
FEDERAL UNIVERSITY OF OURO PRETO

INSTITUTE OF EXACT AND BIOLOGICAL SCIENCES

COMPUTING DEPARTMENT

JOÃO GABRIEL FERNANDES ZENÓBIO
Supervisor: Prof. Ph.D. Jadson Castro Gertrudes

Co-supervisor: M.Sc. Sakif Hossain

SHORT-TERM EARLY ACTION PREDICTION FOR HUMAN-ROBOT
COLLABORATION: A DEEP LEARNING ATTENTION-BASED

APPROACH

Ouro Preto, MG
2025

FEDERAL UNIVERSITY OF OURO PRETO
INSTITUTE OF EXACT AND BIOLOGICAL SCIENCES

COMPUTING DEPARTMENT

JOÃO GABRIEL FERNANDES ZENÓBIO

SHORT-TERM EARLY ACTION PREDICTION FOR HUMAN-ROBOT

COLLABORATION: A DEEP LEARNING ATTENTION-BASED APPROACH

Monograph presented in the Computer Science course
of the Federal University of Ouro Preto in partial fulfill-
ment of the requirements necessary to obtain Computer
Science Bachelor degree.

Supervisor: Prof. Ph.D. Jadson Castro Gertrudes
Co-supervisor: M.Sc. Sakif Hossain

Ouro Preto, MG
2025

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE OURO PRETO

REITORIA
INSTITUTO DE CIENCIAS EXATAS E BIOLOGICAS

DEPARTAMENTO DE COMPUTACAO

FOLHA DE APROVAÇÃO

João Gabriel Fernandes Zenóbio

Short-term Early Action Prediction for Human-Robot Collaboration: A Deep Learning Attention Based Approach

Monografia apresentada ao Curso de Ciência da Computação da Universidade Federal de Ouro Preto como requisito parcial para
obtenção do título de Bacharel em Ciência da Computação

Aprovada em 2 de Abril de 2025.

Membros da banca

Jadson Castro Gertrudes (Orientador) - Doutor - Universidade Federal de Ouro Preto
Sakif Houssain (Coorientador) - Mestre - Technische Universität Clausthal
Jörg Philipp Müller (Examinador) - Dr - Technische Universität Clausthal

Hugo Eduardo Ziviani (Examinador) - Mestre - Programa de Pós Graduação em Ciência da Computação (UFOP)

Jadson Castro Gertrudes, Orientador do trabalho, aprovou a versão final e autorizou seu depósito na Biblioteca Digital de Trabalhos de
Conclusão de Curso da UFOP em 2/04/2025.

Documento assinado eletronicamente por Jadson Castro Gertrudes, PROFESSOR DE MAGISTERIO SUPERIOR, em
04/04/2025, às 09:17, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de
outubro de 2015.

A autenticidade deste documento pode ser conferida no site http://sei.ufop.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0 , informando o código verificador 0886263 e o código CRC
981ACA44.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.002967/2025-80 SEI nº 0886263

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35402-163
Telefone: 3135591692 - www.ufop.br

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

To all the people that come to mind when I ask myself what gives life meaning.
To all that taught me kindness.

To my知音.

Acknowledgements

I thank the Federal University of Ouro Preto, which gave me the life experience and support I
needed during college.

I thank my supervisors from Brazil, Jadson and Valéria, who guided and inspired me
throughout this long journey. It is infeasible to measure how much I have learned from you and

all these years at the university were only meaningful because of you.

I thank my supervisors from Germany, Jörg and Sakif, who inspired me to see in myself
someone greater than I could imagine I could be. I am immensely grateful for the opportunity

you gave me.

I thank my family for giving me warmth.

I thank my friends for teaching me about joy.

I thank my知音 for listening to my music.

“I’m not gonna run away, and I never go back on my word! That’s my nindoo, my ninja way!” -
Naruto Uzumaki (KISHIMOTO, 1999)

Abstract
The collaboration between humans and robots is no longer a movie scenario. Due to the increase
in the number of work environments in which this type of interaction takes place, robots must be
able, just like humans, to make predictions about their partners so that they can work together.
This study systematically searched the literature for early action prediction models based on at-
tention mechanisms, offering a broad overview of the state of the art. Only one suitable model
with such characteristics was found, TemPr, which represents the state of the art in the area of
early action prediction. It also proposed a methodology for analyzing the model found for the
prior detection of actions in the context of human-robot collaboration in industrial environments
to contribute to this area of research. The InHARD dataset is used to train the models, Optuna is
used to automatically tune hyperparameters for the model, and MLflow is used to track hyperpa-
rameters and analyze the results of different models. The TemPr model is extensively analyzed
for different video observation ratios. The experiments are run on a machine with an available
GPU within a Docker container with a base image available on the Nvidia GPU Container. The
final model achieved an accuracy of 59% and 55%, and an OvR macro-average ROC AUC score
of 93% and 92%, for an observation ratio of 1.0 and 0.3, respectively. Thus, the network train-
ing was successful and had great results even when only a small part of the action video was
available.

Keywords: Human-robot collaboration. Early action prediction. Short-term action. Transform-
ers. Attention. Industrial environments.

