longo do espectro (Meneses; Almeida, 2019, cap. 3). Os espectros da FIG. 22, apresentam as bandas de absorção das moléculas de água presentes em diferentes minerais e, no quartzo, a água aparece como gotas microscópicas de inclusão no cristal (Meneses; Almeida, 2019, cap. 3).

Fonte: Hunt (1977) apud Meneses e Almeida (2019, cap. 3).

Dessa forma, o espectro reflete as características observadas na amostra de mão, apresentando um perfil contínuo, apenas com feições diagnósticas das bandas de absorção da água em 1415 nm e 1935 nm e, ainda, uma feição de absorção aluminosa discreta em 2205 nm (FIG. 23).

Fonte: Elaborada pela autora.

Além disso, observa-se uma reflectância máxima em torno de 37%, valor inferior ao das amostras de quartzito analisadas ao longo do estudo, que apresentam reflectância acima de 50%, podendo ultrapassar 70%. Essa diferença está relacionada à presença de heterogeneidades no quartzo leitoso, que aumentam o espalhamento difuso da luz. Nos quartzitos, a textura mais homogênea e a superfície mais lisa favorecem uma maior reflexão especular.

Na amostra SB_Rocha_03 (FIG. 24), é possível observar a existência de outros minerais do grupo de filossilicatos. As curvas indicam uma mistura de muscovita e caulinita, assim como podemos observar na curva espectral retirada da biblioteca espectral da USGS (FIG. 25), onde há uma feição dupla de absorção da hidroxila em aproximadamente 1400 nm, neste caso, com um pico de absorção em 1411 nm e outro em 1396 nm. Ainda, observa-se uma forte absorção em 2196 nm, acompanhada de uma inflexão à esquerda em 2169 nm, características da absorção mais diagnóstica da caulinita pobremente cristalinizada, juntamente com três fracas absorções entre 2300 nm e 2400 nm, típicas desse mineral (Meneses; Almeida, 2019, cap. 3).

Fonte: Elaborada pela autora.

Figura 25 - Espectro da mistura de caulinita e muscovita retirada da biblioteca espectral da USGS em comparação com a região interna da amostra SB_Rocha_03

Fonte: Biblioteca espectral mineral USGS. Elaborada pela autora.

Nos espectros, a região do VNIR revela a presença de minerais de óxido de ferro férrico, caracterizados por feições de absorção no intervalo de 400 nm a 1300 nm, associadas às

transições eletrônicas de íons e orbitais moleculares (Meneses; Almeida, 2019, cap. 3). Dentre os minerais de ferro férrico, a hematita e a goethita são os mais comuns em espectros de reflectância de solos e rochas. Esses minerais apresentam diferenças nas feições de absorção, que podem ser visualizadas na FIG. 26.

Figura 26 - Comparação entre os espectros de reflectância dos óxidos de ferro férrico goethita e hematita

Fonte: Biblioteca espectral mineral USGS. Elaborado pela autora.

Segundo Sherman e Waite (1985), as diferenças nas feições espectrais da goethita e da hematita estão associadas ao efeito de campo cristalino, influenciado pelas distintas estruturas eletrônicas do ferro nos estados Fe⁺² e Fe⁺³. Essas variações se manifestam principalmente em torno de 480 nm para a goethita e 530 nm para a hematita. A TAB. 1, a seguir, apresenta as bandas de absorção características dos óxidos de ferro férrico mostrados na figura anterior, destacando as diferenças nas bandas férricas que os distinguem.

Mineral	Fórmula Química	Centros de absorção (nm)
Goethita	Fe ⁺³ O(OH)	435, 480, 650, 970
Hematita	$\mathrm{Fe_2}^{+3}\mathrm{O}_3$	530, 650, 870

Tabela 1 – Localização dos centros das bandas de absorção dos minerais óxidos de ferro férrico da FIG. 24

Fonte: Elaborado pela autora.

Assim, a amostra SB_Rocha_03 indica a presença de hematita em sua composição, evidenciada por suas feições de absorção em torno de 530 nm, 650 nm e 870 nm.

Na amostra SB_Rocha_04 (FIG. 27), a caulinita se apresenta com maior relevância, exibindo feições mais evidentes e com comprimentos de onda de absorção semelhantes aos observados na amostra anterior. Além disso, também pode ser inferida a presença de muscovita, dado que suas feições duplas de maior intensidade aparecem com algumas atenuações. Observa-se ainda no espectro a presença de feições de absorção coincidentes com as da illita, um mineral do grupo das micas, localizadas em 2350 nm e 2438 nm.

Fonte: Elaborada pela autora.

Ainda, na amostra SB_Rocha_04 foram analisadas regiões de veio e porções ferruginosas, onde há uma mudança significativa nas feições observadas na região do VNIR (FIG. 28).

Figura 28 - Espectro da amostra SB_Rocha_04 em região de veio (SBR04V) e porção ferruginosa (SBR04S)

Fonte: Elaborada pela autora.

coloração Conclui-se SBR04V amostra а amarelada observada que na macroscopicamente, somada às feições de absorção em 430 nm e 480 nm, reforça a presença de goethita. Já a amostra SBR04S possui uma porção ferruginosa composta predominantemente por hematita, indicada pelas feições em 520 nm, 650 nm e 865 nm. Ressalta-se, contudo, que a presença simultânea de goethita e hematita é possível, sendo a distinção entre esses minerais dificultada quando ocorrem em conjunto. Além disso, a feição de absorção em 430 nm, atribuída à goethita, está presente em ambas as amostras, o que sugere que a amostra SBR04S também pode conter esse mineral.

A amostra SB_Rocha_05 (FIG. 29) apresenta uma granulação maior em comparação com as demais amostras, característica selecionada intencionalmente durante a coleta para avaliar sua influência no comportamento espectral. Dessa forma, a granulometria foi considerada como uma variável experimental neste estudo. A reflectância diminui com o aumento do tamanho do grão, pois uma superfície com grãos maiores oferece um caminho interno maior para a luz percorrer, favorecendo a absorção dos fótons, enquanto em superfícies

com grãos menores há mais superfícies de reflexão (Meneses; Almeida, 2019, cap. 1). Sendo assim, a amostra em questão apresenta uma redução na reflectância em relação às outras amostras de quartzito, alcançando uma média de aproximadamente 55% ao longo do espectro, enquanto outras podem atingir valores superiores, chegando a aproximadamente 75%. Essa diferença está de acordo com o comportamento espectral típico de materiais mais granulares e menos compactos, como descrito por Adams e Filice (1967).

Figura 29 - Espectro da amostra SB_Rocha_05

Fonte: Elaborada pela autora.

Na região interna da amostra, o espectro na faixa do SWIR é caracterizado por altos valores de reflectância, compatíveis com a presença de quartzo, mineral já identificado em outras amostras deste estudo. As bandas de absorção em 1414 nm, 1907 nm e 2205 nm sugerem a presença de montmorillonita, corroborando sua identificação como fase minoritária. Segundo Meneses e Almeida (2019, cap. 1), esse mineral de argila, por conter moléculas de água em sua estrutura, exibe duas bandas de absorção centradas em aproximadamente 1400 nm e 1920 nm, e uma terceira em torno de 2200 nm, atribuída à presença de moléculas de hidróxido de alumínio

Na parte externa da amostra, o espectro SWIR também revela feições associadas a minerais de argila, mas com diferenças importantes em relação à análise interna. Em 2210 nm, região influenciada pela presença de ligações Al-OH, não se observa uma feição de absorção clara e bem desenvolvida como na análise interna da amostra, em 2208 nm, e surgem absorções

adicionais entre 2280 e 2351 nm. Essas absorções podem indicar a presença de minerais da fração argila, associados a ligações Fe-OH e Mg-OH. É importante ressaltar que a porção externa é mais suscetível a processos de intemperismo, refletindo características superficiais que nem sempre correspondem à composição da rocha fresca.

Por fim, as amostras de canga ferruginosa SB_Rocha_06A/B (FIG. 30) e SB_Rocha_07 (FIG. 31) apresentam comportamentos espectrais semelhantes entre si. As cangas ferruginosas apresentam baixa reflectância espectral, o que está relacionado à presença de óxidos de ferro, minerais que absorvem fortemente a radiação eletromagnética. A coloração escura, a superfície irregular e a textura grossa das cangas contribuem para a redução da luz refletida, assim como a baixa proporção de minerais altamente reflexivos. Nesse contexto, a amostra SB_Rocha_6A apresenta maior reflectância quando comparada às amostras SB_Rocha_6B e SB_Rocha_7, mas todas tratam do mesmo mineral: a hematita. Essa constatação é confirmada pela presença das feições de absorção em 530 nm e 875 nm, características desse mineral. Além disso, são observadas feições em 1440 nm e 1930 nm, indicando a presença de água em sua estrutura.

Fonte: Elaborada pela autora.

Figura 31 - Espectro da amostra SB Rocha 07

Fonte: Elaborada pela autora.

Observa-se que a região externa da amostra não apresentou feições espectrais claras associadas à presença de ferro. Essa ausência pode ser explicada pela presença de materiais na superfície, como a matéria orgânica, que mascaram as respostas espectrais dos minerais férricos. Além disso, a textura da superfície, aliada a fatores como possível alteração intensa e a formação de crostas ricas em sílica, pode atenuar as feições de absorção dos óxidos de ferro. Na região externa, a feição de absorção mais forte ocorre em 1930 nm, associada à água, enquanto as feições em 1440 nm, 2058 nm, 2200 nm e 2315 nm são mais fracas. As três últimas feições dificultam a identificação de minerais específicos, mas indicam a presença de ligações hidroxila associadas ao Al e Fe, indicando minerais da fração argila.

De um modo geral, nas amostras, as curvas das regiões externas seguem o comportamento das curvas das regiões internas das rochas, porém, sofrem uma diminuição da reflectância e mascaram algumas feições ou tornam elas menos evidentes. Dessa forma, a análise da região interna torna-se mais precisa, proporcionando uma avaliação mais clara das características espectrais das amostras.

5.1.2 Solos

Os solos tropicais são altamente intemperizados devido ao clima quente e úmido, sendo compostos essencialmente por caulinita, gibbsita, óxidos de ferro e de alumínio na fração argila, e quartzo nas frações silte e areia (Baptista, 2006).

Os argilominerais mais comuns nos solos tropicais são a caulinita, a montmorillonita e a illita, que apresentam feições de absorção na região do SWIR devido às hidroxilas ligadas ao alumínio da rede cristalina e/ou à presença de moléculas de água na estrutura cristalina (Baptista; Madeira Netto; Souza, 2019). Em 1400 nm, as feições são atribuídas às ligações Al-OH e H-OH; em 1900 nm, às ligações H-OH; e em 2200 nm, às ligações Al-OH (Baptista; Madeira Netto; Souza, 2019).

Com isso, as feições de absorção características dos argilominerais, estão entre 2160 nm e 2230 nm, devido à presença da ligação Al-OH (Meneses; Almeida, 2019, cap. 4). A FIG. 32 apresenta os espectros de cada argilomineral e suas possíveis misturas.

Figura 32 - Espectros na faixa do SWIR de minerais de alteração argílica em sistema de alteração do tipo pórfiro

Fonte: Pontual, Merry e Gamson (1997) apud Meneses e Almeida (2019, cap. 4).

Conforme descrito por Pontual, Merry e Gamson, (1997, *apud* Meneses; Almeida, 2019, cap. 4), no espectro 1, a Al-esmectita/montmorillonita exibe a banda de absorção da água mais profunda do que a absorção de Al-OH. Nos espectros 2 e 3, as bandas diagnósticas da mistura esmectita-illita e da illita ocorrem entre 2180 nm e 2228 nm e próximas a 2344 nm, 2340 nm e 1900 nm. No espectro 4, há um problema em reconhecer misturas de illita e caulinita, pois, caso a amostra apresente um maior percentual de caulinita, as duas feições de absorção próximas a 2160 nm e 2380 nm podem ser identificadas e, ainda, as duas absorções da illita próximas a 2344 nm e 2440 nm permanecem visíveis. No espectro 5, a caulinita é caracterizada pela feição dupla próxima a 2166 nm e pela feição de absorção em 2206 nm.

Outra forma de análise envolve a variações de cristalinidade a partir da profundidade da banda de água da illita e da esmectita-illita observadas no espectro 3, onde, se estiverem pobremente cristalinizadas, as profundidades das bandas da água serão menores, coincidindo com as profundidades das bandas de Al-OH (Pontual; Merry; Gamson, 1997 *apud* Meneses; Almeida, 2019, cap. 4).

Ainda, a análise espectral dos solos requer um entendimento da influência da matéria orgânica, que desempenha um papel essencial na modificação das curvas espectrais. A presença de minerais ou substâncias opacas, como a matéria orgânica, além da umidade, tende a diminuir a reflectância total do solo, além de mascarar as características espectrais específicas de certos minerais. Isso ocorre porque esses componentes absorvem parte da radiação incidente, dificultando a detecção precisa de outros elementos na amostra (Baptista; Madeira Netto; Souza, 2019). Galvão e Vitorello (1998) demonstraram que concentrações superiores a 1,7% de matéria orgânica podem atenuar significativamente as assinaturas espectrais dos óxidos de ferro, reduzindo em mais de 40% a relação entre o conteúdo total de Fe₂O₃ e a reflectância.

Além disso, a interpretação espectral de solos superficiais apresenta desafios relacionados à sua origem geológica. Diferenciar solos residuais, que se formam diretamente a partir da rocha subjacente, de solos transportados, que não têm conexão com o material local, é fundamental para uma análise acurada (Baptista; Madeira Netto; Souza, 2019). Em regiões sujeitas a intenso intemperismo, os minerais primários da rocha-mãe passam por transformações, dificultando a correlação direta entre o solo e sua composição litológica original (Baptista; Madeira Netto; Souza, 2019). Nesse contexto, variações nos níveis de matéria orgânica nos horizontes superficiais podem complicar essa identificação, reforçando a necessidade de métodos complementares para alcançar diagnósticos mais precisos.

Portanto, ao analisar solos por espectrorradiometria, é imprescindível considerar a influência da matéria orgânica na atenuação da reflectância e na modificação das feições espectrais. O reconhecimento dessas interferências é crucial para evitar interpretações equivocadas e garantir uma caracterização geológica mais confiável.

Stoner e Baumgardner (1981) ampliaram os padrões espectrais dos solos para cinco categorias, com base na análise de 485 espectros de amostras, no intervalo de 520 nm a 2320 nm (FIG. 33). Esses padrões são explicados pelos constituintes do solo que controlam seu comportamento de reflectância, como a matéria orgânica, os óxidos de ferro e a textura. A variação nesses componentes resulta em diferentes formatos de curvas espectrais, afetando o albedo e a presença de bandas de absorção em distintas regiões do espectro eletromagnético.

Figura 33 - Padrões espectrais representativos do horizonte superficial de solos: (A) dominado pela matéria orgânica em solos argilosos; (B) pouco alterado; (C) influenciado pela presença de ferro; (D) afetado pela matéria orgânica em solos arenosos; (E) dominado por minerais opacos

Fonte: Stoner e Baumgardner (1981) apud Baptista, Madeira Netto e Souza (2019).

O **espectro A** caracteriza solos argilosos com alto teor de matéria orgânica, albedo baixo e formato convexo na região do VNIR e, além disso, bandas de absorção entre 2200 nm e 2320

nm indicam a presença de minerais da fração argila com hidroxilas. O **espectro B** apresenta albedo elevado e formato côncavo no VNIR devido aos baixos teores de matéria orgânica e óxidos de ferro. O **espectro C** reflete solos com teores baixos de matéria orgânica e moderados de óxidos de ferro, com absorções em 500 nm, 700 nm e 900 nm. O **espectro D** representa solos arenosos com alto teor de matéria orgânica, exibindo concavidade entre 500 nm e 750 nm e convexidade entre 750 nm e 1300 nm, além de um espectro mais plano no SWIR. Já o **espectro E** corresponde a solos argilosos ricos em óxidos de ferro, com albedo muito baixo e absorções intensas no SWIR, chegando a obliterar bandas de água em 1400 nm e 1900 nm. De acordo com Madeira Netto (1993 *apud* Baptista; Madeira Netto; Souza, 2019), o comportamento espectro E ocorre devido à presença de minerais opacos, que tendem a aplainar os espectros.

O espectro da amostra SB_Solo_01 (FIG. 34) exibe feições de absorção bastante atenuadas, embora localizadas nos mesmos comprimentos de onda observados nas amostras SB_Solo_02 (FIG. 35) e SB_Solo_03 (FIG. 36). Dessa forma, a interpretação espectral dessa amostra torna-se incerta, uma vez que as feições estão significativamente mascaradas. Considerando a similaridade nos comprimentos de onda, admite-se a possível presença dos mesmos minerais. No entanto, do ponto de vista espectral, permanecem dúvidas quanto à confirmação dessa presença.

Sendo assim, os espectros das amostras SB_Solo_01, SB_Solo_02 e SB_Solo_03, pertencentes aos campos rupestres quartzíticos, exibem feições de absorção características da caulinita, mas em diferentes intensidades de absorção. Observa-se uma feição dupla de absorção da hidroxila em aproximadamente 1400 nm, neste caso, com um pico de absorção em 1415 nm e outro em 1396 nm, além de uma forte absorção em 2208 nm, acompanhada de uma inflexão à esquerda em 2169 nm, característica da absorção mais diagnóstica da caulinita pobremente cristalinizada, e três fracas absorções características do mineral entre 2300 nm e 2400 nm (Meneses; Almeida, 2019, cap. 3).

Fonte: Elaborada pela autora.

Figura 35 - Espectro da amostra SB_Solo_02

Fonte: Elaborada pela autora.

Fonte: Elaborada pela autora.

Além disso, a presença de illita é indicada por duas absorções próximas a 2351 nm e 2445 nm. Essas feições são evidentes na amostra SB_Solo_03 e, apesar de mais discretas em SB_Solo_01 e SB_Solo_02, ainda podem sugerir a presença do mineral, mas com menor grau de certeza. A FIG. 37 compara as amostras com duas amostras de illita da Biblioteca Espectral da USGS, auxiliando essa interpretação.

Figura 37 - Comparação entre as amostras SB_Solo_01, SB_Solo_02, SB_Solo_03 e duas amostras de illita da Biblioteca Espectral da USGS. As linhas verticais cinzas indicam as duas feições de absorção características da illita nessas amostras

Fonte: Biblioteca espectral mineral USGS. Elaborado pela autora.