Resumo
PREVISÃO ANTECIPADA DE AÇÕES CURTAS PARA A COLABORAÇÃO ENTRE HU-
MANOS E ROBÔS: UMA ABORDAGEM BASEADA EM ATENÇÃO E APRENDIZADO
PROFUNDO

A colaboração entre humanos e robôs não é mais um cenário de filme. Devido ao aumento
do número de ambientes de trabalho em que esse tipo de interação ocorre, os robôs devem
ser capazes, assim como os humanos, de fazer previsões sobre seus parceiros para que possam
trabalhar juntos. Este estudo pesquisou sistematicamente na literatura os modelos de previsão
de ação antecipada baseados em mecanismos de atenção, oferecendo uma ampla visão geral do
estado da arte. Foi encontrado apenas um modelo adequado com essas características, o TemPr,
que representa o estado da arte na área de previsão de ação antecipada. Também foi proposta
uma metodologia para analisar o modelo encontrado para a detecção prévia de ações no contexto
da colaboração entre humanos e robôs em ambientes industriais para contribuir com essa área
de pesquisa. O conjunto de dados InHARD é usado para treinar os modelos, o Optuna é usado
para ajustar automaticamente os hiperparâmetros do modelo e o MLflow é usado para rastrear os
hiperparâmetros e analisar os resultados de diferentes modelos. O modelo TemPr é amplamente
analisado para diferentes proporções de observação de vídeo. Os experimentos são executados
em uma máquina com uma GPU disponível em um contêiner Docker com uma imagem de base
disponível no Nvidia GPU Container. O modelo final alcançou uma precisão de 59% e 55%,
e uma pontuação ROC AUC macro-média OvR de 93% e 92%, para uma taxa de observação
de 1,0 e 0,3, respectivamente. Assim, o treinamento da rede foi bem-sucedido e obteve ótimos
resultados mesmo quando apenas uma pequena parte da ação.

Palavras-chave: Colaboração humano-robô. Previsão antecipada de ações. Ação de curta du-
ração. Transformadores. Atenção. Ambientes industriais.

List of Figures

Figure 1.1 – Three types of interaction between humans and robots, increasing in the
amount of interdependency . 2

Figure 1.2 – The interaction between the robot (R, red) and human (H, blue) to reach the
human’s (G, white) or shared (G, yellow) goal over time. Arrows indicate
dependencies. 2

Figure 2.1 – Multilayer perceptron with hidden layers. This example contains a hidden
layer with five hidden neurons. 9

Figure 2.2 – Data flow in LeNet. The input is a handwritten digit, and the output is a
probability of over ten possible outcomes. 10

Figure 2.3 – RNN with recurrent connections depicted via cyclic edges. 11
Figure 2.4 – Unfolded RNN over time steps. Recurrent edges span adjacent time steps,

while conventional connections are computed synchronously. 11
Figure 2.5 – 2D and 3D convolution operations. a) Applying 2D Convolution on an image

results in an image. b) Applying 2D Convolution on a video volume (multiple
frames as multiple channels) also results in an image. c) Applying 3D Con-
volution on a video volume results in another volume, preserving temporal
information of the input signal. 12

Figure 2.6 – C3D architecture. C3D net has eight convolutions, five max-pooling layers,
and two fully connected layers, followed by a softmax output layer. All 3D
convolution kernels are 3×3×3with a stride of 1 in both spatial and temporal
dimensions. The number of filters is denoted in each box. The 3D pooling
layers are denoted from pool1 to pool5. All pooling kernels are 2 × 2 × 2,
except for pool1 is 1× 2× 2. Each fully connected layer has 4096 output units. 12

Figure 2.7 – Visualization of C3D model using deconvolution method. Interestingly, C3D
captures appearance for the first few frames but only attends to salient motion
afterward. It is best viewed on a color screen. 13

Figure 2.8 – Layers in an RNN encoder-decoder model with the Bahdanau attention mech-
anism. 15

Figure 2.9 – Multi-head attention, where multiple heads are concatenated and then lin-
early transformed. 16

Figure 2.10–Comparing CNN (padding tokens are omitted), RNN, and self-attention ar-
chitectures. 17

Figure 2.11–The Transformer - model architecture. 19

Figure 2.12–Fusion of CNN and LSTM architecture for action recognition and model
evaluation using InHard and a new dataset. 21

Figure 2.13–The vision Transformer architecture. In this example, an image is split into
nine patches. A special "<cls>" token and the nine flattened image patches
are transformed via patch embedding and n Transformer encoder blocks into
ten representations, respectively. The “<cls>” representation is further trans-
formed into the output label. 23

Figure 2.14–Tubelet embedding: extract and linearly embed non-overlapping tubelets that
span the spatio-temporal input volume. 24

Figure 2.15–Factorized encoder (Model 2). This model consists of two transformer en-
coders in series: the first model interacts between tokens extracted from the
same temporal index to produce a latent representation per time index. The
second transformer models interactions between time steps. It thus corre-
sponds to a “late fusion” of spatial and temporal information. 25

Figure 2.16–(Left) TemPr architecture. Features are extracted over each input xi sampled
from video scale si and combined with the scale and spatiotemporal posi-
tional encodings. The encoded features zi are passed to attention towers Ti

which output tensors ẑi,L in the latent space. The shared-weight classifier
f(·) is applied to every tower output to make per-scale predictions. These
predictions are aggregated by the aggregation function E(·) for early action
prediction over the observed frames. (Right) Attention Tower. Each utilizes
pre-norm and a shared latent array u for the cross-attention block (Cross
MAB). This is followed by a stack of L self-attention blocks (Self MAB). . 26

Figure 3.1 – InHARD frame example. 28
Figure 4.1 – fANOVA hyperparameters’ importance results. 34
Figure 4.2 – Optuna optimization results based on the validation loss. 34
Figure 4.3 – Training loss per epoch. 36
Figure 4.4 – Validation loss per epoch. 36
Figure 4.5 – Accuracy per epoch. 37
Figure 4.6 – OvR macro-average ROC AUC score per epoch. 37
Figure 4.7 – Training loss per epoch when using lower observation ratios ρ = 0.3 and 0.5. 39
Figure 4.8 – Validation loss per epoch when using lower observation ratios ρ = 0.3 and 0.5. 39
Figure 4.9 – Accuracy per epoch when using lower observation ratios ρ = 0.3 and 0.5. . . 40
Figure 4.10–OvR macro-average ROC AUC score per epoch when using lower observa-

tion ratios ρ = 0.3 and 0.5. 40

List of Tables

Table 2.1 – Top 10 instantly, early, and late predictable actions in UCF101 dataset. Action
names are sorted according to the percentage of testing samples falling in the
IP, EP, or LP category. 7

Table 2.2 – Maximum path lengths, per-layer complexity, and minimum number of se-
quential operations for different layer types. n is the sequence length, d is the
representation dimension, k is the kernel size of convolutions, and r is the size
of the neighborhood in restricted self-attention. 17

Table 2.3 – Details of Vision Transformer model variants. 22
Table 3.1 – Number of beginner and expert subject video files on the training, validation,

and testing sets defined in DALLEL Vincent HAVARD (2020). 28
Table 3.2 – Hyperparameters with descriptions and possible values used for the experiments. 32
Table 4.1 – Hyperparameters selected in the experiments. 35
Table 4.2 – Result of the metrics for experiments with ρ = 1.0. 38
Table 4.3 – Result of the metrics for experiments with ρ = 0.3 and 0.5. 38

List of Abbreviations and Acronyms

RGB Red Green Blue

EAP Early Action Prediction

IP Instantly Predictable

LP Late Predictable

ANN Artificial Neural Network

FC Fully Convolutional

MLP Multi-layer Perceptron

CNN Convolutional Neural Network

NLP Natural Language Processing

RNN Recurrent Neural Network

GPU Graphic Processing Unit

ViT Vision Transformer

ViViT Video Vision Transformer

HRC Human-Robot Collaboration

HRI Human-Robot Interaction

MAS Multi-Agent System

BDI Beliefs, Desires, Intentions

NGC Nvidia GPU Container

InHARD Industrial Human Action Recognition Dataset

FN False negative

FP False Positive

TP True positive

ROC Receiver Operating Characteristic

AUC Area Under the Curve

OvR One over Rest

SGD Stochastic Gradient Descent

List of Symbols

ρ Greek letter rho

σ Greek letter sigma

δ Greek letter delta

ϕ Greek letter phi

α Greek letter alpha

D Database

T Attention tower

E Greek letter epsilon

β Greek letter beta

Contents

1 Introduction . 1
1.1 Justification . 3
1.2 Objectives . 4

1.2.1 Main objectives . 4
1.2.2 Specific objectives . 4

1.3 Structure of the Monograph . 4
2 Literature Review . 5

2.1 Theoretical Foundations . 5
2.1.1 Action . 5

2.1.1.1 Action recognition . 5
2.1.1.2 Action prediction . 5
2.1.1.3 Long-term action prediction 6
2.1.1.4 Short-term action prediction 6
2.1.1.5 Early action prediction . 6

2.1.2 Deep Learning . 7
2.1.2.1 Artificial Neural Networks 7
2.1.2.2 Convolutional Neural Networks 9
2.1.2.3 Recurrent Neural Networks 10
2.1.2.4 3D Convolutional Networks 11

2.1.3 Attention Mechanisms and Transformers 12
2.1.3.1 Attention . 13
2.1.3.2 Attention Scoring Functions 13
2.1.3.3 Masked Attention . 14
2.1.3.4 Bahdanau Attention Mechanism 14
2.1.3.5 Multi-head Attention . 14
2.1.3.6 Self-Attention . 16
2.1.3.7 Positional Encoding . 17
2.1.3.8 Transformers . 18

2.2 Related Work . 20
2.2.1 Robotic Vision for Human-Robot Collaboration (HRC) 20
2.2.2 Harnets . 21
2.2.3 Vision Transformers (ViT) . 21
2.2.4 Video Vision Transformer (ViViT) . 22
2.2.5 EAP attention models . 24