Observa-se também uma diferença nas reflectâncias dos solos, com a amostra SB_Solo_03 apresentando aproximadamente 60%, valor superior aos cerca de 42% e 28% observados nas amostras SB_Solo_02 e SB_Solo_01, respectivamente. Essas variações podem ser atribuídas à maior presença de matéria orgânica nas amostras SB_Solo_01 e SB_Solo_02, a qual tende a reduzir a reflectância. A coloração escura dessas amostras (SB_Solo_01 e Sb_Solo_02) sugere uma maior concentração de matéria orgânica, embora outros fatores, como óxidos ou umidade, também possam contribuir.

As amostras SB_Solo_01 e SB_Solo_02, com maior concentração de matéria orgânica, apresentam formato convexo entre 400 nm e 750 nm, indicando maior absorção na faixa do visível causada por esse material. Entretanto, suas curvas tornam-se côncavas na região do NIR. Além disso, devido à presença de matéria orgânica, as feições de absorção dessas amostras são atenuadas, com intensidades bem mais fracas que na SB_Solo_03, sendo a SB_Solo_01 a mais afetada. Em contraste, o espectro da SB_Solo_03 exibe formato predominantemente convexo no visível, seguido por curvatura côncava entre 750 nm e 1000 nm, voltando a apresentar convexidade após esse intervalo. Esse comportamento, associado à maior reflectância,

coloração mais clara e feições espectrais mais definidas, reflete, em comparação às outras amostras, os baixos teores de matéria orgânica e óxidos de ferro da SB_Solo_03. Os intervalos de convexidade e concavidade podem ser identificados pelos marcos referenciais destacados nas curvas espectrais de cada amostra.

Nos espectros das amostras SB_Solo_04 (FIG. 38) e SB_Solo_05 (FIG. 39), provenientes da área de quartzitos, foi identificada a presença de montmorillonita. Por possuir moléculas de água em sua estrutura, o mineral apresenta duas bandas de absorção associadas à água, a primeira em 1400 nm e a segunda em 1920 nm. Além disso, há uma terceira feição em 2200 nm atribuída à presença de moléculas de hidróxido de alumínio, sendo que, normalmente, as bandas hidratadas são mais intensas do que a banda aluminosa (Meneses; Almeida, 2019, cap. 3). Os valores das feições de absorção em 1414 nm, 1930 nm e 2202 nm correspondem a essas características.

Fonte: Elaborada pela autora.

Ainda, ambas as curvas indicam a presença de illita devido às absorções próximas a 2347 nm e 2445 nm. Essas feições encontram-se discretas nas amostras SB_Solo_04 e SB_Solo_05, o que gera incerteza nessa constatação, mas ainda assim podem sugerir a presença do mineral. A FIG. 40, apresentada a seguir, compara as amostras SB_Solo_04 e SB_Solo_05 com duas amostras de illita da Biblioteca Espectral da USGS. Os minerais encontram-se cristalizados, o que é evidenciado pela maior profundidade da banda da água em relação à banda de Al-OH.

Figura 40 - Comparação entre as amostras SB_Solo_04, SB_Solo_05 e duas amostras de illita da Biblioteca Espectral da USGS. As linhas verticais cinzas indicam as duas feições de absorção características da illita nessas amostras

Fonte: Biblioteca espectral mineral USGS. Elaborado pela autora.

Os espectros das amostras SB_Solo_04 e SB_Solo_05 apresentam um formato predominantemente côncavo na região do VNIR, indicando a ausência de feições de absorção claras, o que pode estar associado a baixos teores de matéria orgânica e/ou óxidos de ferro. Quanto à reflectância, os valores são aproximadamente 38% para SB_Solo_04 e 25% para SB_Solo_05. A diferença entre eles pode ser atribuída ao maior conteúdo de ferro e alumínio em SB_Solo_05, este último associado à presença de argilominerais (montmorillonita), que tendem a reduzir a reflectância devido à maior absorção de luz, respectivamente, no VNIR e no SWIR, além da possível presença de matéria orgânica e o tamanho das partículas do solo. Essas observações serão complementadas e validadas nas análises químicas discutidas na subseção seguinte.

Nas amostras de solo coletadas na área de cangas ferruginosas, as curvas espectrais apresentam uma mudança significativa, principalmente na região do VNIR, com destaque para a intensificação de feições associadas à presença de óxidos de ferro, e se estende ao SWIR, onde são observadas absorções relacionadas a minerais lateríticos. Tal variação é relevante, pois contribui para a distinção espectral desses ambientes, fortalecendo a construção de bibliotecas espectrais aplicáveis ao mapeamento geológico e ao monitoramento de áreas com potencial de exploração mineral ou já impactadas pela atividade minerária.

De um modo geral, os espectros das amostras SB_Solo_06 (FIG. 41), SB_Solo_07 (FIG. 42) e SB_Solo_08 (FIG. 43) exibem comportamentos equivalentes, indicando padrões espectrais semelhantes.

Figura 41 - Espectro da amostra SB_Solo_06

Fonte: Elaborada pela autora.

Fonte: Elaborada pela autora.

Conforme observado na seção de resultados das amostras de rocha, a região do VNIR indica a presença de minerais de óxido de ferro férrico no intervalo de 400 nm a 1300 nm. A cor do solo é um critério utilizado para diferenciar solos ricos em goethita (amarelos) daqueles com maior concentração de hematita (vermelhos), sendo essa distinção resultante da transição pelo efeito de campo cristalino, devido às diferenças nas estruturas eletrônicas do Fe⁺² e do Fe⁺³, que ocorrem em 480 nm para a goethita e em 530 nm para a hematita (Sherman e Waite, 1985 *apud* Meneses; Almeida, 2019, cap. 2).

Dessa forma, as amostras analisadas indicam a presença de hematita em sua composição, evidenciada pelas feições de absorção presentes em 530 nm e em 880 nm. Além disso, a análise da região do SWIR revela feições de absorção características da caulinita e gibbsita.

Para auxiliar na interpretação dos minerais presentes, a FIG. 44 apresenta uma comparação entre as amostras SB_Solo_06, SB_Solo_07 e SB_Solo_08, juntamente com uma amostra de caulinita e uma de gibbsita da Biblioteca Espectral da USGS.

Figura 44 - Comparação entre as amostras SB_Solo_06, SB_Solo_07 e SB_Solo_08 e uma amostra de caulinita e uma de gibbsita da Biblioteca Espectral da USGS

Fonte: Biblioteca espectral mineral USGS. Elaborado pela autora.

A caulinita CM3 apresentada na FIG. 42 é caracterizada por uma feição dupla de absorção da hidroxila em aproximadamente 1400 nm, além de uma absorção em 2205 nm, acompanhada de uma inflexão à esquerda em 2165 nm e três fracas absorções entre 2300 nm e 2400 nm. A interpretação da caulinita no contexto das amostras foi dificultada pelas absorções características da gibbsita, onde a sobreposição das bandas em torno de 1415–1450 nm e 2200–2270 nm dificulta a distinção entre os minerais, sendo necessária análise da morfologia das feições e comparação direta com espectros de referência. No entanto, a presença da caulinita nas amostras SB_Solo_06, SB_Solo_07 e SB_Solo_08 foi confirmada com base em um conjunto de feições espectrais: uma absorção mais proeminente em 1415 nm, em comparação com outras próximas; a presença da banda da água em 1932 nm; e uma absorção em 2208 nm, acompanhada de um leve ombro à esquerda, em 2182 nm.

Na faixa entre 2000 nm e 2500 nm, muitos minerais, principalmente os originados por processos hidrotermais, apresentam feições de absorção vibracionais relacionadas ao

dobramento e estiramento no íon hidroxila (Meneses; Almeida, 2019, cap. 3). As análises baseadas apenas nessas feições não são suficientes para diagnosticar com precisão a presença de Al, Mg ou Fe nos minerais (Meneses; Almeida, 2019, cap. 3). Clark *et al.* (1990) trazem esta constatação através da gibbsita, principal constituinte do minério de alumínio bauxita, cuja feição de absorção desloca-se para 2270 nm ao invés de estar localizada em 2200 nm.

Tal deslocamento é atribuído à interação entre dois modos vibracionais fundamentais da estrutura da gibbsita, onde o primeiro modo é uma forte vibração de estiramento fundamental da hidroxila em 2840 nm, acompanhada de três bandas mais fracas em 2917 nm, 2959 nm e 2765 nm, e o segundo modo corresponde a um forte dobramento fundamental Al-OH em 9800 nm.

Ainda, a gibbsita apresenta absorções intensas da hidroxila nas proximidades de 1400 nm e 1550 nm, como pode ser observado nas curvas da biblioteca espectral da USGS. Dessa forma, suas feições podem ser identificadas no intervalo de 1400 a 1550 nm e em 2270 nm nas amostras analisadas.

Quanto às diferenças granulométricas, as amostras de solo peneiradas exibiram suas feições de absorção e reflectância mais evidenciados, assim como as amostras originais coletadas *in situ*, enquanto as de granulometria superior a 2mm tiveram suas reflectâncias reduzidas.

Isso permite analisar a influência da rugosidade no espectro gerado, já que rugosidade da superfície das amostras afeta a interação da luz com o material, o que, por sua vez, influencia o espectro obtido nas análises. Para fortalecer a parte metodológica, recomenda-se que estudos futuros controlem sistematicamente a granulometria e a rugosidade das amostras, evitando interferências indesejadas nos espectros.

Nas amostras que apresentam granulometria superior a 2 mm, por exemplo, as partículas mais grosseiras e irregulares podem causar uma maior dispersão da luz, levando à redução das feições de absorção e reflectância (Adams; Filice, 1967; Meneses; Almeida, 2019, cap. 2). Esse efeito pode mascarar características espectrais importantes, dificultando a identificação de minerais ou a obtenção de dados precisos sobre a composição da amostra.

5.2 Análise de ICP-OES

A técnica de ICP-OES foi empregada para determinar a composição química de amostras de solo, rocha e materiais de referência certificados (MRCs), sendo utilizada também um branco para controle de contaminações e validação dos resultados. Embora alguns elementos-traço possam influenciar propriedades ópticas, suas concentrações foram baixas nas A TAB. 2 apresenta parte dos elementos analisados, incluindo os percentuais dos elementos maiores, como alumínio (Al), ferro (Fe), cálcio (Ca), potássio (K), magnésio (Mg) e sódio (Na), e os percentuais dos elementos menores, apresentados de forma agrupada, sem detalhamento individual. Vale ressaltar que a metodologia utilizada foi a de digestão total das amostras, sendo assim, o silício presente nas amostras foi inteiramente consumido. A planilha com os dados completos dos 30 elementos analisados encontra-se disponível no Anexo B.

A o staro	Elementos		Ele				
Amostra	(%)	Al	Fe	Ca	K	Mg	Na
Branco	0,00349	0,04042	0,01498	0,01415	0,03775	0,00670	0,03472
GBW 07406 (MRC)	0,74844	9,74120	4,86688	0,13774	1,52940	0,18405	0,17032
G5P.2 (MRC)	0,75290	6,90909	2,98899	1,45676	4,62460	0,56957	2,21917
SB_Solo_01	0,17595	2,24200	0,61044	0,03037	0,11601	0,11607	0,03803
SB_Solo_02	0,18010	2,95780	0,67301	0,01619	0,25607	0,01894	0,04779
SB_Solo_03	0,14938	4,37035	0,54940	0,00708	0,74733	0,02475	0,06535
SB_Solo_04	0,27447	2,26424	3,69488	0,01145	0,66074	0,06189	0,05760
SB_Solo_05	0,53298	5,68227	10,11917	0,05441	1,59858	0,25001	0,08752
SB_Solo_06	1,17315	11,08052	23,97747	0,00878	0,05444	0,02614	0,03721
SB_Solo_07	1,46980	16,34438	16,71246	0,00583	0,09993	0,03451	0,03758
SB_Solo_08	1,43714	18,25646	16,03217	0,02014	0,11820	0,03665	0,03861
SB_Rocha_01	0,07326	1,60556	0,15108	0,00454	0,73372	0,03083	0,05746
SB_Rocha_02	0,04821	0,41899	0,34272	0,00908	0,18324	0,01096	0,03033
SB_Rocha_03	0,17938	1,07589	0,22769	0,01931	0,15235	0,01276	0,03040
SB_Rocha_04	0,23654	4,12627	0,27100	0,00879	0,22367	0,01115	0,04021
SB_Rocha_05	0,03808	0,23880	0,03793	0,00464	0,02532	0,00307	0,02135
SB_Rocha_06	0,48037	0,29797	50,05332	0,00442	0,01658	0,03093	0,03091
SB_Rocha_07	0,51091	0,26397	50,64578	0,01947	0,01631	0,02187	0,03176

Tabela 2 - Resultados de ICP-OES das amostras de solo, rocha e MRC em percentual

Fonte: Elaborada pela autora.

Para facilitar a visualização e a interpretação dos resultados, os elementos foram convertidos para óxidos, com base na multiplicação pelos fatores de conversão apresentados na TAB. 3. Os resultados obtidos estão disponíveis na TAB. 4.

Elemento	Fator de Conversão	Óxido
Al	1,8894	Al ₂ O ₃
Fe	1,4298	Fe ₂ O ₃
Ca	1,3992	CaO
Κ	1,2046	K ₂ O
Mg	1,6583	MgO
Na	1,3480	Na ₂ O

Tabela 3 - Fatores de conversão de elementos para óxidos

Fonte: Elaborada pela autora.

Tabela 4 - Resultados de ICP-OES das amostras de solo, rocha e MRC em percentual de óxidos	
(continua	a)

	Óxidos (%)					
Amostra	Al ₂ O ₃	Fe ₂ O ₃	CaO	K ₂ O	MgO	Na ₂ O
Branco	0,07637	0,02141	0,01980	0,04547	0,01111	0,04680
GBW 07406 (MRC)	18,40501	6,95867	0,19273	1,84231	0,30520	0,22959
G5P.2 (MRC)	13,05404	4,27366	2,03829	5,57079	0,94451	2,99145
SB_Solo_01	4,23603	0,87280	0,04250	0,13974	0,19249	0,05127
SB_Solo_02	5,58847	0,96227	0,02265	0,30846	0,03140	0,06443
SB_Solo_03	8,25735	0,78553	0,00991	0,90023	0,04104	0,08809
SB_Solo_04	4,27805	5,28294	0,01602	0,79593	0,10262	0,07765
SB_Solo_05	10,73607	14,46839	0,07612	1,92565	0,41459	0,11798
SB_Solo_06	20,93554	34,28299	0,01229	0,06558	0,04335	0,05016
SB_Solo_07	30,88107	23,89547	0,00816	0,12038	0,05722	0,05066
SB_Solo_08	34,49375	22,92279	0,02818	0,14238	0,06078	0,05205
SB_Rocha_01	3,03355	0,21601	0,00636	0,88384	0,05113	0,07745
SB_Rocha_02	0,79164	0,49002	0,01270	0,22073	0,01818	0,04089
SB_Rocha_03	2,03279	0,32555	0,02702	0,18352	0,02116	0,04098
SB_Rocha_04	7,79617	0,38748	0,01230	0,26943	0,01848	0,05420

	Óxidos (%)					
Amostra	Al ₂ O ₃	Fe ₂ O ₃	CaO	K ₂ O	MgO	Na ₂ O
SB_Rocha_05	0,45119	0,05423	0,00649	0,03050	0,00508	0,02878
SB_Rocha_06	0,56298	71,56624	0,00618	0,01997	0,05130	0,04167
SB_Rocha_07	0,49875	72,41334	0,02724	0,01964	0,03627	0,04281

Para assegurar a confiabilidade dos dados geoquímicos obtidos, foram utilizados como padrões de controle de qualidade os MRCs GBW 07406, um solo vermelho proveniente de uma área com mineralização polimetálica, e G5P.2, um granodiorito. De modo geral, os resultados mostraram boa concordância com os valores esperados para esses materiais, variando dentro da margem estabelecida ou apresentando pequenas discrepâncias, ainda assim próximas dos valores de referência. Os valores de referência dos MRCs GBW 07406 e G5P.2 encontram-se disponíveis, respectivamente, nos Anexos C e D.

Para avaliar se os dados obtidos para os MRCs estão dentro de um padrão aceitável, considera-se uma taxa de recuperação entre 90% e 110% para os elementos de interesse. As taxas de recuperação calculadas, apresentadas na TAB. 5, foram obtidas por meio de uma regra de três simples. Observou-se uma variação entre os elementos analisados, onde, embora alguns tenham apresentado valores abaixo de 90%, ainda se mantiveram dentro de uma margem considerada aceitável pelo laboratório.

Um ponto que merece atenção especial é o Na₂O, cuja taxa de recuperação no GBW 07406 foi de aproximadamente 120,84%, ultrapassando o limite superior esperado. Detectouse uma concentração elevada de Na₂O no branco, o que indica possível contaminação cruzada ou interferência analítica, afetando os valores brutos e exigindo correção nas concentrações medidas. O mesmo fenômeno foi observado para os óxidos CaO, K₂O e MgO, cujos valores no branco estavam acima dos observados em algumas amostras.

Diante disso, recomendou-se a correção dos resultados por meio da subtração do valor do branco das concentrações obtidas para os MRCs, visando uma avaliação mais precisa das taxas de recuperação. Os dados corrigidos também estão apresentados na TAB. 5. Após a correção, o CaO apresentou valores abaixo do ideal para o GBW 07406, mas a margem estabelecida pela incerteza do valor de referência associado a esse óxido permite uma variação aceitável da taxa de recuperação, o que também se aplica aos demais óxidos.

	Taxa de Recuperação (%)							
Óxidos	Sem Co	rreção	Com Correção					
	GBW 07406	G5P.2	GBW 07406	G5P.2				
Al ₂ O ₃	86,69343	87,61102	86,33369	87,09845				
Fe ₂ O ₃	86,01567	87,21752	85,75099	86,78052				
CaO	87,60445	97,06160	78,60284	96,11858				
K ₂ O	108,37128	103,54629	105,69632	102,70104				
MgO	89,76583	98,38649	86,49931	97,22959				
Na ₂ O	120,83787	107,60599	96,20500	105,92245				

Tabela 5 - Taxa de recuperação para MRCs antes e após a correção por subtração dos valores do Branco

Como consequência, essa abordagem exigiu que o mesmo procedimento fosse aplicado a todas as amostras, adotando como concentração final o valor obtido menos o valor do branco correspondente. Essa correção, aplicada a todos os óxidos de interesse, pode ser observada na TAB. 6.