2.3 Final remarks . 26
3 Development . 27

3.1 Methodology . 27
3.1.1 Standardized Experiment environment 27

3.1.1.1 Virtual environment . 27
3.1.1.2 Physical environment . 27

3.1.2 Dataset . 27
3.1.3 Model . 29

3.1.3.1 Backbone . 29
3.1.3.2 Head . 29
3.1.3.3 Fusion . 29
3.1.3.4 Precision . 29
3.1.3.5 Optmization . 30

3.1.4 Metrics . 30
3.1.4.1 Accuracy . 30
3.1.4.2 OvR macro-average ROC AUC score 30

3.2 Experiments . 31
3.2.1 Hyperparameters tuning . 31
3.2.2 Training, validation and testing . 31

4 Results . 33
4.1 Hyperparameters tuning results . 33
4.2 Training and validation results . 33
4.3 Testing metrics results . 35
4.4 Training, validating, and testing with lower observation metrics 38
4.5 Results comparison and discussion . 38

5 Final Considerations . 42
5.1 Conclusion . 42
5.2 Future work . 42

Bibliography . 43

Annex 48
ANNEX A Meta-actions and actions from the InHARD dataset 49

1

1 Introduction

Although science fiction and cyberpunk stories have not yet become reality, humans and
robots are not staying so far apart from each other. The number of places where they share space
is increasing, and Human-Robot Interaction (HRI) has become an important field of robotics
(ROBINSON et al., 2023). HRI comes from the field of Human-Computer Interaction, but it
extends beyond simple teleoperation of a remote platform, enabling the robot to perform a range
of autonomous behaviors (SCHOLTZ, 2003).

Interactions can be categorized into three types: instruction, cooperation, and collaboration
(a visualization can be observed in Figure 1.1 (BÜTEPAGE; KRAGIC, 2017)). Instruction-based
interaction represents a master-slave dynamic, where robots solely respond to human directives.
Cooperation involves agents acting independently toward a shared goal, with only the outcomes
of their actions being shared in the environment. Collaboration, however, necessitates that agents
engage in interdependent actions (Figure 1.2).

Scholtz (2003), when defining the theory of HRI, assumes that “the robot is already pro-
grammed to carry out basic functions and any ’reprogramming’ happens during the intervention.”
This means that the robot or the user’s learning ability is not considered. However, “collaboration
is the basis for mutual learning and mutual adaptation and requires mutual trust” (BÜTEPAGE;
KRAGIC, 2017). Thus, when this kind of action is considered, the context is defined as a Human-
Robot Collaboration (HRC).

Human-robot collaboration (HRC) is challenging due to the uncertainty and constraints
humans introduce, which are not foreseeable beforehand. Moreover, it requires that the robot
act naturally. This behavior results in more efficient interactions between humans and robots
and reduces the workload for humans. Although some tasks do not require sharing in all dimen-
sions, humans commonly solve tasks collaboratively, even when unnecessary. Such instinct in
humans shows the importance of giving robots the same skill (BÜTEPAGE; KRAGIC, 2017).
Nevertheless, HRC is a relatively new field, and little work has been done in this study area.

In these multi-agent systems (MAS), beliefs, desires, and intentions (BDI) of the agents
(BRATMAN, 1987) are modeled toward common goals, and collaborative agents share them.
To act together with humans, robots must construct intelligent beliefs about their partner BDI
sets to build appropriate shared intentions and act towards fulfilling a shared desire. Therefore,
thoughtful approaches to dealing with other agents’ possible state information are necessary.

One possible approach is to use computer vision. This area of research deals with how to
make machines leverage visual information from sensors that capture spatial information from

Chapter 1. Introduction 2

Figure 1.1 – Three types of interaction between humans and robots, increasing in the amount of
interdependency

Interaction

Instruction Cooperation Collaboration

Exchange of
information

Shared
environment

Master-Slave

Exchange of
information

Shared
environment

Shared
goal

Independent
subtasks

Exchange of
information

Shared
representation

Shared
goal

Interdependent
subtasks

Mutual learning,
adaptation, trust

Source: Adapted from Bütepage e Kragic (2017).

Figure 1.2 – The interaction between the robot (R, red) and human (H, blue) to reach the human’s
(G, white) or shared (G, yellow) goal over time. Arrows indicate dependencies.

Instruction

R R R
G

H H H

Cooperation

R R R
G

H H H

Collaboration

R R R
G

H H H

Source: Adapted from Bütepage e Kragic (2017)

Chapter 1. Introduction 3

visual sensors, such as cameras, LiDARs, etc. More specifically, robotic vision studies how com-
puter vision is used in contexts involving robots.

Several works proposed solutions to recognize human activity in videos that have achieved
high accuracy in constructing such beliefs from the human partner. However, “as soon as predic-
tions can be made confidently, the robot can change from reactive to active behavior, allowing
for collaborative actions” (BÜTEPAGE; KRAGIC, 2017). Hence, giving robots predictive power
instead is ultimately crucial in HRC contexts.

One possible way to make early predictions from humans is to observe their actions. Early
Action Prediction (EAP) studies how to perform such a task. Its objective is to make action pre-
dictions as soon as possible. Thus, it becomes a complex analysis due to the lack of information
available about the target class to be predicted.

To contribute and incentivize more research in HRC, this monograph explores state-of-the-
art Deep Learning models to accomplish EAP for robotic vision. EAP is a relatively new field,
so to tackle this problem, attention mechanisms are used as the most recent approaches for video
analysis.

Following the work of Vaswani et al. (2017) on attention mechanisms, these mechanisms
gained widespread popularity among deep learning researchers globally. Their work introduced
a novel model known as the Transformer, which is constructed using distinct artificial network
layers—specifically, multi-head self-attention layers. This architecture has been successfully ap-
plied across nearly all subfields of Deep Learning. Consequently, we leverage this contemporary
approach to contribute to the field of Human-Robot Collaboration (HRC).

1.1 Justification

Robots and humans are increasingly collaborating in real-world environments, especially
in industrial settings. The interactions that happen inside the industries shape a hazardous en-
vironment where most of the machines move independently, even when humans are near them.
New modern approaches to dealing with such interactions are necessary to provide safer and
more efficient collaboration.

Therefore, this monograph aims to better HRC using modern robotic vision for protecting
humans from harm and improving work productivity. Furthermore, this project contributes to
developing the relatively new EAP field by analyzing attention mechanisms and building a new
solution inside the HRC context.

Chapter 1. Introduction 4

1.2 Objectives

1.2.1 Main objectives

The core objectives of this research are multilayered:

1. Identification of various early action prediction models.

2. Analysis of prevalent early action prediction models.

1.2.2 Specific objectives

The specific objectives of this research are multilayered:

1. Systematically uncover a range of early action prediction models from existing literature.

2. Analyse the uncovered models, offering a broad perspective.

3. Select the state-of-the-art attention-based models from the analysis.

4. Evaluate the selected models regarding suitability for a human-robot collaboration setting.

5. Analyze the results of the evaluated models.

1.3 Structure of the Monograph

Chapter 1 provides the Introduction. Chapter 2 covers the Literature Review, including
the main theoretical concepts, related work, and final considerations. Chapter 3 focuses on the
Development of the monograph, detailing the methodology and experiments. Chapter 4 presents
the Results of the experiments, showcasing the outcomes obtained. Finally, Chapter 5 offers the
Final Considerations, summarizing the conclusion and suggesting future work.

5

2 Literature Review

This chapter aims to contextualize the reader about the current state of the art in early action
prediction using deep learning approaches, as well as related work in the context of human-robot
collaboration environments utilizing RGB second- and third-view video data.

2.1 Theoretical Foundations

2.1.1 Action

In computer vision research, an action refers to any dynamic process composed of observed
body movements, typically conveyed in a video lasting a few seconds. Defining which move-
ments are performed by specific limbs and how they compose a particular type of action is a
complex task. Due to the challenges in representing and classifying this concept, formulating a
formal definition for it remains difficult (KON; FU, 2022).

To simplify this task, the computer vision community typically limits the scope of their work
by observing specific contexts in which the environment is set, and the agents’ goals are known.
Examples of contexts are sports (KARPATHY et al., 2014), human-object daily interactions
(GOYAL et al., 2017), human-human daily interactions (RYOO; AGGARWAL, 2010), kitchen
tasks (DAMEN et al., 2018), etc. Elected the scope, several actions now become feasible to be
formally defined. However, they cannot be typified outside these scenarios.

2.1.1.1 Action recognition

Intelligent systems that perform action recognition classify actions based on complete ex-
ecutions. Inside the computer vision area of research, the task consists of generating an action
representation by converting the video into feature vectors and inferring a class from these fea-
tures (KON; FU, 2022). The state of the art of this topic mainly embraces video foundation
models (WANG et al., 2023b; WANG et al., 2024).

2.1.1.2 Action prediction

An intelligent system capable of prompt reactions to ongoing situations performs better
when dealing with time-sensitive tasks, such as autonomous driving (GIRASE et al., 2021),
human-robot interactions (RYOO et al., 2015), etc. This system must recognize agents’ actions
as soon as possible to perform prompt reactions, turning prediction into a necessary skill. Unlike
recognition, prediction relies on incomplete data to reason about the future and make educated

Chapter 2. Literature Review 6

guesses about upcoming events. In computer vision, predicting an action concerns inferring
a label to an action captured in a video before its execution ends (KONG; TAO; FU, 2017;
STERGIOU; DAMEN, 2023; KON; FU, 2022).

2.1.1.3 Long-term action prediction

Long-term action prediction infers a future set of actions based on the current observed set
of actions. Formally, given one or more independent, semantically meaningful, and temporally
correlated sets of actions X = {x1, x2, ..., xn}, the goal is to predict the next set of actions
Y = {y1, y2, ..., yn}. Long-duration videos are more suitable for this purpose, generally lasting
several minutes (KON; FU, 2022).

2.1.1.4 Short-term action prediction

Short-term prediction focuses on inferring labels for a single action in a temporally incom-
plete video. Formally, the goal is to infer the label y : x 7→ y given an incomplete video x and
the complete action execution X = {f1, f2, ..., fT}, which only contains a single action and is
composed of the frames fi. The goal is constrained by the fact that x∪X and |x| < T . Generally,
the action videos used in this case are short, lasting several seconds (KON; FU, 2022).

2.1.1.5 Early action prediction

Early action prediction (EAP) is a special case of short-term action prediction, which aims
to classify an action at the very beginning of its full execution (e.g., 10% (KONG; TAO; FU,
2017), or 20% (WANG et al., 2023c)). The amount of observed frames is defined as Tρ = dρT e
para 0 < ρ < 1, where ρ, the observation ratio, dictates the percentage of the total amount
of frames in the video, T , taken in account to make the final labeling decision (STERGIOU;
DAMEN, 2023).