Tabela 6 - Resultados de ICP-OES em percentual de óxidos corrigidos com os valores do Branco (continua)

	Óxidos corrigidos (%)						
Amostra	Al ₂ O ₃	Fe ₂ O ₃	CaO	K ₂ O	MgO	Na ₂ O	
GBW 07406 (MRC)	18,32864	6,93726	0,17293	1,79684	0,29410	0,18279	
G5P.2 (MRC)	12,97767	4,25225	2,01849	5,52532	0,93340	2,94464	
SB_Solo_01	4,15965	0,85139	0,02269	0,09427	0,18138	0,00446	
SB_Solo_02	5,51210	0,94086	0,00284	0,26299	0,02030	0,01762	
SB_Solo_03	8,18097	0,76412	<lq< th=""><th>0,85476</th><th>0,02994</th><th>0,04128</th></lq<>	0,85476	0,02994	0,04128	
SB_Solo_04	4,20167	5,26153	<lq< th=""><th>0,75046</th><th>0,09152</th><th>0,03084</th></lq<>	0,75046	0,09152	0,03084	
SB_Solo_05	10,65970	14,44698	0,05632	1,88018	0,40349	0,07118	
SB_Solo_06	20,85917	34,26158	<lq< th=""><th>0,02010</th><th>0,03225</th><th>0,00335</th></lq<>	0,02010	0,03225	0,00335	
SB_Solo_07	30,80469	23,87406	<lq< th=""><th>0,07490</th><th>0,04612</th><th>0,00386</th></lq<>	0,07490	0,04612	0,00386	
SB_Solo_08	34,41738	22,90138	0,00837	0,09691	0,04967	0,00525	

A mostro	Óxidos corrigidos (%)					
Amostra	Al ₂ O ₃	Fe ₂ O ₃	CaO	K ₂ O	MgO	Na ₂ O
SB_Rocha_01	2,95718	0,19460	<lq< th=""><th>0,83837</th><th>0,04002</th><th>0,03065</th></lq<>	0,83837	0,04002	0,03065
SB_Rocha_02	0,71527	0,46861	<lq< th=""><th>0,17526</th><th>0,00708</th><th><lq< th=""></lq<></th></lq<>	0,17526	0,00708	<lq< th=""></lq<>
SB_Rocha_03	1,95641	0,30414	0,00722	0,13805	0,01005	<lq< th=""></lq<>
SB_Rocha_04	7,71980	0,36606	<lq< th=""><th>0,22395</th><th>0,00738</th><th>0,00740</th></lq<>	0,22395	0,00738	0,00740
SB_Rocha_05	0,37482	0,03282	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
SB_Rocha_06	0,48661	71,54483	<lq< th=""><th><lq< th=""><th>0,04019</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,04019</th><th><lq< th=""></lq<></th></lq<>	0,04019	<lq< th=""></lq<>
SB_Rocha_07	0,42238	72,39193	0,00744	<lq< th=""><th>0,02516</th><th><lq< th=""></lq<></th></lq<>	0,02516	<lq< th=""></lq<>
LQ	0,00094	0,00207	0,00120	0,00295	0,00101	0,00094

As amostras de solo apresentaram variações marcantes na composição entre as regiões quartzíticas e ferruginosas. As amostras SB_Solo_01, SB_Solo_02, SB_Solo_03, SB_Solo_04 e SB_Solo_05 mostraram baixas concentrações dos óxidos de elementos maiores, o que sugere uma predominância de SiO₂.

Por outro lado, as amostras SB_Solo_04, SB_Solo_05, SB_Solo_06, SB_Solo_07 e SB_Solo_08 apresentaram teores mais elevados de Fe₂O₃, com destaque para a SB_Solo_06, que atingiu aproximadamente 34,26%, seguida pelas amostras SB_Solo_07 e SB_Solo_08, com cerca de 23,87% e 22,90%, respectivamente. Esses teores mais expressivos resultaram em assinaturas espectrais características, especialmente na região do VNIR. Já as amostras SB_Solo_04 e SB_Solo_05 apresentaram teores relativamente mais baixos, de aproximadamente 5,26% e 14,45%, respectivamente. Nelas, as feições espectrais estão atenuadas, hipótese que pode estar relacionada à presença de matéria orgânica ou de outros componentes não quantificados nesta etapa. Ao compará-las, mesmo com a ausência de feições claras no VNIR, o maior teor de Fe₂O₃ em SB_Solo_05 justifica sua menor reflectância, em função da maior absorção por óxidos de ferro, o que também se observa para o Al₂O₃, na região do SWIR.

De modo geral, as amostras de solo também apresentam maior concentração de alumínio em comparação aos demais elementos, o que contribui para as feições espectrais observadas na região do SWIR. Nesse aspecto, os solos das regiões de canga ferruginosa se destacam pela presença de caulinita e gibbsita, enquanto nas demais áreas predominam argilominerais como caulinita, illita e montmorillonita.

É importante ressaltar que a amostra SB_Solo_02 sofreu um contratempo durante o preparo: foi acidentalmente derramada no momento da adição de ácido, sendo necessário recolocar no frasco Savillex o líquido que havia escorrido para a bancada. Diante disso, considerou-se a possibilidade de contaminação da amostra. No entanto, os resultados obtidos mostraram-se aparentemente consistentes com os demais. Ainda assim, é importante destacar que os dados dessa amostra devem ser interpretados com cuidado, uma vez que não podem ser considerados totalmente confiáveis.

As amostras de rocha também apresentaram variações significativas em sua composição química. As amostras SB_Rocha_01, SB_Rocha_02, SB_Rocha_03, SB_Rocha_04 e SB_Rocha_05 indicam uma predominância de SiO₂, evidenciada pelas baixas concentrações dos demais óxidos, o que sugere uma composição rica em quartzo, mineral que se caracteriza por sua alta refletância espectral e um espectro contínuo, com exceção da amostra SB_Rocha_02, classificada como um veio de quartzo leitoso, cujo aspecto leitoso é atribuído à presença de microinclusões ou desordem interna, resultando em menor refletância em comparação com o quartzo puro.

No entanto, as amostras SB_Rocha_01, SB_Rocha_03 e SB_Rocha_04, quando comparadas às demais das regiões de quartzitos, apresentaram teores ligeiramente mais elevados de alumínio. Essa característica relaciona a presença de feições de absorção na região do SWIR, indicando a ocorrência de filossilicatos e argilominerais.

Em contraste, as amostras SB_Rocha_06 e SB_Rocha_07, de cangas ferruginosas, apresentaram os maiores teores de Fe₂O₃, superiores a 70%. Esses altos teores conferem às amostras assinaturas espectrais bem definidas, com absorções na região do VNIR.

Dessa forma, os resultados obtidos fornecem informações para a validação das interpretações espectrorradiométricas. A comparação entre os diferentes tipos de amostras revelou padrões espectrais distintos, refletindo as características composicionais de cada material e suas influências nas propriedades ópticas.

5.3 Análise de DRX

A análise de DRX foi realizada com o apoio do *software X'pert High Score Plus*, o qual forneceu diversas possibilidades para cada amostra. No entanto, devido à grande quantidade de sugestões geradas e à similaridade entre os padrões de difração de certos minerais, a interpretação final foi restrita aos minerais previamente observados na análise

espectrorradiométrica. Essa abordagem, embora reduza a chance de falsas identificações, pode limitar a detecção de minerais que não apresentam feições espectrais bem definidas ou que estejam em concentrações muito baixas para gerar resposta espectral significativa

As amostras de rocha analisadas apresentaram resultados consistentes com as análises espectrais e geoquímicas realizadas.

Na amostra SB_Rocha_01, os picos difratométricos confirmam a presença de quartzo e muscovita (FIG. 45). Para SB_Rocha_02, os resultados reforçam sua descrição macroscópica como um veio de quartzo, com os picos exclusivamente atribuídos a esse mineral (FIG. 46).

Fonte: Elaborada pela autora.

Fonte: Elaborada pela autora.

Na amostra SB_Rocha_03, os picos de maior intensidade indicam quartzo, muscovita e caulinita, enquanto pequenos picos sugerem hematita (FIG. 47). Em SB_Rocha_04, observa-se a predominância de quartzo, muscovita, caulinita e illita, além de presença de hematita identificada nos picos de menor intensidade (FIG. 48). Espectralmente, a amostra SB_Rocha_04, sobretudo a parte do veio (SBRO4V), exibe presença de goethita. Essa identificação é coerente com o contexto de cangas ferruginosas, onde a goethita se forma por intemperismo supergênico em ambientes tropicais úmidos, como os do QFe. Entretanto, sua detecção por DRX foi comprometida, possivelmente em razão da baixa concentração relativa, aliada à baixa intensidade e sobreposição de picos com a hematita e o quartzo, dificultando sua identificação por essa técnica.

Fonte: Elaborada pela autora.

Figura 48 - Análise de picos de difração de raios X da amostra SB_Rocha_04

Fonte: Elaborada pela autora.

Na amostra SB_Rocha_05, a última derivada da área de quartzitos, o perfil difratométrico indica um predomínio marcante de quartzo (FIG. 49). A análise espectral revela feições de absorção compatíveis com argilas, particularmente a montmorillonita. No entanto, na DRX, apenas o pico de maior intensidade pode ser relacionado a esse mineral, o que levanta dúvidas quanto à sua identificação precisa devido à sobreposição dos picos característicos, não sendo possível confirmar sua presença com segurança apenas com DRX.

Fonte: Elaborada pela autora.

Por fim, nas amostras de canga ferruginosa SB_Rocha_06 (FIG. 50) e SB_Rocha_07 (FIG. 51), observa-se a predominância de hematita e alguns picos que relacionam o quartzo. O único ponto de atenção está na amostra SB_Rocha_06, em que alguns picos indicaram a possível presença de goethita, um mineral não identificado na análise espectral. A ausência de feições espectrais associadas à goethita pode ser explicada pela sobreposição com feições da hematita ou pela atenuação da reflectância causada por partículas finas ou presença de material opaco. Ainda assim, os resultados obtidos por DRX também corroboram os dados espectrais.

Fonte: Elaborada pela autora.

Figura 51 - Análise de picos de difração de raios X da amostra SB_Rocha_07

Fonte: Elaborada pela autora.

As amostras de solo também apresentaram resultados consistentes com as análises espectrais e geoquímicas realizadas.

Nas amostras SB_Solo_01 (FIG. 52), SB_Solo_02 (FIG. 53) e SB_Solo_03 (FIG. 54), os picos difratométricos confirmam a presença de caulinita e illita. Embora o quartzo não tenha sido identificado na análise espectral, que se concentrou nas feições de absorção, o mineral apresenta um espectro contínuo, associado a uma alta reflectância espectral, que pode ser atenuada pela presença de matéria orgânica. No entanto, sua presença é evidente na DRX.

Fonte: Elaborada pela autora.

Fonte: Elaborada pela autora.

Figura 54 - Análise de picos de difração de raios X da amostra SB_Solo_03

Fonte: Elaborada pela autora.

Nas amostras SB_Solo_04 (FIG. 55) e SB_Solo_05 (FIG. 56), os picos difratométricos foram atribuídos principalmente à montmorillonita e illita, além da presença de quartzo. Além disso, pequenos picos indicam a presença de hematita, complementando a análise espectral que não identifica com clareza a presença de óxido de ferro.

Fonte: Elaborada pela autora.

Fonte: Elaborada pela autora.

Na amostra SB_Solo_05, alguns picos observados no difratograma de DRX não foram compatíveis com os minerais identificados previamente por meio da análise espectral. No entanto, considerando as sugestões do *software* e os minerais comumente associados à área de estudo, uma possível interpretação inclui fases secundárias (FIG. 57), como caulinita e/ou gibsita, comuns em ambientes lateríticos, mas sua confirmação exige técnicas complementares como análise por microscopia eletrônica de varredura (MEV) ou espectroscopia de infravermelho com transformada de Fourier (FTIR).

Figura 57 - Análise alternativa de picos de difração de raios X da amostra SB_Solo_05

Fonte: Elaborada pela autora.

Por fim, nas amostras SB_Solo_06 (FIG. 58), SB_Solo_07 (FIG. 59) e SB_Solo_08 (FIG. 60), os picos de maior intensidade indicam a presença de caulinita, gibbsita, hematita e quartzo, apresentando uma mineralogia semelhante entre si.

Fonte: Elaborada pela autora.

Fonte: Elaborada pela autora.

Fonte: Elaborada pela autora.

Os resultados obtidos por DRX apresentaram, em geral, boa concordância com as análises espectrais e geoquímicas. Nas amostras de rocha SB_Rocha_01, SB_Rocha_02, SB_Rocha_03 e SB_Rocha_07, observou-se compatibilidade entre os métodos, com identificação consistente de minerais como quartzo, muscovita, caulinita e hematita. Em SB_Rocha_04, embora a espectrorradiometria tenha sugerido a presença de goethita, sua confirmação por DRX foi limitada devido à baixa concentração, baixa intensidade e sobreposição de picos com minerais mais abundantes. Situação semelhante foi observada na amostra SB_Rocha_05, onde a montmorillonita indicada espectralmente não pôde ser confirmada, evidenciando a necessidade de métodos complementares. Já em SB_Rocha_06, alguns picos sugeriram a presença de goethita, ausente na espectrorradiometria, possivelmente mascarada por partículas finas, material opaco ou sobreposição com feições da hematita.

Entre as amostras de solo, destaca-se a forte convergência entre DRX, espectrorradiometria e geoquímica nas amostras SB_Solo_01 a SB_Solo_03, com identificação de quartzo, caulinita e illita. Nas amostras SB_Solo_06 a SB_Solo_08, a presença de caulinita, gibbsita, hematita e quartzo foi confirmada por todas as técnicas aplicadas. Em SB_Solo_04 e SB_Solo_05, a DRX complementou as análises espectrais ao indicar montmorillonita, illita e

hematita. Por outro lado, na amostra SB_Solo_05, alguns picos não foram identificados, revelando limitações na interpretação por DRX e reforçando a importância da abordagem integrada.

Com isso, a análise de DRX, ao cruzar com os dados espectrais e geoquímicos, valida as conclusões, evidenciando a complementaridade entre as técnicas e proporcionando uma visão mais completa das características mineralógicas das amostras. Ainda que algumas amostras tenham apresentado incertezas, os resultados obtidos demonstram a relevância da combinação de métodos analíticos. Todos os relatórios contendo os dados das análises difratométricas encontram-se disponibilizados no Anexo E.

6 CONCLUSÃO

Este estudo teve como objetivo principal a construção de bibliotecas espectrais de solos e rochas de áreas de cangas ferruginosas e quartzitos nos campos rupestres da Serra da Brígida. A partir da aplicação da espectrorradiometria, foi possível caracterizar o comportamento espectral das amostras sob diferentes condições de superfície e rugosidade, gerando dados relevantes para futuras aplicações em mapeamento geológico e no monitoramento ambiental.

Observou-se que, nas rochas, as curvas espectrais das regiões externas acompanham o padrão das internas, mas com menor reflectância e feições menos proeminentes. Nos solos, verificou-se que o aumento da rugosidade reduz a reflectância no espectro.

O objetivo principal de construir bibliotecas espectrais dos solos e das rochas dos campos quartzíticos e ferruginosos foi alcançado. Foram gerados vários arquivos durante o processamento das curvas espectrais no *software* ENVI (.sli), os quais integram uma base de dados única das rochas e solos que constituem os campos rupestres da área de estudo. Posteriormente poderão ser usadas como referência para outras áreas, servindo assim, como base de referência e análise, para outras áreas de campos rupestres no Brasil.

A integração dos dados permitiu validar feições espectrais com base em fases cristalinas identificadas por DRX e elementos majoritários por ICP-OES, elevando a robustez da análise mineralógica e possibilitando interpretações mais precisas da gênese dos materiais. Entretanto, em alguns casos, especialmente na análise por DRX, houve dúvidas decorrentes da sobreposição de picos e da presença de picos de baixa intensidade, o que limita a identificação precisa de certos minerais. Essas limitações reforçam a necessidade da aplicação de técnicas complementares para uma caracterização mineralógica mais confiável.

Em termos mineralógicos, nos campos rupestres quartzíticos, os solos apresentam argilominerais como caulinita, montmorillonita e illita, além de quartzo e hematita, o que condiz com os minerais encontrados em solos tropicais como descrito por Baptista (2006). Nas rochas, predominam muscovita, quartzo, caulinita e illita, com hematita presente nos quartzitos ferruginosos, especialmente nas regiões de veios e porções ricas em ferro, onde também se observa a presença de goethita. Já nas cangas ferruginosas, os solos contêm misturas de gibbsita e caulinita, além de hematita e quartzo, enquanto nas rochas são encontrados essencialmente hematita e quartzo em sua composição.

Essas associações mineralógicas refletem intensos processos de lixiviação e lateritização, característicos de ambientes tropicais úmidos, além de possíveis variações

microambientais que controlam a estabilidade de fases como como gibbsita, montmorillonita, caulinita e illita.

Assim, o trabalho alcançou seus objetivos, contribuindo para o avanço do conhecimento sobre os campos rupestres da Serra da Brígida e oferecendo uma base útil para pesquisas futuras. Os dados gerados ao longo do estudo, incluindo as bibliotecas espectrais e os arquivos derivados das análises complementares, serão disponibilizados posteriormente para acesso público. Espera-se que essa base de dados contribua para iniciativas de pesquisa aplicada em mapeamento e conservação de áreas de cangas ferruginosas e quartzíticas.

Além disso, estão previstas publicações para aprofundar e divulgar os resultados obtidos, incluindo estudos que busquem correlacionar os dados espectrais das rochas e solos com os dados espectrais da vegetação dos campos rupestres locais, ampliando o entendimento integrado dos ecossistemas da região.

REFERÊNCIAS

ADAMS, J. B.; FILICE, A. L. Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. Journal of Geophysical Research, Washington, DC, v. 72, n. 2, p. 5705-5715, 1967.

ADÃO, T.; HRUSKA, J.; PADUA, L.; BESSA, J.; PERES, E.; MORAIS, R.; SOUSA, J. J. **Hyperspectral imaging:** a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing, v. 9, n. 11, p. 1110, 2017. DOI: https://doi.org/10.3390/rs9111110.

ALKMIM, F. F.; MARTINS-NETO, M. A. 2012. Proterozoic first-order sedimentary sequences of the São Francisco craton, eastern Brazil. Mar. Pet. Geol. 33, 127-139.