The difficulty of this task is dictated not only by the low percentage of information the
system is allowed to observe but also by each action prediction characteristic. Kong, Tao e Fu
(2017) grouped and sorted actions according to the portion of a video needed to be observed
before separating the action correctly, and three different categories were defined: instantly pre-
dictable (IP), early predictable (EP) and late predictable (LP) (Table 2.1). The observation ratio
ρ necessary for the classification of the action grows, respectively, within these categories. Thus,
the distribution of their discriminative patterns over time varies for different actions, indepen-
dently of the environment and the agent. Among the EAP cases, late predictable actions are more
challenging to classify.

Chapter 2. Literature Review 7

Table 2.1 – Top 10 instantly, early, and late predictable actions in UCF101 dataset. Action names
are sorted according to the percentage of testing samples falling in the IP, EP, or LP
category.

Instantly Predictable Early Predictable Late Predictable
Billiards Fencing Javelin Throw

Ice Dancing Frisbee Catch High Jump
Rock Climbing Indoor Soccer Penalty Front Crawl

Playing Piano Volleyball Spiking Head Massage
Pommel Horse Hula Hoop Haircut

Rowing Field Hockey Penalty Playing Violin
Ski jet Basketball Dunk Handstand Walking

Juggling Balls Cliff Diving Pole Vault
Soccer Juggling Bowling Cricket Bowling

Tai Chi Tennis Swing Throw Discus

Source: Adapted from Kong, Tao e Fu (2017).

2.1.2 Deep Learning

Deep Learning is a branch of Machine Learning that develops techniques designed with
many interconnected layers of algebraic circuits with tunable connection strengths, called Arti-
ficial Neural Networks. This area of research originates in the work of McCulloch e Pitts (1943)
that tried to model the brain’s neurons with computational nets. These structures have long com-
putation paths, allowing the input variables to interact in complex ways and capture the intricacy
of real-world data (RUSSELL; NORVIG, 2022). The works of Cybenko (1989) and Micchelli
(1986) even suggest that with a single hidden layer network, modeled with enough neurons and
the proper weights, can approximate any function.

2.1.2.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are the main structure of Deep Learning algorithms.
They comprise a series of connected layers that perform computations over input data X and
carry the results, called activations (H), to the neighbor layer until it reaches the output O. When
the network has several layers apart from the input, these are called hidden layers (ZHANG et
al., 2023; RUSSELL; NORVIG, 2022).

These layers have units, called neurons, that map the input values to a function composed
of a linear and a non-linear part. The linear part (f) holds tunable parameters, called weights
and bias (W and b), that control its behavior. However, a sequence of computation over linear
functions would have the same effect as a single linear computation, independent of the number
of hidden layers. The non-linear part (σ) permits neural networks to work with non-linear data
but also allows them to leverage deep architectures with several hidden layers and learn complex
patterns. It maps the result of the latter to a non-linear function called the activation function,

Chapter 2. Literature Review 8

which returns the activations. Several activation functions have been proposed in the literature,
such as Sigmoid, ReLU (NAIR; HINTON, 2010), Hyperbolic Tangent, etc (ZHANG et al., 2023;
RUSSELL; NORVIG, 2022).

ANNs intend to optimize their tunable parameters for a given objective function called
the loss function (l). The loss calculates the error distance (L) between the current value re-
turned from the network and a desired reference (y) given input data. Therefore, the network is
optimized to minimize the loss function while learning from examples (ZHANG et al., 2023;
RUSSELL; NORVIG, 2022).

After the forward propagation - when all layers have performed their calculations sequen-
tially - a backward propagation algorithm is applied to the network to adapt it. The backward
process uses the negative gradients of the loss ∇L regarding each tunable parameter given input
data to minimize the objective function. The gradients are determined using the chain rule from
differential calculus and dynamic programming to avoid recalculating the chain parts that repeat
over the calculations of each layer’s gradients (ZHANG et al., 2023).

This adaptation follows an optimization algorithm, such as SGD (ZHANG et al., 2023),
Adagrad (DUCHI; HAZAN; SINGER, 2011), RMSprop (ZHANG et al., 2023), Adam (KINGMA;
BA, 2017), among others (ZHANG et al., 2023; RUSSELL; NORVIG, 2022). Moreover, the op-
timization functions use the learning rate η to weigh the amount of change this adaptation should
generate in the network.

A common ANN architecture solution to connect layers is to send all the activations to all
neurons of the neighboring layer. This type of layer is called fully connected (FC). An ANN com-
posed of several fully connected layers is called a Multilayer Perceptron (MLP) (Figure 2.1). The
equations 2.1 compose the forward and backward propagation of this type of architecture with
two layers, where the optimization function is the Gradient Descent. The superscript t regards
the values of the variables throughout time, whilst the subscript i regards the layer associated
with them.

fi = XW t
i + bt

i

H1 = (σ1 ◦ f1)(X)

H2 = (σ2 ◦ f2)(H1)

O = f(H2)

L = l(O, y)

Wt+1
i = Wt

i × η ×∇L

bt+1
i = bt

i × η ×∇L

(2.1)

Chapter 2. Literature Review 9

Figure 2.1 – Multilayer perceptron with hidden layers. This example contains a hidden layer with
five hidden neurons.

X1

X2

X3

H1

H2

H3

O

Source: Adapted from Zhang et al. (2023).

2.1.2.2 Convolutional Neural Networks

However, working with a flattened one-dimensional layer architecture makes the neural
network invariant to the input data features’ order. When dealing with images, this invariance
discards information relative to the relation between nearby pixels. Also, it makes the compu-
tation of these algorithms infeasible due to the large number of parameters needed to train the
network for the high dimensionality of this type of data.

Convolutional Neural Networks (CNNs) overcome this problem by using convolutional lay-
ers (Equation 2.2). By defining a kernel V that is applied to local regions of the image channels
X (i.g. RGB), the number of trainable parameters is reduced without losing the internal rela-
tionships in the image. This type of layer adds translation invariance (ZHANG et al., 1988) and
permits learning from regions rather than single pixels. Deeper layers also capture longer-range
features in deep convolutional neural networks (ZHANG et al., 2023; RUSSELL; NORVIG,
2022; LECUN et al., 1989).

Figure 2.2 shows a Deep CNN, an ANN composed of multiple convolutional, pooling, and
FC layers. The first has parameters that produce a unique activation value to learn patterns within
its defined kernel. The second applies a function within the kernel to reduce the values inside it
to a lower rank matrix, producing a smaller image that contains summarized information of the
original. Lastly, the FC layers flatten and learn from the embeddings, produced after a series of
convolution and pooling blocks, to reach the desired output (LECUN et al., 1989).

[H]i,j,d =
∆∑

a=−∆

∆∑
b=−∆

∑
c

[V]a,b,c,d[X]i+a,j+b,c (2.2)

Chapter 2. Literature Review 10

Figure 2.2 – Data flow in LeNet. The input is a handwritten digit, and the output is a probability
of over ten possible outcomes.

Source: LeCun et al. (1989)

2.1.2.3 Recurrent Neural Networks

Various tasks also require dealing with sequentially structured data, i.g. natural language
processing (NLP), controlling robots, video processing, etc. Recurrent Neural Networks (RNNs)
were created to extend the potential of neural networks and tackle sequentially structured in-
formation. While standard connections propagate to a subsequent layer, RNNs use recurrent
connections between their neurons to capture the dynamics of sequences carrying information
across time steps (ZHANG et al., 2023; RUSSELL; NORVIG, 2022).

The recurrence may be thought of as cycles in the network, as shown in Figure 2.3, and
permits the network to learn not only from the examples themselves but from the information
derived by the sequence in which they appear. Such information could be related to the order
of words in a phrase or the position of an object in a video through time. RNNs grow their
recurrent hidden layers (Figure 2.4) according to the number of dimensions of the sequential
data and introduce the notion of a hidden state (ZHANG et al., 2023; RUSSELL; NORVIG,
2022).

“Compared with [the MLP layers], [RNN layers] add one more term Ht−1Whh and thus in-
stantiates [(Equation 2.3)]. From the relationship between hidden layer outputs Ht and Ht−1 of
adjacent time steps, we know that these variables captured and retained the sequence’s historical
information up to their current time step, just like the state or memory of the neural network’s
current time step” (ZHANG et al., 2023). The superscript text in Equation 2.3 describes the
layers’ numbers, and the weights subscript text describes the dimensions of the matrices.

H(l)
t = ϕl(H(l−1)

t W(l)
xh + H(l)

t−1W
(l)
hh + b(l)

h) (2.3)

Chapter 2. Literature Review 11

Figure 2.3 – RNN with recurrent connections depicted via cyclic edges.

Input Hidden
Layers Output

Source: Adapted from Zhang et al. (2023).

Figure 2.4 – Unfolded RNN over time steps. Recurrent edges span adjacent time steps, while
conventional connections are computed synchronously.

Xt−1

Xt

Xt+1

H
(1)
t−1

H
(1)
t

H
(1)
t+1

H
(2)
t−1

H
(2)
t

H
(2)
t+1

Ot−1

Ot

Ot+1

Source: Adapted from Zhang et al. (2023).

2.1.2.4 3D Convolutional Networks

3D convolutional networks are an extension of CNNs. 3D kernels can capture temporal
and spatial information along a video volume of data by including a depth dimension k (Equa-
tion 2.4), while 2D ones only capture each frame’s spatial information (Figure 2.5). Therefore,
it is well-suited for spatiotemporal correlation feature learning.

[H]k,i,j,d =
∆∑

a=−∆

∆∑
b=−∆

∆∑
c=−∆

∑
d

[V]a,b,c,d,e[X]k+a,i+b,j+c,d (2.4)

Tran et al. (2015) analyze several variations of 3D convolution architectures. The results
show that a homogeneous setting with convolution kernels of 3 Œ 3 Œ 3 is the best option for 3D
CNNs, consistent with the results shown in Simonyan e Zisserman (2015) for 2D CNNs. Then,
it proposes the C3D model (Figure 2.6), a deep 3D convolutional neural network that uses a
sequence of 3d convolution layers.