ALKMIM, F. F.; TEIXEIRA, W. The Paleoproterozoic mineiro belt and the Quadrilátero Ferrífero. In: São Francisco Craton, Eastern Brazil: tectonic genealogy of a miniature continent. Cham: Springer International Publishing, 2016. p. 71-94.

ALMEIDA, F. F. M. de. O cráton do São Francisco. **Revista Brasileira de geociências**, v. 7, n. 4, p. 349-364, 1977.

BAPTISTA, G. M. M. 2006. Sensoriamento Remoto Hiperespectral. O novo paradigma nos estudos dos solos tropicais. Editora Universa. 212 p.

BAPTISTA, G. M. M.; MADEIRA NETTO, J. D. S; SOUZA, D. T. M. Reflectância dos solos.
In: Reflectância dos materiais terrestres. São Paulo: Oficina de textos, 2019. cap 5. p. 153-177. eISBN 978-85-7975-319-0

BEDINI, E. The use of hyperspectral remote sensing for mineral exploration: a review. **Journal** of Hyperspectral Remote Sensing, v. 7, n. 4, p. 189–211, 7 dez. 2017.

BELLINASO, H. **Biblioteca espectral de solos e sua aplicação na quantificação de atributos e classificação**. 2009. Dissertação (Mestrado em Solos e Nutrição de Plantas) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2009. doi:10.11606/D.11.2009.tde-23062009-104258.

BELLINASO, H.; DEMATTÊ, J. A. M.; ROMEIRO, S. A. Soil spectral library and its use in soil classification. Revista Brasileira de Ciência do Solo, v. 34, p. 861-870, 2010. https://doi.org/10.1590/S0100-06832010000300027.

BINOTTO, R. B. *et al.* Identificação dos padrões espectrais da alteração hidrotermal da Mina Uruguai, Caçapava do Sul (RS), utilizando espectros de reflectância experimental. Pesquisas em Geociências, 42 (1): 89-101, 2015. ISSN 1518-2398.

CASTRO, P. T. A.; VARAJÃO, A. F. D. C. O Cenozoico no Quadrilátero Ferrífero. In: **Quadrilátero Ferrífero: Avanços do conhecimento nos últimos 50 anos**. Belo Horizonte: 3i editora, 2020. cap. 4. p. 168-193.

CAXITO, F.; DIAS, T. G. Ferro. In: LOBATO L. M.; COSTA, M. A. **Recursos minerais de minas gerais:** recursos minerais no cenário geológico de minas gerais. Belo horizonte: UFMG, 2018. p. 12-15, 2018.

CLARK, R. N.; KING, T. Y. Y.; KLEJWA, M.; SWAVZE, G. A. **Highspectral resolution reflectance spectroscopy of minerals.** Journal of Geophysical Research, Washington, DC., v. 95, n. B8, p. 12653-12680, 1990.

CLARK, R. N. Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual of remote sensing, v. 3, p. 3-52, 1999. ISBN: 0471-29405-5.

COIMBRA, K. *et al.* Caracterização Espectral de Rochas Hidrotermalizadas de Depósitos de Cobre da Província Mineral de Carajás. Anais do XX Simpósio Brasileiro de Sensoriamento Remoto, INPE, p. 324 – 327, 2023. ISBN: 978-65-89159-04-9.

DEMATTÊ, J. A. M; TERRA, F. S. **Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations.** Geoderma, v. 217, p. 190-200, 2014. https://doi.org/10.1016/j.geoderma.2013.11.012.

DEMATTÊ, J. A. M. *et al.* The Brazilian soil spectral library (BSSL): A general view, application and challenges. Geoderma, v. 354, p. 113793, 2019. https://doi.org/10.1016/j.geoderma.2019.05.043.

DORR J. V. N. II. 1969. Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil. U. S. Geological Survey Prof. Paper 641-A, 110p.

ENDO, I.; DELGADO, C. E. R.; OLIVEIRA, M. M. F. de; ZAPPAROLI, A. de C.; CARLOS, D. U.; GALBIATTI, H. F.; CASTRO, P. de T.; SUITA, M. T. de F.; BARBOSA, M. S. C.;

LANA, C. E.; MOURA, L. G. B. de. Estratigrafia e arcabouço estrutural do Quadrilátero Ferrífero: nota explicativa do mapa geológico do Quadrilátero Ferrífero, Minas Gerais, Brasil. Escala 1:150.000. Ouro Preto: Departamento de Geologia da Escola de Minas – UFOP; Centro de Estudos Avançados do Quadrilátero Ferrífero, 2019. Disponível em: www.qfe2050.ufop.br.

ENDO, I; MACHADO, R.; GALBIATTI, H. F.; ROSSI, D. Q.; ZAPPAROLI, A. C.; DELGADO, C. E. R., CASTRO, P. T. A., OLIVEIRA, M. M. F. Estratigrafia e evolução estrutural do Quadrilátero Ferrífero. In: **Quadrilátero Ferrífero: Avanços do conhecimento nos últimos 50 anos**. Belo Horizonte: 3i Editora, 2020. cap. 2. p. 72-113.

FANG, Q. *et al.* Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: A review. Journal of Spectroscopy, v. 2018, n. 1, p. 3168974, 2018. https://doi.org/10.1155/2018/3168974.

FERNANDES, G. W. *et al.* Challenges for the conservation of vanishing megadiverse rupestrian grasslands. Natureza & Conservação, v. 2, n. 12, p. 162-165, 2014. DOI: 10.1016/j.ncon.2014.08.003.

FERNANDES, G. W. *et al.* Ecology and conservation of mountaintop grasslands in Brazil. Switzerland: Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-29808-5.

FERNANDES, G. W. *et al.* **The deadly route to collapse and the uncertain fate of Brazilian rupestrian grasslands**. Biodiversity and Conservation, v. 27, p. 2587-2603, 2018. https://doi.org/10.1007/s10531-018-1556-4.

FILHO, A. C.; CURI, N.; SHINZATO, E. 2010. Relações solo-paisagem no Quadrilátero Ferrífero em Minas Gerais. Pesq. agropec. bras., Brasília, v.45, n.8, p.903-916, 2010.

GALVÃO, L. S.; VITORELLO, I. Role of organic matter in obliterating the effects of iron on spectral reflectance and colour of Brazilian tropical soils. International Journal of Remote Sensing, v. 19, n. 10, p. 1969-1979, 1998.

HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física - Óptica e Física
Moderna. Rio de Janeiro: LTC, V. 4, 12. Ed, 2023. *E-book*. p.3. ISBN 9788521638582.
Disponível em: https://integrada.minhabiblioteca.com.br/reader/books/9788521638582/.
Acesso em: 05 mai. 2025.

HUNT, G. R.; SALISBURY, J. W. Visible and near infrared spectra of minerals and rocks.I. Silicate minerals. Modern Geology. 1:238-300, 1970.

HUNT, G. R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, v. 42, n. 3, p. 501-513, 1977.

HUNT, G. R. Electromagnetic radiation: the communication link in remote sensing. In: Siegel, B. S.; Gillespie, A. R. (ed.). Remote Sensing in Geology. John Wiley and Sons, Nova York, 1980.

INSTITUTO BRASILEIRO DE MINERAÇÃO (IBRAM). **Mineração em Números:** 1T25. 2024. Disponível em: https://ibram.org.br/publicacoes/. Acesso em: 20 de maio de 2025.

JENSEN, J. R. Sensoriamento remoto do ambiente: uma perspectiva em recursos terrestres. Tradução: José Carlos Neves Epiphanio; et al.. 2. ed. São José dos Campos, SP: Parêntese, 2009. Título original: Remote sensing of the environment : an earth resource perspective. ISBN: ISBN : 9788560507061.

MADEIRA NETTO, J. S. Étude quantitative des relations constituants minéralogiquesréflectance diffuse des latosols brésiliens: application a l'utilisation pédologique des données satellitaires TM (région de Brasília). 1993.

MENESES, P. R. *et al.* Reflectância dos materiais terrestres. São Paulo: Oficina de textos, 2019. eISBN 978-85-7975-319-0.

MENESES, P. R.; DE ALMEIDA, T. Fundamentos de espectrorradiometria. In: **Reflectância dos materiais terrestres.** São Paulo: Oficina de textos, 2019. cap 1. p. 12-37. eISBN 978-85-7975-319-0.

MENESES, P. R.; DE ALMEIDA, T. Transições eletrônicas e moleculares e a origem das absorções. In: **Reflectância dos materiais terrestres.** São Paulo: Oficina de textos, 2019. cap 2. p. 38-63. eISBN 978-85-7975-319-0.

MENESES, P. R.; DE ALMEIDA, T. Reflectância dos minerais. In: **Reflectância dos materiais terrestres.** São Paulo: Oficina de textos, 2019. cap 3. p. 64-110. eISBN 978-85-7975-319-0.

MENESES, P. R.; DE ALMEIDA, T. Reflectância das rochas. In: **Reflectância dos materiais terrestres.** São Paulo: Oficina de textos, 2019. cap 4. p. 111-152. eISBN 978-85-7975-319-0.

MCKENNA, F. B; LECHNER, A. M.; HERNANDEZ-SANTIN, L.; PHINN, S.; ERSKIN, P. D. Measuring and monitoring restored ecosystems: canremote sensing be applied to the ecological recoverywheel to inform restoration success? Restoration Ecology, v. 29, n. 1, 2022. DOI: https://doi.org/10.1111/rec.13278.

NASCIMENTO, S. T. Geodiversidade e geomorfologia antropogênica na região das minas de ouro no anticlinal de Mariana, MG. 2016. 88 f. Dissertação (Mestrado em Evolução Crustal e Recursos Naturais) – Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2016.

NASSAU, K. The origins of color in minerals. American mineralogist, v. 63, n. 3-4, p. 219-229, 1978.

NEGREIROS, D. *et al.* **CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments**. Plant ecology, v. 215, p. 379-388, 2014. https://doi.org/10.1007/s11258-014-0302-6.

PERROTTA, M. M. *et al.* **Estudo de assinaturas espectrais de metavulcânicas do Espinhaço Setentrional e sua aplicação no mapeamento mineral em imagem do sensor ASTER:** dados da Biblioteca Espectral do Serviço Geológico do Brasil. SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, v. 16, n. 2013, p. 3656-3663, 2013.

PEYGHAMBARI, S.; ZHANG, Y. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: an updated review. Journal of Applied Remote Sensing, v. 15, n. 03, 14 jul. 2021.

PONTUAL, S.; MERRY, N.; GAMSON, P. Spectral interpretation field manual. G-Mex, v.1. Melbourne: Ausspec International Pty.Ltd, 1997.

RAMANAIDOU, E. *et al.* Hematite and goethite from duricrusts developed by lateritic chemical weathering of Precambrian banded iron formations, Minas Gerais, Brazil. Clays and clay minerals, v. 44, n. 1, p. 22-31, 1996. DOI:10.1346/CCMN.1996.0440102.

REIF, M. K.; THEEL, H. J. Remote sensing for restoration ecology: application for restoring degraded, damaged, transformed, or destroyed ecosystems. Integrated Environmental Assessment and Management, [S.l.], v. 13, p. 614–630, 2017. https://doi.org/10.1002/ieam.1847.

ROSSEL, R. A. V. *et al.* In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma, v. 150, n. 3-4, p. 253-266, 2009. https://doi.org/10.1016/j.geoderma.2009.01.025.

ROSSEL, R. A. V.; WEBSTER, R. Discrimination of Australian soil horizons and classes from their visible–near infrared spectra. European Journal of Soil Science, v. 62, n. 4, p. 637-647, 2011. https://doi.org/10.1111/j.1365-2389.2011.01356.x.

ROSSMAN, G. R. **Optical spectroscopy.** In: HAWTHORNE, F. C. (Ed.) Reviews in mineralogy: spectroscopic methods in mineralogy and geology. Michigan: Bookcraftters, 1988. p. 207-257. 69 p. Disponível em: http://nebm.ist.utl.pt/repositório>.

SATO, M. V. Primeira aproximação da biblioteca espectral de solos do Brasil: caracterização de espectros de solos e quantificação de atributos. 2015. Tese de Doutorado. Dissertação (Mestrado em Ciências) - Escola Superior de Agricultura" Luiz de Queiroz", Universidade de São Paulo, Piracicaba, 2015.

SHERMAN, D. M.; WAITE, T. D. Eletronic spectra of Fe⁺³ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, Washington, DC., v. 70, p. 1262-1269, 1985.

SILVA, F. S.; OLIVEIRA, F. S.; FILHO, C. R. S. Distribuição e contexto geológicogeomorfológico da bauxita na região de Espera Feliz, sul da serra do Caparaó, MG/ES. Revista Brasileira de Geomorfologia, v. 20, n. 3, 2019. DOI: 10.20502/rbg.v20i3.151.

SOUSA, S. S. et al. **Iron ore mining areas and their reclamation in Minas Gerais State, Brazil:** impacts on soil physical properties. SN Applied Sciences, [S.1.], v. 2, p. 1659, 2020. Disponível em: https://doi.org/10.1007/s42452-020-03457-9.

STONER, E. R.; BAUMGARDNER, M. F. Characteristic variations in reflectance of surface soils. Soil Science Society of America Journal, v. 45, n. 6, p. 1161-1165, 1981.

TAVARES, R. B. Atividades extrativas minerais e seus corolários na bacia do alto Ribeirão do Carmo: da descoberta do ouro aos dias atuais. 2006. 103 f. Dissertação (Mestrado em Evolução Crustal e Recursos Naturais) - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2006.
UFOP – UNIVERSIDADE FEDERAL DE OURO PRETO. 2001. Diagnóstico Ambiental da Área de Preservação da Serra da Brígida, Município de Ouro Preto, MG.

VALE, P. N. C. Solo e topografia como condicionantes da distribuição da vegetação em fitofisionomias campestre e florestal em contato direto na serra da Brígida, Ouro Preto, MG. 2013. 79 f. Dissertação (Mestrado em Evolução Crustal e Recursos Naturais) - Universidade Federal de Ouro Preto, Ouro Preto, 2013.

XAVIER, F. R. **Teoria do campo cristalino (TCC)**. 2018. Disponível em: < http://www.joinville.udesc.br/portal/professores/frxavier/materiais/Aula_3___Teoria_do_Cam po_Cristalino___TCC.pdf>.

YAN, D.; ZHAO F.; SUN O. J. Assessment of vegetation establishment on tailings dam at an iron ore mining site of suburban beijing, china, 7 years after reclamation with contrasting site treatment methods. Environ Manag 52:748–757, 2013. https://doi.org/10.1007/s00267-013-0092-y.

Tipo: Rocha()Solo() Data: Datum: Nº de leituras: 5 Ponto × Coordenadas UTM \prec UFOP/ITV - Coleta de amostras Ν Litologia/Descrição Leituras

ANEXO A – Modelo de planilha de coleta de amostras

ANEXOS

s de ICP-OES

Amostra	As 188.980	Ba 455.403	Bi 223.061	Cd 228.802	Co 228.615	Cr 267.716	Cu 327.395	Li 670.783	Mo 202.032	Ni 231.604	Sc 361.383
Branco	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,13107</td><td><lq< td=""><td><lq< td=""><td>15,88726</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,13107</td><td><lq< td=""><td><lq< td=""><td>15,88726</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>4,13107</td><td><lq< td=""><td><lq< td=""><td>15,88726</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,13107</td><td><lq< td=""><td><lq< td=""><td>15,88726</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4,13107</td><td><lq< td=""><td><lq< td=""><td>15,88726</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	4,13107	<lq< td=""><td><lq< td=""><td>15,88726</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>15,88726</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	15,88726	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
MRC	217,60031	106,53198	34,61880	<lq< td=""><td>9,72824</td><td>66,31364</td><td>330,89423</td><td>29,33506</td><td>19,49975</td><td>52,45062</td><td>12,86800</td></lq<>	9,72824	66,31364	330,89423	29,33506	19,49975	52,45062	12,86800
MRC	<lq< td=""><td>1284,75537</td><td><lq< td=""><td><lq< td=""><td>8,78290</td><td>17,28118</td><td>38,64502</td><td>26,75842</td><td><lq< td=""><td>15,16054</td><td>4,83412</td></lq<></td></lq<></td></lq<></td></lq<>	1284,75537	<lq< td=""><td><lq< td=""><td>8,78290</td><td>17,28118</td><td>38,64502</td><td>26,75842</td><td><lq< td=""><td>15,16054</td><td>4,83412</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>8,78290</td><td>17,28118</td><td>38,64502</td><td>26,75842</td><td><lq< td=""><td>15,16054</td><td>4,83412</td></lq<></td></lq<>	8,78290	17,28118	38,64502	26,75842	<lq< td=""><td>15,16054</td><td>4,83412</td></lq<>	15,16054	4,83412
SB_Solo_01	<lq< td=""><td>15,93569</td><td><lq< td=""><td><lq< td=""><td>323,15875</td><td>20,12397</td><td>7,26307</td><td><lq< td=""><td><lq< td=""><td>11,26664</td><td>1,12057</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	15,93569	<lq< td=""><td><lq< td=""><td>323,15875</td><td>20,12397</td><td>7,26307</td><td><lq< td=""><td><lq< td=""><td>11,26664</td><td>1,12057</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>323,15875</td><td>20,12397</td><td>7,26307</td><td><lq< td=""><td><lq< td=""><td>11,26664</td><td>1,12057</td></lq<></td></lq<></td></lq<>	323,15875	20,12397	7,26307	<lq< td=""><td><lq< td=""><td>11,26664</td><td>1,12057</td></lq<></td></lq<>	<lq< td=""><td>11,26664</td><td>1,12057</td></lq<>	11,26664	1,12057
SB_Solo_02	23,74382	22,62541	<lq< td=""><td><lq< td=""><td>176,85162</td><td>25,35259</td><td>4,83871</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,55486</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>176,85162</td><td>25,35259</td><td>4,83871</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,55486</td></lq<></td></lq<></td></lq<></td></lq<>	176,85162	25,35259	4,83871	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,55486</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,55486</td></lq<></td></lq<>	<lq< td=""><td>1,55486</td></lq<>	1,55486
SB_Solo_03	24,78309	40,98158	<lq< td=""><td><lq< td=""><td>229,94933</td><td>17,27557</td><td>3,57120</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,94819</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>229,94933</td><td>17,27557</td><td>3,57120</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,94819</td></lq<></td></lq<></td></lq<></td></lq<>	229,94933	17,27557	3,57120	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,94819</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,94819</td></lq<></td></lq<>	<lq< td=""><td>2,94819</td></lq<>	2,94819
SB_Solo_04	100,99677	33,89359	<lq< td=""><td><lq< td=""><td>189,10254</td><td>49,07235</td><td>12,69572</td><td><lq< td=""><td><lq< td=""><td>12,20071</td><td>3,70107</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>189,10254</td><td>49,07235</td><td>12,69572</td><td><lq< td=""><td><lq< td=""><td>12,20071</td><td>3,70107</td></lq<></td></lq<></td></lq<>	189,10254	49,07235	12,69572	<lq< td=""><td><lq< td=""><td>12,20071</td><td>3,70107</td></lq<></td></lq<>	<lq< td=""><td>12,20071</td><td>3,70107</td></lq<>	12,20071	3,70107
SB_Solo_05	201,78151	106,40511	<lq< td=""><td><lq< td=""><td>124,43063</td><td>146,22075</td><td>42,49602</td><td><lq< td=""><td><lq< td=""><td>38,02247</td><td>11,73023</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>124,43063</td><td>146,22075</td><td>42,49602</td><td><lq< td=""><td><lq< td=""><td>38,02247</td><td>11,73023</td></lq<></td></lq<></td></lq<>	124,43063	146,22075	42,49602	<lq< td=""><td><lq< td=""><td>38,02247</td><td>11,73023</td></lq<></td></lq<>	<lq< td=""><td>38,02247</td><td>11,73023</td></lq<>	38,02247	11,73023
SB_Solo_06	88,70783	14,24604	<lq< td=""><td><lq< td=""><td>157,95674</td><td>293,52057</td><td>14,85771</td><td><lq< td=""><td>5,16398</td><td>16,48001</td><td>8,67874</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>157,95674</td><td>293,52057</td><td>14,85771</td><td><lq< td=""><td>5,16398</td><td>16,48001</td><td>8,67874</td></lq<></td></lq<>	157,95674	293,52057	14,85771	<lq< td=""><td>5,16398</td><td>16,48001</td><td>8,67874</td></lq<>	5,16398	16,48001	8,67874
SB_Solo_07	64,66873	32,52008	<lq< td=""><td><lq< td=""><td>42,27633</td><td>251,27438</td><td>22,05660</td><td><lq< td=""><td>5,84337</td><td>61,27234</td><td>16,17501</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>42,27633</td><td>251,27438</td><td>22,05660</td><td><lq< td=""><td>5,84337</td><td>61,27234</td><td>16,17501</td></lq<></td></lq<>	42,27633	251,27438	22,05660	<lq< td=""><td>5,84337</td><td>61,27234</td><td>16,17501</td></lq<>	5,84337	61,27234	16,17501
SB_Solo_08	75,56931	38,72045	<lq< td=""><td><lq< td=""><td>60,56230</td><td>268,41653</td><td>20,54604</td><td><lq< td=""><td>5,10323</td><td>49,05641</td><td>16,32778</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>60,56230</td><td>268,41653</td><td>20,54604</td><td><lq< td=""><td>5,10323</td><td>49,05641</td><td>16,32778</td></lq<></td></lq<>	60,56230	268,41653	20,54604	<lq< td=""><td>5,10323</td><td>49,05641</td><td>16,32778</td></lq<>	5,10323	49,05641	16,32778
SB_Rocha_01	<lq< td=""><td>16,88016</td><td><lq< td=""><td><lq< td=""><td>264,03250</td><td>24,69764</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,85647</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	16,88016	<lq< td=""><td><lq< td=""><td>264,03250</td><td>24,69764</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,85647</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>264,03250</td><td>24,69764</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,85647</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	264,03250	24,69764	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,85647</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,85647</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,85647</td></lq<></td></lq<>	<lq< td=""><td>0,85647</td></lq<>	0,85647
SB_Rocha_02	<lq< td=""><td>6,77661</td><td><lq< td=""><td><lq< td=""><td>243,15401</td><td>13,29585</td><td>3,30186</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	6,77661	<lq< td=""><td><lq< td=""><td>243,15401</td><td>13,29585</td><td>3,30186</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>243,15401</td><td>13,29585</td><td>3,30186</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	243,15401	13,29585	3,30186	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
SB_Rocha_03	<lq< td=""><td>15,11264</td><td><lq< td=""><td><lq< td=""><td>1255,28442</td><td>20,14090</td><td>3,24210</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,86405</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	15,11264	<lq< td=""><td><lq< td=""><td>1255,28442</td><td>20,14090</td><td>3,24210</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,86405</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1255,28442</td><td>20,14090</td><td>3,24210</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,86405</td></lq<></td></lq<></td></lq<></td></lq<>	1255,28442	20,14090	3,24210	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,86405</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,86405</td></lq<></td></lq<>	<lq< td=""><td>1,86405</td></lq<>	1,86405
SB_Rocha_04	<lq< td=""><td>20,06765</td><td><lq< td=""><td><lq< td=""><td>267,38425</td><td>55,62238</td><td>2,88516</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,59343</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	20,06765	<lq< td=""><td><lq< td=""><td>267,38425</td><td>55,62238</td><td>2,88516</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,59343</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>267,38425</td><td>55,62238</td><td>2,88516</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,59343</td></lq<></td></lq<></td></lq<></td></lq<>	267,38425	55,62238	2,88516	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,59343</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,59343</td></lq<></td></lq<>	<lq< td=""><td>3,59343</td></lq<>	3,59343
SB_Rocha_05	<lq< td=""><td>3,57015</td><td><lq< td=""><td><lq< td=""><td>337,60196</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,57015	<lq< td=""><td><lq< td=""><td>337,60196</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>337,60196</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	337,60196	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
SB_Rocha_06	151,20796	2,89211	<lq< td=""><td><lq< td=""><td>24,26982</td><td>48,66873</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>24,26982</td><td>48,66873</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	24,26982	48,66873	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
SB_Rocha_07	189,73192	3,93135	<lq< td=""><td><lq< td=""><td>78,80183</td><td>49,40615</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>78,80183</td><td>49,40615</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	78,80183	49,40615	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
LO	15.2	1.09	9.8	0.982	3.11	2,17	2,45	4,183	2,44	6.05	0.499

Amostra	Sr 421.552	Th 401.913	V 292.401	Y 360.074	Zn 213.857	Be 313.042	Mn 259.372	Sb 206.834	Al 394.401	Fe 234.350
Branco	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,41542</td><td>7,64379</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>404,21674</td><td>149,76017</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,41542</td><td>7,64379</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>404,21674</td><td>149,76017</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,41542</td><td>7,64379</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>404,21674</td><td>149,76017</td></lq<></td></lq<></td></lq<></td></lq<>	0,41542	7,64379	<lq< td=""><td><lq< td=""><td><lq< td=""><td>404,21674</td><td>149,76017</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>404,21674</td><td>149,76017</td></lq<></td></lq<>	<lq< td=""><td>404,21674</td><td>149,76017</td></lq<>	404,21674	149,76017
MRC	31,77587	23,96905	112,87347	14,94452	130,76776	3,59286	1553,26550	46,67937	97411,95313	48668,82031
MRC	193,78474	120,52000	48,35661	19,64840	159,74695	1,05560	356,23651	<lq< td=""><td>69090,93750</td><td>29889,90234</td></lq<>	69090,93750	29889,90234
SB_Solo_01	6,07247	<lq< td=""><td>8,78823</td><td>7,92995</td><td>10,68396</td><td><lq< td=""><td>88,45826</td><td><lq< td=""><td>22419,95117</td><td>6104,38428</td></lq<></td></lq<></td></lq<>	8,78823	7,92995	10,68396	<lq< td=""><td>88,45826</td><td><lq< td=""><td>22419,95117</td><td>6104,38428</td></lq<></td></lq<>	88,45826	<lq< td=""><td>22419,95117</td><td>6104,38428</td></lq<>	22419,95117	6104,38428
SB_Solo_02	10,61744	16,19785	13,89005	7,79635	7,36710	<lq< td=""><td>38,58977</td><td><lq< td=""><td>29578,02148</td><td>6730,13379</td></lq<></td></lq<>	38,58977	<lq< td=""><td>29578,02148</td><td>6730,13379</td></lq<>	29578,02148	6730,13379
SB_Solo_03	23,34565	25,21351	9,14952	11,07545	6,89194	<lq< td=""><td>28,42502</td><td><lq< td=""><td>43703,53125</td><td>5493,97803</td></lq<></td></lq<>	28,42502	<lq< td=""><td>43703,53125</td><td>5493,97803</td></lq<>	43703,53125	5493,97803
SB_Solo_04	14,59196	11,49141	25,84410	11,07763	51,01187	0,36241	116,12713	<lq< td=""><td>22642,35156</td><td>36948,78906</td></lq<>	22642,35156	36948,78906
SB_Solo_05	15,81615	12,40677	80,50533	7,62853	64,51557	1,26564	468,85776	27,46341	56822,66016	101191,71875
SB_Solo_06	19,97984	39,42561	219,61058	13,25392	62,48484	<lq< td=""><td>530,29175</td><td>46,67239</td><td>110805,21875</td><td>239774,71875</td></lq<>	530,29175	46,67239	110805,21875	239774,71875
SB_Solo_07	60,99033	35,33712	277,38132	21,37883	61,57292	<lq< td=""><td>974,90607</td><td><lq< td=""><td>163443,76563</td><td>167124,57813</td></lq<></td></lq<>	974,90607	<lq< td=""><td>163443,76563</td><td>167124,57813</td></lq<>	163443,76563	167124,57813
SB_Solo_08	59,02661	32,91200	283,09082	21,94501	101,10204	<lq< td=""><td>917,81482</td><td><lq< td=""><td>182564,56250</td><td>160321,65625</td></lq<></td></lq<>	917,81482	<lq< td=""><td>182564,56250</td><td>160321,65625</td></lq<>	182564,56250	160321,65625
SB_Rocha_01	8,56406	<lq< td=""><td>3,44821</td><td>1,67904</td><td>58,65944</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>16055,62500</td><td>1510,80366</td></lq<></td></lq<></td></lq<></td></lq<>	3,44821	1,67904	58,65944	<lq< td=""><td><lq< td=""><td><lq< td=""><td>16055,62500</td><td>1510,80366</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>16055,62500</td><td>1510,80366</td></lq<></td></lq<>	<lq< td=""><td>16055,62500</td><td>1510,80366</td></lq<>	16055,62500	1510,80366
SB_Rocha_02	2,85292	<lq< td=""><td>2,11781</td><td><lq< td=""><td>66,41373</td><td><lq< td=""><td>41,09760</td><td><lq< td=""><td>4189,89844</td><td>3427,17993</td></lq<></td></lq<></td></lq<></td></lq<>	2,11781	<lq< td=""><td>66,41373</td><td><lq< td=""><td>41,09760</td><td><lq< td=""><td>4189,89844</td><td>3427,17993</td></lq<></td></lq<></td></lq<>	66,41373	<lq< td=""><td>41,09760</td><td><lq< td=""><td>4189,89844</td><td>3427,17993</td></lq<></td></lq<>	41,09760	<lq< td=""><td>4189,89844</td><td>3427,17993</td></lq<>	4189,89844	3427,17993
SB_Rocha_03	11,85225	<lq< td=""><td>5,03906</td><td>0,49838</td><td>59,75115</td><td><lq< td=""><td>95,11699</td><td><lq< td=""><td>10758,89941</td><td>2276,89209</td></lq<></td></lq<></td></lq<>	5,03906	0,49838	59,75115	<lq< td=""><td>95,11699</td><td><lq< td=""><td>10758,89941</td><td>2276,89209</td></lq<></td></lq<>	95,11699	<lq< td=""><td>10758,89941</td><td>2276,89209</td></lq<>	10758,89941	2276,89209
SB_Rocha_04	14,34267	26,88445	20,56347	3,53670	20,30344	<lq< td=""><td>13,84781</td><td><lq< td=""><td>41262,69922</td><td>2710,01172</td></lq<></td></lq<>	13,84781	<lq< td=""><td>41262,69922</td><td>2710,01172</td></lq<>	41262,69922	2710,01172
SB_Rocha_05	1,44994	<lq< td=""><td><lq< td=""><td><lq< td=""><td>5,45579</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2387,99634</td><td>379,31384</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>5,45579</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2387,99634</td><td>379,31384</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>5,45579</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2387,99634</td><td>379,31384</td></lq<></td></lq<></td></lq<></td></lq<>	5,45579	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2387,99634</td><td>379,31384</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2387,99634</td><td>379,31384</td></lq<></td></lq<>	<lq< td=""><td>2387,99634</td><td>379,31384</td></lq<>	2387,99634	379,31384
SB_Rocha_06	<lq< td=""><td><lq< td=""><td>46,41538</td><td>1,99809</td><td>39,89245</td><td><lq< td=""><td>935,54584</td><td>54,34542</td><td>2979,69067</td><td>500533,21875</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>46,41538</td><td>1,99809</td><td>39,89245</td><td><lq< td=""><td>935,54584</td><td>54,34542</td><td>2979,69067</td><td>500533,21875</td></lq<></td></lq<>	46,41538	1,99809	39,89245	<lq< td=""><td>935,54584</td><td>54,34542</td><td>2979,69067</td><td>500533,21875</td></lq<>	935,54584	54,34542	2979,69067	500533,21875
SB_Rocha_07	0,74982	<lq< td=""><td>52,62306</td><td>3,26187</td><td>45,34039</td><td><lq< td=""><td>1003,84222</td><td>49,65150</td><td>2639,74536</td><td>506457,81250</td></lq<></td></lq<>	52,62306	3,26187	45,34039	<lq< td=""><td>1003,84222</td><td>49,65150</td><td>2639,74536</td><td>506457,81250</td></lq<>	1003,84222	49,65150	2639,74536	506457,81250
LQ	0,608	8,882	1,256	0,375	0,616	0,273	11,10	15,0	49,0	14,48

Amostra	Ca 422.673	K 766,491	Mg 285.213	Na 588.995	Zr 339,198	Pb 220.353	P 213.618	S 181.972	Ti 336,122
Branco	141,53474	377,50616	66,97326	347,19922	6,82248	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
MRC	1377,42847	15293,97168	1840,46204	1703,20447	111,02377	279,17429	197,39355	228,45731	3870,65088
MRC	14567,56445	46245,97656	5695,65381	22191,74023	172,19067	32,32043	1036,37061	393,68069	3598,88281
SB_Solo_01	303,71445	1160,07751	1160,74243	380,30746	74,36541	<lq< td=""><td>109,24148</td><td>156,50356</td><td>918,59033</td></lq<>	109,24148	156,50356	918,59033
SB_Solo_02	161,85727	2560,70898	189,36813	477,94806	110,60236	<lq< td=""><td>139,04124</td><td>78,93006</td><td>1122,97986</td></lq<>	139,04124	78,93006	1122,97986
SB_Solo_03	70,82746	7473,30664	247,49017	653,45795	125,35150	<lq< td=""><td>133,65916</td><td>31,24639</td><td>779,96906</td></lq<>	133,65916	31,24639	779,96906
SB_Solo_04	114,47208	6607,43994	618,85626	576,00879	86,32285	<lq< td=""><td>217,70885</td><td>122,31354</td><td>1686,19336</td></lq<>	217,70885	122,31354	1686,19336
SB_Solo_05	544,05963	15985,84277	2500,10864	875,21814	101,01953	<lq< td=""><td>486,81805</td><td>265,91559</td><td>3126,53540</td></lq<>	486,81805	265,91559	3126,53540
SB_Solo_06	87,83916	544,39142	261,44037	372,07516	347,00870	<lq< td=""><td>608,67871</td><td>220,20511</td><td>9024,29297</td></lq<>	608,67871	220,20511	9024,29297
SB_Solo_07	58,29619	999,30981	345,07074	375,83633	339,69641	<lq< td=""><td>323,93677</td><td>309,46118</td><td>11797,23047</td></lq<>	323,93677	309,46118	11797,23047
SB_Solo_08	201,38237	1181,98840	366,50916	386,13028	320,64941	<lq< td=""><td>380,51019</td><td>233,06708</td><td>11486,95898</td></lq<>	380,51019	233,06708	11486,95898
SB_Rocha_01	45,42290	7337,23486	308,32605	574,55328	65,01123	<lq< td=""><td>21,56726</td><td><lq< td=""><td>267,15983</td></lq<></td></lq<>	21,56726	<lq< td=""><td>267,15983</td></lq<>	267,15983
SB_Rocha_02	90,77637	1832,40344	109,64347	303,33307	5,89606	<lq< td=""><td>22,45862</td><td><lq< td=""><td>74,72598</td></lq<></td></lq<>	22,45862	<lq< td=""><td>74,72598</td></lq<>	74,72598
SB_Rocha_03	193,10895	1523,50623	127,59391	304,03415	33,57512	<lq< td=""><td>35,15203</td><td><lq< td=""><td>257,20444</td></lq<></td></lq<>	35,15203	<lq< td=""><td>257,20444</td></lq<>	257,20444
SB_Rocha_04	87,87835	2236,65479	111,45881	402,08813	146,29631	<lq< td=""><td>65,35928</td><td><lq< td=""><td>1704,66724</td></lq<></td></lq<>	65,35928	<lq< td=""><td>1704,66724</td></lq<>	1704,66724
SB_Rocha_05	46,41570	253,18588	30,65292	213,51360	7,82701	<lq< td=""><td><lq< td=""><td><lq< td=""><td>24,89725</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>24,89725</td></lq<></td></lq<>	<lq< td=""><td>24,89725</td></lq<>	24,89725
SB_Rocha_06	44,15327	165,76118	309,34500	309,13794	18,84700	<lq< td=""><td>1665,87830</td><td>119,90841</td><td>1693,83240</td></lq<>	1665,87830	119,90841	1693,83240
SB_Rocha_07	194,69078	163,05632	218,71931	317,60739	20,15180	<lq< td=""><td>1680,32690</td><td>71,47663</td><td>1859,78979</td></lq<>	1680,32690	71,47663	1859,78979
LQ	8,57	24,48	6,09	6,98	0,807	14,16	13,86	16,42	21,50

CNRM	CNRM
国家标准物质资源 Approved by General Administration of Quality Structure of the People's Republic	upervision,准物质资源共享平台 cof China
GBW07401-GBW07408	
Certificate of Certified Reference	e Material
Soil	
CNRM 国家标准物质资源共享平台 www.ncrm.org.cn	CNRM 国家标准物质资源共享平台 www.ncrm.org.cn
Date of Certification	
Date of Modification	
Date of Expirate	
Institute of Geophysical and Geochemical E	xploration
(Langfang China)	CNRM
国家标准物质资源共享平台 www.ncrm.org.cn	国家标准物质资源共享平台 www.ncrm.org.cn

ANEXO C – Material de Referência Certificado GBW 07406

The set of eight soil CRMs is mainly used in geology, exploration geochemistry, mineral reconnaissance, agriculture and the related fields for carrying out chemical analysis as calibration samples and for monitoring the quality of measurements.

1. Sample collection and preparation

in China. GBW07401: A dark brown podzolitic soil was collected from a lead-zinc ore area, Heilongjiang. GBW07402: A chestnut soil sample was obtained from Bainaimiao and Bayan Obo, Nei Mongol. GBW07403: A yellow-brown soil sample was collected from Shandong. GBW07404: A limy-red soil sample was obtained from Guangxi. GBW07405: A yellow-red soil sample was collected from a skarn polymetallic ore field, Hunan. GBW07406: A red soil sample was obtained from a polymetallic ore area, Guangdong. GBW07407: A laterite soil sample was collected from Leizhou Peninsula, Guangdong. Basalt is the underlying bedrock. GBW07408: A loess sample was obtained from Shaanxi.

The raw samples were dried in air, passed through a 1mm sieve to remove impurities. After fully mixed, the samples were dried and sterilized at 120°C for 24 hours. A high-alumina porcelain ball mill was used to grind them until more than 99% passed through a 0.074mm sieve.

2. Test of homogeneity and stability

Randomly 18 sub-bottles of the samples were taken from the least package units. The representative major, minor and trace elements were analysed by AAS, XRFS and NAA in duplicate. A multi-level nested analysis of variance was carried out. It proved that the samples were homogeneous. The minimum sampling weight for analysis is 0.1g. Observations for a stability test were undertaken over many years. No significant statistical variations were observed, therefore the samples can be considered to be stable.

3. Sample analysis

A multi-laboratory collaborative analysis scheme was adopted in the certification procedure. Tens of institutes and laboratories with high analytical level in China analysed these samples. About twenty reliable analytical methods based on different principles of measurement were employed in sample analysis, namely ICP-AES, AAS, COL, XRFS, NAA, AES, POL and VOL, etc.

4. Certified values and uncertainties

The certified values should meet the following requirements. The number of data sets taking part in the statistical analysis was not less than eight sets. Two or more reliable analytical methods without obvious bias based on different principles were used. The analytical data were obtained from laboratories that could provide good precision. When the number of data sets was less than eight sets (but not less than four) or the laboratory-method average data had higher divergence, the values obtained were defined as proposed values and indicated with parentheses. The uncertainty of certified values was calculated by using the formula $U = t \cdot s / \sqrt{N}$. Where t is listed values of Student's Distribution at the 99% confidence level, s the standard deviation and N the number of data sets used. When more than 20, N would be considered as if it were equal to 20.

5. Package and storage

The least sample package is 70g/bottle. It is recommended to seal the bottle cap after using and store samples in a shady, cool and dry place.

-							T	
质量分数 (10 ⁻⁶)	GBW07401 (GSS-1)	GBW07402 (GSS-2)	GBW07403 (GSS-3)	GBW07404 (GSS-4)	GBW07405 (GSS-5)	GBW07406 (GSS-6)	GBW07407 (GSS-7)	GBW07408 (GSS-8)
Ag	0.35±0.05	0.054±0.007	0.091±0.007	0.070 ± 0.011	4.4±0.4	0.20±0.02	0.057±0.011	0.060±0.009
国家祭准	3/# 质资源	13.7=1-2-台	4.4±0.6	58±6	412±16	220±14 🕋 🕯	4.8胜场质多	127共享平台
w w WAu n	(0.00055) •	(0.0017) 1		(0.0055)	0.260 ± 0.007	(0.009) WW	(0.0008)	(0.0014) · C1
В	50±3	36±3	23±3	97±9	53±6	57±5	(10)	54±4
Ba	590±32	930±52	1210±65	213±20	296±26	118±14	180±27	480±23
Be	2.5±0.3	1.8±0.2	1.4±0.2	1.85±0.34	2.0±0.4	4.4±0.7	2.8±0.6	1.9±0.2
Bi	1.2±0.1	0.38±0.04	0.17±0.03	1.04±0.13	41±4	49±5	0.20±0.04	0.30±0.04
Br	2.9±0.6	4.5±0.7	4.3±0.8	4.0±0.7	(1.5)	8.0±0.7	5.1±0.5	2.5±0.5
Cd	4.3±0.4	0.071±0.014	0.060 ± 0.009	0.35±0.06	0.45 ± 0.06	0.13±0.03	0.08 ± 0.02	0.13±0.02
Ce	70±4	402±16	39±4	136±11	91±10	66±6	98±11	66±7
C1	70±9	62±10	57±11	(39)	(76)	95±7	100±6	68±12
Co	14.2 ± 1.0	8.7±0.9	5.5±0.7	22±2	12±2	7.6±1.1	97±6	12.7±1.1
Cr	62±4	47±4	32±4	370±16	118±7	75±6	410±23	68±6
Cs	9.0±0.7	4.9±0.5	3.2±0.4	21.4±1.0	15±1	10.8 ± 0.6	2.7±0.8	7.5±0.7
Cu	21±2	16.3±0.9	11.4±1.1	40±3	144±6	390±14	97±6	24.3±1.2
Dy	4.6±0.3	4.4±0.3	2.6±0.2	6.6±0.6	3.7±0.5	3.3±0.3	6.6±0.6	4.8±0.4
Er	2.6±0.2	2.1±0.4	1.5±0.3	4.5±0.7	2.4±0.3	2.2±0.3	2.7±0.5	2.8±0.2
Eu	1.0±0.1	3.0±0.2	0.72 ± 0.04	0.85±0.07	0.82 ± 0.04	0.66±0.04	3.4±0.2	1.2±0.1
F	506±32	2240±112	246±26	540±25	603±28	906±45	321±29	577±24
国家标准 www.h	19.3±1.1 初质资源 CTM.O	12±1 兵享平台 rg.cn	13.7±0.9	31±3	32±4	30±3 国家核	39±5 作作物质 3 n c r m	14.8±1.1 源共享平 org.c
Gd	4.6±0.3	7.8±0.6	2.9±0.4	4.7±0.5	3.5±0.3	3.4±0.3	9.6±0.9	5.4±0.5
Ge	1.34±0.20	1.2±0.2	1.16 ± 0.13	1.9±0.3	2.6±0.4	3.2±0.4	1.6±0.3	1.27±0.20
$\mathbf{H}\mathbf{f}$	6.8±0.8	5.8±0.9	6.8 ± 0.8	14±2	8.1±1.7	7.5±0.8	7.7±0.5	7.0±0.8
IIg	0.032±0.004	0.015±0.003	0.060 ± 0.004	0.59 ± 0.05	0.29±0.03	0.072±0.007	0.061 ± 0.006	0.017±0.003
Но	0.87±0.07	0.93±0.12	0.53 ± 0.06	1.46±0.12	0.77±0.08	0.69 ± 0.05	1.1±0.2	0.97±0.08
Ι	1.8±0.3	1.8±0.2	1.3±0.2	9.4±1.1	3.8±0.5	19.4±0.9	19±2	1.7±0.2
In	0.08±0.02	0.09±0.03	0.031±0.010	0.12±0.03	4.1±0.6	$0.84{\pm}0.18$	0.10±0.03	0.044±0.013
La	34±2	164±11	21±2	53±4	36±4	30±2	46±5	36±3
Li	35±1	22±1	18.4±0.8	55±2	56±2	36±1	19.5±0.9	35±2
Lu	0.41±0.04	0.32±0.05	0.29 ± 0.02	0.75±0.06	0.42 ± 0.05	0.42 ± 0.05	0.35±0.06	0.43±0.04
Mn	1760±63	510±16	304±14	1420±75	1360±71	1450±82	1780±113	650±23
Мо	1.4±0.1	0.98±0.11	0.31±0.06	2.6±0.3	4.6±0.4	18±2	2.9±0.3	1.16±0.10
N	1870±67	630±59	640±50	1000±62	610±31	740±59	660±62	370±54
Nb	16.6±1.4	27±2	9.3±1.5	38±3	23±3	27±2	64±7	15±2
Nd	28±2	210±14	18.4±1.7	27±2	24±2	2l±2	45±2	32±2
NT:	20.4+1.9	10 4+1 2	12+2	6415	10+1	52+4	276+15	215+19
INI D	20.4±1.8	19.4=1.3	12±2 220±19	605±28	200-24	202+20	1150+20	51.5±1.8 775±25
P	08.6	2013	320±18	5915	550±34	214+12	1412	2122
PD	7.5+0.5	57.6	20±5 4 8±0 4	9 4±1 7	7.0+1.2	5 8+0.6	1144166	0.210.0
当 <u>家标准</u> WWW. h	CTM.O	rg. ch	4.0±0.4	0.4±1./	1.0=1.2	WWW	· ncrm	org.c

Certified values of chemical composition for soil CRMs

	Certified values of chemical composition for soil CRMs (continued)							
质量分数	GBW07401	GBW07402	GBW07403	GBW07404	GBW07405	GBW07406	GBW07407	GBW07408
(10-6)	(GSS-1)	(GSS-2)	(GSS-3)	(GSS-4)	(GSS-5)	(GSS-6)	(GSS-7)	(GSS-8)
Rb	140±6	88±4	85±4	75±4	117±6	237±8	16±3	96±4
国家框准	物质资源	共享平台			(0.00053)	(0.00012)	末准物质资	源共享平台
S	(310)	210±43	123±14	180±36	410±54	260±43	250±36	(126)
Sb	0.87±0.21	1.3±0.2	0.44 ± 0.08	6.3±1.1	35±5	60±7	0.42±0.09	1.0±0.2
Sc	11.2±0.6	10.7±0.6	5.0±0.4	20±2	17±1	15.5±0.9	28±2	11.7±0.7
Se	0.14±0.03	0.16±0.03	0.09 ± 0.02	0.64±0.14	1.6±0.2	1.34±0.17	0.32±0.05	0.10 ± 0.01
Sm	5.2±0.3	18±2	3.3±0.2	4.4±0.4	4.0±0.4	3.8±0.4	10.3±0.4	5.9±0.4
Sn	6.1±0.7	3.0±0.3	2.5±0.3	5.7±0.9	18±3	72±7	3.6±0.7	2.8±0.5
Sr	155±7	187±9	380±16	77±6	42±4	39±4	26±4	236±13
Ta	1.4±0.2	0.78±0.19	0.76±0.15	3.1±0.3	1.8±0.3	5.3±0.6	3.9±0.6	1.05±0.25
Tb	0.75±0.06	0.97±0.26	0.49 ± 0.06	$0.94{\pm}0.09$	0.7±0.1	0.6l±0.08	1.3±0.2	0.89 ± 0.08
Te	0.058±0.020	(0.033)	0.039±0.013	0.16 ± 0.06	(5)	0.4±0.1	(0.047)	0.045 ± 0.010
Th	11.6 ± 0.7	16.6±0.8	6.0±0.5	27±2	23±2	23±2	9.1±0.7	11.8±0.7
Ti	4830±160	2710 ± 80	2240±80	10800 ± 310	6290±210	4390±120	20200±500	3800±120
T1	1.0±0.2	0.62 ± 0.20	0.48±0.05	0.94±0.25	1.6±0.3	2.4±0.5	0.21±0.06	0.58 ± 0.06
Tm	0.42 ± 0.06	0.42±0.11	0.28±0.05	0.70 ± 0.10	0.41±0.04	0.40 ± 0.06	0.42±0.05	0.46±0.07
U	3.3±0.4	1.4±0.3	1.3±0.3	6.7±0.8	6.5±0.7	6.7±0.7	2.2±0.4	2.7±0.4
V	86±4	62±4	36±3	247±14	166±9	130±7	245±21	81±5
国家揪准	30月40.3资源	1.08±0.22	0.96±0.12	6.2±0.5	34±2	90±7国家核	1,2±0,2 质 3	17±0.2享平台
Y WWWYY	25±3	22±2	15±2	39±6	21±3	19±2	27±4	26±2 8. 01
Yb	2.7±0.3	2.0 ± 0.2	1.7±0.2	4.8±0.6	2.8±0.4	2.7±0.4	2.4±0.4	2.8±0.2
Zn	680±25	42±3	31±3	210±13	494±25	97±6	142±11	68±4
Zr	245±12	219±15	246±14	500±42	272±16	220±14	318±37	229±12
(10^{-2})								
SiO_2	62.60±0.14	73.35±0.18	74.72±0.19	50.95±0.14	52.57±0.16	56.93±0.18	32.69±0.18	58.61±0.13
Al_2O_3	14.18±0.14	10.31±0.10	12.24±0.09	23.45±0.19	21.58±0.15	21.23±0.16	29.26±0.34	11.92±0.15
TFe ₂ O ₃	5.19±0.09	3.52±0.07	2.00±0.05	10.30±0.11	12.62±0.18	8.09±0.13	18.76±0.33	4.48±0.05
FeO	(1.27)	0.57±0.07	0.50±0.06	(0.41)	(0.22)	(0.57)	(1.05)	1.22±0.05
MgO	1.81 ± 0.08	1.04±0.04	0.58±0.04	0.49±0.05	0.61 ± 0.06	0.34±0.05	0.26±0.03	2.38±0.07
CaO	1.72±0.06	2.36±0.05	1.27±0.05	0.26±0.04	(0.10)	0.22±0.03	0.16±0.02	8.27±0.12
Na ₂ O	1.66±0.04	1.62±0.04	2.7l±0.06	0.11±0.02	0.12±0.02	0.19±0.02	0.08±0.02	1.72±0.04
K_2O	2.59±0.04	2.54±0.05	3.04±0.05	1.03±0.06	1.50±0.04	1.70±0.06	0.20±0.02	2.42±0.04
H_2O^+	(5.0)	(2.9)	(1.9)	(10.1)	(8.8)	(8.9)	(13.7)	(3.3)
CO_2	1.12±0.09	(0.97)	(0.13)	(0.12)	(0.10)	(0.084)	(0.11)	5.97±0.16
Core	1 80+0 16	0.49+0.07	0 51+0 03	0 62+0 08	(0.32)	0.81+0.00	0.64+0.07	(0.30)
TC	2 11+0 19	0.75+0.10	0.55+0.05	0.65+0.10	(0.32)	0.83+0.10	0.67+0.09	1 93+0 13
IOI	(8 59)	4 4+0 2	2 67+0 13	(10.9)	(9.1)	(10.0)	(14.3)	9 12+0 17
Note	: Data followir	12 "+" are 1	incertainties	Data enclosed	in brackets an	e proposed val	ues.	
国家标准 www.n	物质资源 Crm. O	共享平台 rg.cn	alsei unitties.	L'una eneroseu	. In orderets div	国家核 WWW	示准物质资 ncrm	{源共享平台 org.cl

Certified values of chemical composition for soil CRMs (continued)

U.S. Geological Survey Certificate of Analysis Granodiorite, Silver Plume, Colorado, GSP-2

Material used in the preparation of GSP-2 was collected by the U.S. Geological Survey, from the Silver Plume Quarry, which is located approximately 800 meters west of Silver Plume, Colorado. This is same location used to provide material for GSP-1. GSP-2 is a medium grained hypidiomophic-granular rock consisting essentially of quartz, plagioclase, microcline, biotite, and muscovite. Details of the collection, preparation, and testing are available (Wilson, S.A., 1998).

Element concentrations were determined in a round robin study involving 20 international laboratories. Recommended values are listed when analytical results provided by three independent laboratories using a minimum of three independent analytical procedures are in statistical agreement. Information values with standard deviations are listed when at least four independent laboratories using two independent analytical procedures have provided information. Information values without standard deviations represent information from a single laboratory or analytical procedure.

		Recomm	nended Values		
Element	Wt, %	± 001	Oxide	<u>Wt, %</u>	±
Al	7.88	0.11	Al ₂ O ₃	14.9	0.2
Ca	1.50	0.04	CaO	2.10	0.06
Fe TOT	3.43	0.11	Fe2O3 TOT	4.90	0.16
K	4.48	0.12	K20	5.38	0.14
Mg	0.58	0.02	MgO	0.96	0.03
Na	2.06	0.07	Na2O	2.78	0.09
Р	0.13	0.01	P2 O5	0.29	0.02
Si	31.1	0.4	SiO2	66.6	0.8
Ti	0.40	0.01	TiO2	0.66	0.02
Element	μg/g	±	Element	µg/g	ŧ
Ba	1340	44	Pb	42	3
Ce	410	30	Rb	245	7
Со	7.3	0.8	Sc	6.3	0.7
Cr	20	6	Sm	27	1
Cu	43	4	Sr	240	10
Eu	2.3	0.1	Th	105	8
Ga	22	2	U	2.40	0.1
La	180	12	V	52	4
Mn	320	20	Y	28	2
Nb	27	2	Yb	1.6	0.2
Nd	200	12	Zn	120	10
Ni	17	2	·Zr	550	30
and the second sec					

(Over)

Information values

Element Be	<u>µg/g</u> 1.5	± 0.2	<u>Ele</u> H	e <u>ment</u> Io	<u>µg/g</u> 1.0	± 0.1
Cs	1.2	0.1	Land days in many	.i	36	1
Dy	6.1		L	Ju	0.23	0.03
Er	2.2		Ν	Ло	2.1	0.6
F	3000		P	r	51	5
Gd	12	2	T	.1	1.1	
Hf	14.	1	T and a second s	m	0.29	0.02

Glossary

± Wt, % μg/g One Standard deviation Weight percent of element/oxide as receive Micrograms of element per gram of sample, as received

Reference

Wilson, S.A., 1998, Data compilation for USGS reference material GSP-2, Granodiorite, Silver Plume Colorado, U.S.G.S. Open File Report (in progress)

U.S. Geological Survey Denver, Co January 2006 Dr. Stephen Wilson CICT Team Reference Materials Task SB_ROCHA_01

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
8.821336	529.955000	0.307008	10.02458	1.73
17.745340	160.675500	0.307008	4.99832	0.53
19.899270	98.200740	0.204672	4.46189	0.32
20.856870	5195.726000	0.307008	4.25915	16.99
22.942430	50.347230	0.307008	3.87648	0.16
24.026560	132.430800	0.204672	3.70396	0.43
26.653770	30587.780000	0.307008	3.34454	100.00
29.912070	123.737800	0.255840	2.98723	0.40
31.254400	134.615500	0.204672	2.86193	0.44
35.055520	130.442900	0.204672	2.55983	0.43
36.578130	2323.757000	0.204672	2.45669	7.60
39.498660	1702.672000	0.307008	2.28152	5.57
40.323490	939.674000	0.307008	2.23673	3.07
42.491790	1456.894000	0.307008	2.12748	4.76
45.838150	1066.156000	0.204672	1.97965	3.49
50.184240	2792.965000	0.307008	1.81793	9.13
54.911710	876.397800	0.204672	1.67208	2.87
55.446880	206.597700	0.204672	1.65720	0.68
57.295090	44.334240	0.307008	1.60806	0.14
59.957620	2687.606000	0.255840	1.54286	8.79
61.901870	32.729350	0.409344	1.49899	0.11
64.105780	334.231100	0.307008	1.45267	1.09
65.838420	82.916370	0.307008	1.41858	0.27
67.751850	1108.454000	0.204672	1.38310	3.62
68.352640	1869.046000	0.307008	1.37241	6.11
73.538990	273.715500	0.307008	1.28791	0.89
75.737310	444.184200	0.307008	1.25590	1.45
77.757780	170.756400	0.307008	1.22824	0.56
79.982850	456.320900	0.409344	1.19958	1.49

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
81.345530	220.701600	0.409344	1.18289	0.72
83.919330	199.503100	0.307008	1.15305	0.65
85.060930	11.507610	0.409344	1.14047	0.04
87.542630	22.148850	0.307008	1.11442	0.07

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-078-2315	90	Silicon	0.000	0.765	Si O2
			Oxide			
*	00-001-1098	10	Hydrogen	0.000	0.057	H2 K Al3 (Si
			Aluminum			O4)3
			Potassium			
			Silicate			

SB_ROCHA_02

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
20.833560	5420.523000	0.307008	4.26386	18.34
26.630740	29560.820000	0.204672	3.34738	100.00
36.555330	1950.769000	0.307008	2.45817	6.60
39.486590	2029.359000	0.204672	2.28218	6.87
40.306460	971.894900	0.307008	2.23764	3.29
42.470900	1272.609000	0.307008	2.12848	4.31
45.819630	865.588200	0.307008	1.98041	2.93
50.169030	2943.433000	0.204672	1.81844	9.96
54.888360	1208.437000	0.204672	1.67273	4.09
57.227670	87.445770	0.204672	1.60980	0.30
59.936240	2749.782000	0.255840	1.54336	9.30
64.081860	314.801600	0.307008	1.45316	1.06
65.833120	84.045200	0.307008	1.41868	0.28

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
67.724290	1120.811000	0.204672	1.38360	3.79
68.336710	2713.829000	0.307008	1.37269	9.18
73.528310	343.849800	0.307008	1.28807	1.16
75.721980	401.609800	0.307008	1.25611	1.36
77.732400	230.234500	0.409344	1.22858	0.78
79.967580	432.148700	0.307008	1.19977	1.46
81.565140	326.537000	0.614016	1.18026	1.10
83.909240	182.793700	0.307008	1.15316	0.62
85.050040	11.702530	0.409344	1.14059	0.04
87.521930	18.714370	0.614016	1.11463	0.06

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-079-1910	93	Silicon	0.000	0.993	Si O2
			Oxide			

SB_ROCHA_03

Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
4988.565000	0.307008	4.25795	16.93
89.217010	0.307008	3.70317	0.30
29473.060000	0.307008	3.34374	100.00
164.196500	0.204672	3.18766	0.56
52.637270	0.307008	2.84460	0.18
62.676150	0.307008	2.69695	0.21
135.050600	0.307008	2.50947	0.46
2226.895000	0.307008	2.45620	7.56
54.962890	0.307008	2.35540	0.19
1727.409000	0.307008	2.28087	5.86
1000.386000	0.307008	2.23629	3.39
	Height [cts] 4988.565000 89.217010 29473.060000 164.196500 52.637270 62.676150 135.050600 2226.895000 54.962890 1727.409000 1000.386000	Height [cts]FWHM Left [°2Th.]4988.5650000.30700889.2170100.30700829473.0600000.307008164.1965000.20467252.6372700.30700862.6761500.307008135.0506000.3070082226.8950000.30700854.9628900.3070081727.4090000.3070081000.3860000.307008	Height [cts]FWHM Left [°2Th.]d-spacing [Å]4988.5650000.3070084.2579589.2170100.3070083.7031729473.0600000.3070083.34374164.1965000.2046723.1876652.6372700.3070082.8446062.6761500.3070082.69695135.0506000.3070082.509472226.8950000.3070082.4562054.9628900.3070082.355401727.4090000.3070082.280871000.3860000.3070082.23629

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
42.498530	1513.805000	0.204672	2.12716	5.14
45.846550	960.217900	0.307008	1.97931	3.26
47.020850	80.944950	0.255840	1.93258	0.27
48.354390	74.504390	0.511680	1.88235	0.25
50.188820	3269.107000	0.204672	1.81777	11.09
54.904110	1125.214000	0.204672	1.67229	3.82
55.456170	295.472000	0.204672	1.65695	1.00
57.266430	81.162700	0.204672	1.60880	0.28
59.967010	2890.213000	0.204672	1.54264	9.81
64.109870	309.179000	0.307008	1.45259	1.05
65.856020	90.221440	0.307008	1.41825	0.31
67.755100	1218.948000	0.307008	1.38305	4.14
68.373250	1699.417000	0.358176	1.37204	5.77
70.220050	52.173460	0.307008	1.34041	0.18
73.552800	410.910300	0.307008	1.28770	1.39
75.743350	442.093600	0.307008	1.25581	1.50
77.768420	234.978900	0.307008	1.22810	0.80
79.990250	482.480900	0.409344	1.19949	1.64
81.342250	269.849700	0.409344	1.18293	0.92
83.929920	224.537400	0.307008	1.15293	0.76
87.406910	27.748080	0.614016	1.11580	0.09

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-079-1910	92	Silicon	0.000	0.684	Si O2
			Oxide			
*	01-073-0603	29	Iron Oxide	0.000	0.002	Fe2 O3
*	01-075-0948	11	Potassium	0.000	0.071	K Al3 Si3
			Aluminum			O10 (O H)2
			Silicate			
			Hydroxide			

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-075-0938	3	Aluminum	0.000	0.418	Al2 Si2 O5 (
			Silicate			O H)4
			Hydroxide			

SB_ROCHA_04

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
20.863180	4292.725000	0.307008	4.25788	16.94
23.876650	54.034550	0.614016	3.72688	0.21
26.660060	25335.610000	0.307008	3.34376	100.00
28.013590	484.530900	0.307008	3.18520	1.91
30.349410	115.930700	0.307008	2.94517	0.46
31.407260	58.585390	0.307008	2.84834	0.23
33.229950	213.195000	0.307008	2.69616	0.84
35.745320	329.214500	0.255840	2.51199	1.30
36.585380	1782.439000	0.307008	2.45622	7.04
38.243990	212.580000	0.307008	2.35343	0.84
39.518310	1584.294000	0.307008	2.28043	6.25
40.325210	850.426600	0.307008	2.23664	3.36
42.501170	1289.537000	0.204672	2.12703	5.09
45.846140	878.098400	0.204672	1.97933	3.47
47.017060	328.099100	0.255840	1.93273	1.30
48.338870	105.702800	0.255840	1.88292	0.42
50.189290	2830.577000	0.204672	1.81776	11.17
51.796320	97.356830	0.204672	1.76508	0.38
54.910150	961.511300	0.204672	1.67212	3.80
55.455070	247.753000	0.204672	1.65698	0.98
57.849980	88.144410	0.307008	1.59395	0.35
59.969920	2409.839000	0.204672	1.54258	9.51
61.731620	46.597630	0.358176	1.50272	0.18
63.005730	82.774110	0.204672	1.47536	0.33

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
64.041080	434.262800	0.204672	1.45399	1.71
65.774030	110.411200	0.204672	1.41981	0.44
68.301660	1558.064000	0.358176	1.37331	6.15
70.210340	178.403800	0.307008	1.34058	0.70
73.553370	306.653600	0.307008	1.28769	1.21
75.740450	416.595300	0.307008	1.25585	1.64
77.763190	177.987400	0.307008	1.22817	0.70
79.985190	402.163600	0.409344	1.19955	1.59
81.357010	253.094600	0.409344	1.18276	1.00
83.921880	201.267900	0.307008	1.15302	0.79

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-079-1910	88	Silicon	0.000	0.639	Si O2
			Oxide			
*	01-073-0603	26	Iron Oxide	0.000	0.006	Fe2 O3
*	01-075-1593	7	Aluminum	0.000	0.131	Al2 Si2 O5 (
			Silicate			O H)4
			Hydroxide			
*	01-075-0948	14	Potassium	0.000	0.070	K Al3 Si3
			Aluminum			O10 (O H)2
			Silicate			
			Hydroxide			
*	00-029-1496	5	Potassium	0.000	0.012	K0.7 Al2 (Si
			Aluminum			, Al)4 O10 (
			Silicate			O H)2
			Hydroxide			

SB_ROCHA_05

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
20.856600	5485.989000	0.307008	4.25920	17.70
24.031370	133.064800	0.090000	3.70017	0.43
26.650750	30988.790000	0.307008	3.34491	100.00
31.516810	35.158200	0.307008	2.83869	0.11
35.632780	61.262790	0.255840	2.51967	0.20
36.579890	2602.363000	0.204672	2.45658	8.40
39.499900	1806.792000	0.307008	2.28145	5.83
40.331520	1225.804000	0.204672	2.23630	3.96
42.488020	1370.461000	0.307008	2.12766	4.42
45.835530	1028.661000	0.204672	1.97976	3.32
48.372350	68.226610	0.511680	1.88170	0.22
50.182600	3085.719000	0.307008	1.81798	9.96
54.909330	987.227600	0.204672	1.67215	3.19
55.447240	260.756600	0.204672	1.65719	0.84
57.284280	43.262340	0.307008	1.60834	0.14
59.953500	2921.914000	0.255840	1.54296	9.43
64.103870	332.630800	0.307008	1.45271	1.07
65.848630	92.086140	0.307008	1.41839	0.30
67.743700	1153.227000	0.204672	1.38325	3.72
68.281160	1618.581000	0.307008	1.37367	5.22
73.540230	307.200300	0.307008	1.28789	0.99
75.735990	448.562300	0.307008	1.25592	1.45
77.755260	192.796900	0.307008	1.22827	0.62
79.982560	491.182700	0.409344	1.19958	1.59
81.339260	252.211700	0.614016	1.18297	0.81
83.915860	217.149100	0.307008	1.15309	0.70
87.499340	37.365020	0.614016	1.11486	0.12

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-079-1910	96	Silicon	0.000	0.752	Si O2
			Oxide			
*	00-013-0259	1	Sodium	0.000	10.000	Na0.3 (Al ,
			Magnesium			Mg)2 Si4
			Aluminum			O10 (O H)2
			Silicate			!x H2 O
			Hydroxide			
			Hydrate			

SB_ROCHA_06

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
17.850440	43.746890	0.614016	4.96913	3.22
21.252050	476.079300	0.204672	4.18084	35.05
24.166720	329.894300	0.307008	3.68280	24.29
26.651790	541.962500	0.307008	3.34478	39.90
33.176300	1358.148000	0.204672	2.70040	100.00
35.690440	854.187400	0.204672	2.51573	62.89
36.657190	271.590000	0.255840	2.45157	20.00
40.922130	281.361800	0.204672	2.20538	20.72
49.491060	347.353600	0.204672	1.84175	25.58
50.173100	167.411800	0.090000	1.81680	12.33
53.258470	128.558800	0.307008	1.72002	9.47
54.077750	511.397200	0.255840	1.69588	37.65
57.556460	109.564700	0.204672	1.60138	8.07
59.072290	60.030980	0.409344	1.56385	4.42
61.465430	55.290370	0.307008	1.50858	4.07
62.460560	251.010500	0.307008	1.48692	18.48
64.072720	290.210300	0.255840	1.45334	21.37
68.138680	61.076110	0.090000	1.37505	4.50
71.917240	87.105590	0.409344	1.31290	6.41

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
75.574070	46.693570	0.409344	1.25820	3.44
84.997260	36.491670	0.614016	1.14116	2.69
88.732840	58.200010	0.090000	1.10162	4.29

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	00-024-0072	71	Iron Oxide	0.000	0.764	Fe2 O3
*	01-083-2465	34	Silicon	0.000	0.321	Si O2
			Oxide			
*	00-029-0713	41	Iron Oxide	0.000	0.499	Fe +3 O (O
_			Hydroxide			Н)

SB_ROCHA_07

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
20.918370	109.351600	0.409344	4.24677	7.78
24.195310	406.168300	0.204672	3.67851	28.90
26.677660	424.650600	0.307008	3.34160	30.22
33.197080	1405.332000	0.204672	2.69875	100.00
35.695430	1070.678000	0.204672	2.51539	76.19
40.921970	313.071600	0.204672	2.20539	22.28
49.518840	392.816900	0.255840	1.84078	27.95
54.101290	538.304100	0.255840	1.69519	38.30
57.627260	109.446500	0.307008	1.59958	7.79
62.499800	267.072100	0.255840	1.48608	19.00
64.068770	308.534100	0.307008	1.45342	21.95
67.793180	84.450780	0.090000	1.38122	6.01
68.330300	74.646910	0.090000	1.37166	5.31
71.978840	101.201500	0.511680	1.31193	7.20
75.565100	56.522740	0.409344	1.25833	4.02

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
77.787210	38.991980	0.090000	1.22683	2.77
80.978640	32.243960	0.818688	1.18732	2.29
83.066660	35.019100	0.614016	1.16270	2.49
84.917490	45.826170	0.614016	1.14203	3.26
88.699820	47.813420	0.307008	1.10285	3.40

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-087-1164	78	Iron Oxide	0.000	0.840	Fe2 O3
*	01-085-0796	37	Silicon	0.000	0.395	Si O2
			Oxide			

<u>SB_SOLO_01</u>

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
20.852860	4283.332000	0.307008	4.25996	15.45
24.097480	54.963560	0.307008	3.69322	0.20
26.652960	27722.160000	0.307008	3.34464	100.00
28.000550	340.394700	0.307008	3.18666	1.23
31.532320	44.980900	0.307008	2.83733	0.16
33.211030	171.139800	0.307008	2.69765	0.62
35.709550	250.236100	0.255840	2.51443	0.90
36.581280	2217.101000	0.204672	2.45649	8.00
38.182550	144.383100	0.204672	2.35707	0.52
39.500400	1489.749000	0.307008	2.28142	5.37
40.318840	829.061300	0.307008	2.23698	2.99
42.483720	1041.290000	0.307008	2.12786	3.76
45.839720	901.315900	0.204672	1.97959	3.25
47.019970	194.078800	0.204672	1.93261	0.70
48.368310	84.437560	0.255840	1.88185	0.30

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
50.178090	2487.033000	0.307008	1.81813	8.97
51.785370	56.721970	0.307008	1.76542	0.20
54.909450	1151.575000	0.204672	1.67214	4.15
57.303020	31.025540	0.204672	1.60786	0.11
57.860560	67.687410	0.307008	1.59368	0.24
59.953900	2362.612000	0.255840	1.54295	8.52
61.647310	33.896410	0.307008	1.50457	0.12
62.961690	50.194000	0.307008	1.47629	0.18
64.098720	353.210400	0.204672	1.45282	1.27
65.853320	82.947540	0.307008	1.41830	0.30
67.773200	1031.594000	0.307008	1.38272	3.72
68.337600	1862.061000	0.307008	1.37267	6.72
70.201230	76.355730	0.307008	1.34073	0.28
73.541490	272.665400	0.307008	1.28787	0.98
75.727780	382.742800	0.307008	1.25603	1.38
77.753140	217.667700	0.307008	1.22830	0.79
79.973280	419.291700	0.307008	1.19970	1.51
81.579030	413.912400	0.409344	1.18010	1.49
83.921010	249.632900	0.307008	1.15303	0.90
87.461760	26.832140	0.614016	1.11524	0.10

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-079-1910	89	Silicon	0.000	0.715	Si O2
			Oxide			
*	00-026-0911	6	Potassium	0.000	0.963	(K, H3O)
			Aluminum			Al2 Si3 Al
			Silicate			O10 (O H)2
			Hydroxide			

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-083-0971	4	Aluminum	0.000	0.055	Al2 (Si2 O5
			Silicate) (O H)4
			Hydroxide			
*	01-074-1786	1	Aluminum	0.000	3.988	Al2 Si2 O5 (
			Hydroxide			OH)4
			Silicate			

SB_SOLO_02

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
19.943040	129.288300	0.307008	4.45220	0.52
20.840840	4450.032000	0.307008	4.26239	17.93
26.635810	24815.260000	0.204672	3.34675	100.00
27.997280	571.075000	0.204672	3.18702	2.30
30.288680	189.693000	0.090000	2.94849	0.76
33.193350	224.686000	0.204672	2.69905	0.91
35.727470	239.901700	0.204672	2.51321	0.97
36.564880	1594.182000	0.307008	2.45755	6.42
38.267410	178.352600	0.204672	2.35204	0.72
39.490720	1598.579000	0.204672	2.28196	6.44
40.320100	1020.766000	0.204672	2.23691	4.11
40.726510	205.241100	0.090000	2.21369	0.83
41.794170	105.574400	0.307008	2.16136	0.43
42.487230	1533.869000	0.307008	2.12770	6.18
45.243050	81.329440	0.204672	2.00430	0.33
45.808120	722.483000	0.307008	1.98088	2.91
46.230710	304.298800	0.090000	1.96213	1.23
46.989570	239.880300	0.255840	1.93379	0.97
48.315620	47.423830	0.307008	1.88377	0.19
50.173550	2645.252000	0.204672	1.81829	10.66
51.790830	108.069200	0.204672	1.76525	0.44

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
54.898400	1102.699000	0.204672	1.67245	4.44
57.892220	82.818370	0.307008	1.59289	0.33
59.941680	1937.208000	0.204672	1.54323	7.81
61.715820	46.384410	0.409344	1.50306	0.19
63.011510	94.353380	0.307008	1.47524	0.38
64.089650	296.680900	0.204672	1.45300	1.20
65.858440	139.459400	0.204672	1.41820	0.56
67.760860	979.318800	0.307008	1.38294	3.95
68.234400	815.755900	0.307008	1.37449	3.29
70.193340	144.398500	0.307008	1.34086	0.58
73.533990	266.781900	0.307008	1.28798	1.08
75.718150	292.157000	0.307008	1.25617	1.18
77.752190	153.538500	0.307008	1.22831	0.62
79.972640	324.401200	0.307008	1.19971	1.31
81.567730	461.848000	0.409344	1.18023	1.86
83.917850	149.650700	0.307008	1.15307	0.60
87.380200	26.484120	0.614016	1.11607	0.11

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-079-1910	85	Silicon	0.000	0.970	Si O2
			Oxide			
*	00-026-0911	9	Potassium	0.000	0.655	(K, H3O)
			Aluminum			Al2 Si3 Al
			Silicate			O10 (O H)2
			Hydroxide			
*	01-075-0938	5	Aluminum	0.000	0.116	Al2 Si2 O5 (
			Silicate			O H)4
			Hydroxide			

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-074-1786	1	Aluminum	0.000	5.437	Al2 Si2 O5 (
			Hydroxide			OH)4
			Silicate			
*	01-083-0971	6	Aluminum	0.000	0.176	Al2 (Si2 O5
			Silicate) (O H)4
			Hydroxide			

SB_SOLO_03

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
8.802982	353.806000	0.307008	10.04544	1.36
12.311490	114.004500	0.307008	7.18947	0.44
17.733500	132.658000	0.307008	5.00163	0.51
19.929750	213.233000	0.204672	4.45514	0.82
20.845800	4395.357000	0.307008	4.26139	16.92
22.917530	35.347470	0.307008	3.88063	0.14
23.978780	87.024050	0.204672	3.71124	0.33
26.640050	25979.800000	0.204672	3.34623	100.00
27.981540	343.484400	0.204672	3.18878	1.32
31.320410	94.398800	0.409344	2.85604	0.36
33.197300	123.332600	0.307008	2.69874	0.47
35.070240	200.688400	0.204672	2.55878	0.77
35.746480	256.139300	0.204672	2.51191	0.99
36.560750	1620.123000	0.307008	2.45782	6.24
38.224850	138.410100	0.204672	2.35456	0.53
39.495050	1785.234000	0.204672	2.28172	6.87
40.319600	946.004400	0.204672	2.23694	3.64
42.484130	1165.818000	0.307008	2.12784	4.49
45.340120	123.147900	0.204672	2.00023	0.47
45.819970	708.974500	0.307008	1.98039	2.73
46.997510	178.902000	0.255840	1.93349	0.69

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
48.286990	92.684710	0.204672	1.88482	0.36
50.175930	2477.967000	0.307008	1.81821	9.54
51.768310	48.778550	0.307008	1.76596	0.19
54.899440	808.572100	0.307008	1.67242	3.11
57.938640	44.935170	0.307008	1.59172	0.17
59.942310	2053.049000	0.204672	1.54322	7.90
61.960450	70.834000	0.614016	1.49771	0.27
63.009440	56.949810	0.307008	1.47528	0.22
64.084630	270.213000	0.307008	1.45310	1.04
65.842940	88.989120	0.307008	1.41850	0.34
67.771570	925.422300	0.307008	1.38275	3.56
68.324460	1857.174000	0.307008	1.37290	7.15
70.201880	114.247400	0.307008	1.34072	0.44
73.539600	266.121400	0.307008	1.28790	1.02
75.725980	348.365100	0.307008	1.25606	1.34
77.738200	196.454100	0.409344	1.22850	0.76
79.977190	370.453900	0.409344	1.19965	1.43
81.343330	245.264000	0.409344	1.18292	0.94
83.920070	160.826800	0.307008	1.15304	0.62
87.490230	29.172380	0.614016	1.11495	0.11

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-079-1910	83	Silicon	0.000	0.900	Si O2
			Oxide			
*	01-073-0603	26	Iron Oxide	0.000	0.004	Fe2 O3
*	00-026-0911	16	Potassium	0.000	0.376	(K, H3O)
			Aluminum			Al2 Si3 Al
			Silicate			O10 (O H)2
			Hydroxide			

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-083-0971	11	Aluminum	0.000	0.017	Al2 (Si2 O5
			Silicate) (O H)4
			Hydroxide			
*	01-075-0938	12	Aluminum	0.000	0.033	Al2 Si2 O5 (
			Silicate			O H)4
			Hydroxide			

SB_SOLO_04

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
8.825488	151.078200	0.307008	10.01987	0.74
17.753900	59.700610	0.090000	4.99180	0.29
19.902930	146.245200	0.204672	4.46108	0.71
20.856590	3541.379000	0.307008	4.25921	17.31
22.961760	57.872690	0.090000	3.87005	0.28
23.990570	70.167110	0.307008	3.70944	0.34
26.652840	20460.820000	0.307008	3.34465	100.00
27.948240	105.518000	0.307008	3.19250	0.52
29.865180	56.743440	0.307008	2.99181	0.28
31.405820	53.287380	0.307008	2.84847	0.26
33.207240	151.301000	0.204672	2.69795	0.74
35.056790	154.489200	0.204672	2.55974	0.76
35.682090	217.315800	0.255840	2.51630	1.06
36.582290	1397.094000	0.307008	2.45642	6.83
39.503660	1259.630000	0.307008	2.28124	6.16
40.322220	669.486700	0.307008	2.23680	3.27
42.494450	1113.315000	0.307008	2.12735	5.44
45.838890	753.525600	0.204672	1.97962	3.68
50.189800	2024.582000	0.307008	1.81774	9.89
54.157960	71.837810	0.409344	1.69355	0.35
54.913750	692.867600	0.204672	1.67202	3.39

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
55.444410	232.602000	0.204672	1.65727	1.14
57.237390	61.428010	0.204672	1.60954	0.30
59.960400	1940.909000	0.204672	1.54280	9.49
61.861830	84.944700	0.090000	1.49862	0.42
64.099620	279.857800	0.307008	1.45280	1.37
65.845780	96.900410	0.307008	1.41844	0.47
67.732670	807.618000	0.204672	1.38345	3.95
68.153680	1766.275000	0.204672	1.37593	8.63
73.548560	236.124000	0.307008	1.28776	1.15
75.739010	345.062000	0.307008	1.25587	1.69
77.763280	121.638300	0.307008	1.22817	0.59
79.981600	343.955600	0.307008	1.19959	1.68
81.346090	169.886800	0.409344	1.18289	0.83
83.922620	145.348400	0.307008	1.15301	0.71
85.059500	19.102390	0.409344	1.14049	0.09
87.479580	24.331650	0.614016	1.11506	0.12

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-085-0796	85	Silicon	0.000	0.964	Si O2
			Oxide			
*	01-087-1166	26	Iron Oxide	0.000	0.007	Fe2 O3
*	00-029-1499	26	Sodium	0.000	0.010	Na0.3 (Al,
			Magnesium			Mg)2 Si4
			Aluminum			O10 (O H)2
			Silicate			!8 H2 O
			Hydroxide			
			Hydrate			
*	00-026-0911	11	Potassium	0.000	0.451	(K, H3O)
			Aluminum			Al2 Si3 Al
						O10 (O H)2

Visible R	lef. Code	Score Compound	Displacemen	Scale Factor C	hemical
		Name	t [°2Th.]	Fo	ormula
		Silicate			
		Hydroxide			
	~ -				
<u>SB_SOLO</u>	05				
Peak List:				- 0	
Pos. [°2Th	.] Height [ct	s] FWHM Left	[°2Th.] d-spacing	g [A] Rel. Int. [9	<u>%]</u>
8.840438	362.78490	00 0.204672	10.00296	5.12	
12.403510	174.95980	00 0.204672	7.13634	2.47	
17.779870	188.30450	00 0.204672	4.98869	2.66	
18.327830	277.25100	00 0.204672	4.84076	3.91	
19.883070	318.60100	00 0.204672	4.46549	4.50	
20.844590	958.75650	00 0.307008	4.26163	13.53	
21.298450	265.15340	00 0.307008	4.17183	3.74	
22.922530	102.30990	0.307008	3.87980	1.44	
23.858080	84.115720	0.409344	3.72974	1.19	
25.534110	94.460140	0.307008	3.48860	1.33	
26.665200	7087.7970	000 0.307008	3.34313	100.00	
27.920370	137.22030	0.307008	3.19563	1.94	
29.900630	137.02330	0.307008	2.98834	1.93	
31.282010	59.211060	0.204672	2.85946	0.84	
32.090110	77.977050	0.307008	2.78928	1.10	
33.203130	228.51270	00 0.204672	2.69828	3.22	
35.028610	319.64610	00 0.204672	2.56173	4.51	
35.695050	190.12500	00 0.204672	2.51542	2.68	
36.592840	505.70080	0 0.307008	2.45574	7.13	
37.744470	68.764280	0.307008	2.38342	0.97	
39.506670	618.91560	00 0.307008	2.28107	8.73	
40.304920	267.98430	00 0.307008	2.23772	3.78	
40.940000	57.086270	0.409344	2.20446	0.81	
42.487530	322.81480	00 0.307008	2.12768	4.55	
45.636710	114.31610	00 0.614016	1.98792	1.61	

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
50.190630	1159.675000	0.307008	1.81771	16.36
54.101600	120.748600	0.409344	1.69519	1.70
54.917640	278.806800	0.204672	1.67191	3.93
57.701630	38.485760	0.409344	1.59770	0.54
60.027660	350.523200	0.204672	1.54123	4.95
61.786390	94.568540	0.307008	1.50152	1.33
64.034770	153.980300	0.204672	1.45411	2.17
68.148540	607.912400	0.204672	1.37602	8.58
73.543150	65.452930	0.307008	1.28784	0.92
75.742700	123.852300	0.307008	1.25582	1.75
77.758600	44.495940	0.307008	1.22823	0.63
79.976320	112.925800	0.307008	1.19966	1.59
81.576130	98.944490	0.409344	1.18013	1.40
83.923630	46.477580	0.307008	1.15300	0.66

Pattern List:

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-085-0796	80	Silicon	0.000	0.927	Si O2
			Oxide			
*	01-073-0603	30	Iron Oxide	0.000	0.014	Fe2 O3
*	00-026-0911	18	Potassium	0.000	0.459	(K, H3O)
			Aluminum			Al2 Si3 Al
			Silicate			O10 (O H)2
			Hydroxide			
*	00-012-0219	14	Sodium	0.000	0.019	Na0.3 (Al
			Magnesium			Mg)2 Si4
			Aluminum			O10 O H2 !6
			Silicate			H2 O
			Hydroxide			
			Hydrate			

Pattern List 2:

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-085-0796	80	Silicon	0.000	0.927	Si O2
			Oxide			
*	01-073-0603	30	Iron Oxide	0.000	0.014	Fe2 O3
*	00-026-0911	18	Potassium	0.000	0.459	(K, H3O)
			Aluminum			Al2 Si3 Al
			Silicate			O10 (O H)2
			Hydroxide			
*	01-083-0971	14	Aluminum	0.000	0.034	Al2 (Si2 O5
			Silicate) (O H)4
			Hydroxide			
*	00-012-0219	14	Sodium	0.000	0.019	Na0.3 (Al
			Magnesium			Mg)2 Si4
			Aluminum			O10 O H2 !6
			Silicate			H2 O
			Hydroxide			
			Hydrate			
*	00-007-0324	17	Aluminum	0.000	0.023	Al (O H)3
			Hydroxide			

<u>SB_SOLO_06</u>

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
12.342010	260.102600	0.204672	7.17176	8.33
18.304700	3123.621000	0.204672	4.84683	100.00
20.205930	220.611900	0.409344	4.39486	7.06
21.413820	693.024800	0.255840	4.14962	22.19
24.824940	158.661100	0.307008	3.58662	5.08
26.640320	1447.185000	0.204672	3.34620	46.33
28.013290	108.030300	0.307008	3.18524	3.46
33.185140	489.670400	0.204672	2.69970	15.68

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
35.050880	123.734500	0.090000	2.55803	3.96
35.717130	411.958400	0.307008	2.51391	13.19
36.550540	311.281700	0.090000	2.45645	9.97
37.116220	422.236600	0.307008	2.42230	13.52
40.311350	137.245500	0.255840	2.23738	4.39
41.756760	144.761400	0.307008	2.16321	4.63
49.489780	125.800000	0.255840	1.84180	4.03
54.069100	281.194900	0.255840	1.69613	9.00
57.647460	39.122920	0.614016	1.59907	1.25
60.017940	162.824000	0.307008	1.54146	5.21
62.430640	155.346500	0.409344	1.48756	4.97
64.063220	180.456100	0.204672	1.45354	5.78
68.198640	87.015260	0.511680	1.37513	2.79
70.210350	79.968870	0.307008	1.34058	2.56
72.044490	34.707760	0.614016	1.31090	1.11
75.719540	40.021640	0.307008	1.25615	1.28
81.602520	65.016110	0.307008	1.17982	2.08
85.066730	29.014180	0.614016	1.14041	0.93

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-087-1164	57	Iron Oxide	0.000	0.082	Fe2 O3
*	01-079-1910	50	Silicon	0.000	0.226	Si O2
			Oxide			
*	00-007-0324	39	Aluminum	0.000	0.338	Al (O H)3
			Hydroxide			
*	00-001-0527	28	Aluminum	0.000	0.036	Al2 Si2 O5 (
			Silicate			OH)4
			Hydrate			

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
12.329040	719.559900	0.255840	7.17927	16.84
18.295620	4273.766000	0.307008	4.84921	100.00
19.931870	359.845800	0.204672	4.45467	8.42
21.376630	334.728100	0.255840	4.15675	7.83
24.158150	319.482800	0.204672	3.68408	7.48
24.846760	494.764000	0.255840	3.58352	11.58
26.729640	77.953580	0.511680	3.33522	1.82
33.181950	901.650600	0.204672	2.69995	21.10
34.911610	145.029500	0.307008	2.57005	3.39
35.708170	896.476600	0.204672	2.51452	20.98
37.721540	476.279600	0.204672	2.38481	11.14
38.470150	153.659700	0.307008	2.34011	3.60
40.162170	125.804000	0.204672	2.24534	2.94
40.919250	264.419600	0.307008	2.20553	6.19
41.717340	117.472900	0.204672	2.16516	2.75
44.215100	130.884700	0.204672	2.04848	3.06
45.501590	159.936400	0.307008	1.99351	3.74
47.447440	117.562600	0.204672	1.91620	2.75
49.521550	294.886800	0.255840	1.84069	6.90
50.591400	94.523900	0.307008	1.80425	2.21
52.228530	140.672500	0.204672	1.75148	3.29
54.066750	414.256000	0.255840	1.69620	9.69
57.560700	61.706570	0.409344	1.60127	1.44
62.489210	356.981400	0.358176	1.48631	8.35
64.098020	315.541200	0.255840	1.45283	7.38
66.137440	48.621230	0.307008	1.41289	1.14
69.008230	35.949520	0.307008	1.36096	0.84
71.801120	71.128810	0.511680	1.31474	1.66
75.672870	53.195600	0.307008	1.25681	1.24
79.124020	23.069260	0.511680	1.21043	0.54
80.662840	44.686740	0.511680	1.19117	1.05

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
82.957020	27.933330	0.614016	1.16396	0.65
85.101070	52.894550	0.307008	1.14003	1.24
88.636890	45.188190	0.409344	1.10347	1.06

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	01-079-0007	63	Iron Oxide	0.000	0.129	Fe2 O3
*	00-007-0324	50	Aluminum	0.000	0.381	Al (O H)3
			Hydroxide			
*	01-083-2465	24	Silicon	0.000	0.028	Si O2
			Oxide			
*	00-001-0527	42	Aluminum	0.000	0.058	Al2 Si2 O5 (
			Silicate			O H)4
			Hydrate			

SB_SOLO_08

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
12.339800	428.377600	0.204672	7.17304	5.61
18.319390	7633.557000	0.204672	4.84297	100.00
20.373320	649.678800	0.307008	4.35913	8.51
21.426260	311.258100	0.255840	4.14724	4.08
24.206650	314.327900	0.204672	3.67681	4.12
24.869920	261.966700	0.204672	3.58024	3.43
26.713580	139.261600	0.614016	3.33718	1.82
28.035930	144.700400	0.307008	3.18272	1.90
28.759530	47.847050	0.307008	3.10426	0.63
33.203430	861.109600	0.255840	2.69825	11.28
35.731480	838.761800	0.204672	2.51293	10.99
36.598560	318.190500	0.204672	2.45537	4.17

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
37.148540	404.311000	0.204672	2.42027	5.30
37.744920	401.524100	0.204672	2.38339	5.26
38.510000	101.533800	0.307008	2.33778	1.33
39.390630	137.955800	0.204672	2.28752	1.81
40.155550	160.617600	0.204672	2.24570	2.10
40.953900	260.481300	0.255840	2.20374	3.41
41.746850	206.351900	0.204672	2.16370	2.70
44.231910	276.587900	0.204672	2.04774	3.62
45.504330	217.060400	0.204672	1.99339	2.84
47.434740	130.702100	0.204672	1.91668	1.71
49.552380	273.121900	0.255840	1.83962	3.58
50.590690	240.722600	0.204672	1.80427	3.15
52.260380	191.126000	0.307008	1.75049	2.50
54.109900	436.232700	0.204672	1.69495	5.71
57.786920	49.763180	0.818688	1.59554	0.65
59.673550	22.407780	0.614016	1.54953	0.29
62.531370	318.916700	0.307008	1.48541	4.18
64.098080	292.555700	0.307008	1.45283	3.83
66.192770	104.974300	0.307008	1.41185	1.38
68.111400	78.083130	0.409344	1.37668	1.02
68.884850	83.150210	0.204672	1.36310	1.09
71.774550	70.193570	0.716352	1.31516	0.92
75.673050	48.696950	0.307008	1.25680	0.64
79.024310	82.768200	0.307008	1.21170	1.08
80.780560	52.462400	0.409344	1.18973	0.69
82.907190	24.116650	0.614016	1.16453	0.32
85.151020	54.425550	0.409344	1.13949	0.71

Visible	Ref. Code	Score	Compound	Displacemen	Scale Factor	Chemical
			Name	t [°2Th.]		Formula
*	00-007-0324	60	Aluminum	0.000	0.321	Al (O H)3
			Hydroxide			
*	01-087-1164	62	Iron Oxide	0.000	0.060	Fe2 O3
*	01-083-2465	28	Silicon	0.000	0.021	Si O2
			Oxide			
*	01-080-0886	26	Aluminum	0.000	0.056	Al2 (Si2 O5
			Silicate) (O H)4
			Hydroxide			