Using the deconvolution method, Tran et al. (2015) observes that C3D weights, at first,

Chapter 2. Literature Review 12

Figure 2.5 – 2D and 3D convolution operations. a) Applying 2D Convolution on an image results
in an image. b) Applying 2D Convolution on a video volume (multiple frames as
multiple channels) also results in an image. c) Applying 3D Convolution on a video
volume results in another volume, preserving temporal information of the input
signal.

(a) 2D Convolution. (b) 2D Convolution on multiple frames.

(c) 3D Convolution.

Source: Tran et al. (2015)

Figure 2.6 – C3D architecture. C3D net has eight convolutions, five max-pooling layers, and
two fully connected layers, followed by a softmax output layer. All 3D convolution
kernels are 3×3×3 with a stride of 1 in both spatial and temporal dimensions. The
number of filters is denoted in each box. The 3D pooling layers are denoted from
pool1 to pool5. All pooling kernels are 2 × 2 × 2, except for pool1 is 1 × 2 × 2.
Each fully connected layer has 4096 output units.

Conv
64 Po

ol Conv
128 Po

ol Conv
256

Conv
256 Po

ol Conv
512

Conv
512 Po

ol Conv
512

Conv
512 Po

ol FC
4096

FC
4096

So
ftm

ax
Source: Adapted from Tran et al. (2015).

focus on learning spatial information and, then, track the motion of the objects on the video. In
the example shown in Figure 2.7, the network “focuses on the whole person and then tracks the
motion of the pole vault performance over the rest of the frames”.

2.1.3 Attention Mechanisms and Transformers

Until the last decade, Deep Learning algorithms had remarkably little compared to their first
breakthroughs, and most of the progress was focused on enhancing and scaling up current archi-
tectures. However, this trend was recently broken after the adoption of the Attention mechanism
(BAHDANAU; CHO; BENGIO, 2016) and, following, the Transformer architecture (VASWANI
et al., 2017). Transformer-based models have emerged as state-of-the-art, or at least competitive,
methods for tasks such as NLP, image recognition, object detection, semantic segmentation, su-

Chapter 2. Literature Review 13

Figure 2.7 – Visualization of C3D model using deconvolution method. Interestingly, C3D cap-
tures appearance for the first few frames but only attends to salient motion afterward.
It is best viewed on a color screen.

Source: Tran et al. (2015).

perresolution, speech recognition, reinforcement learning, and graph neural networks (ZHANG
et al., 2023).

2.1.3.1 Attention

Consider the key-value database D def
= {(k1, v1), . . . (km, vm)} and a query q. Invoking this

query on the database means returning all the values that associate the query with its key. This
association can be measured in significance levels, and multiple values may be returned. The
attention mechanism proposed by (BAHDANAU; CHO; BENGIO, 2016) performs this process
using scalar attention weights α(q, ki) ∈ R (i = 1, . . . ,m) that give importance to keys with
more significance. The scaled values are then combined by attention pooling (Equation 2.5),
which returns a linear combination of the data in D, a new value defined from the existing ones
and their relation to the query.

Attention(q,D)
def
=

m∑
i=1

α(q, ki)vi (2.5)

2.1.3.2 Attention Scoring Functions

Attention scoring functions (a) are mostly used as attention functions since distance-based
ones are slightly more expensive to compute. A common attention scoring function is the dot-
product attention (Equation 2.6), where d is a regularization term (VASWANI et al., 2017). To
accept queries and keys of different dimensions, the dot-product is adapted through an MLP-like
approach called additive attention (Equation 2.7). The query and the key are fed into an MLP
with a single hidden layer, where Wq ∈ Rh×q, Wk ∈ Rh×k and wv ∈ Rh. The bias term was
turned off for simplicity (ZHANG et al., 2023). Optimizing the layers of these MLPs is one of
the key areas of advance in recent years (SHOEYBI et al., 2020).

Chapter 2. Literature Review 14

a(q, ki) = q⊤ki/
√
d (2.6)

a(q, k) = w⊤
v σ(Wqq + Wkk) ∈ R (2.7)

2.1.3.3 Masked Attention

Similar to ANN outputs when dealing with multiple class results, attention weights still
need to be normalized into a differentiable probability density function. Hence, the results are
intelligible, and the network can be trained efficiently. To this end, softmax (Equation 2.8) is
attention mechanisms’ most popular normalization function.

α(q, ki) = softmax(a(q, ki)) =
exp(a(q, ki))∑
j=1 exp(a(q, kj))

. (2.8)

Softmax also efficiently permits attention mechanisms to evaluate queries with different
dimensions. To achieve that, the attention weights relative to dimensions unused by the query
are set to large negative numbers. When the softmax operation is applied, these weights are set
to zero. This operation is heavily optimized for GPUs and much more efficient than conditional
statements. “Since it is such a common problem, it has a name: the masked softmax operation”
(ZHANG et al., 2023).

2.1.3.4 Bahdanau Attention Mechanism

Bahdanau, Cho e Bengio (2016) used an attention mechanism in a language model. It uses
the hidden states of a sequence-to-sequence model with an encoder-decoder RNN architecture
to build the next output, selectively aggregating different parts of the input sequence (Figure 2.8).
Data embeddings in the NLP context used as input and returned as output of language models,
such as the Bahdanau Attention Mechanism, are called tokens. Therefore, i.g. for a translation
task, the input data is the tokens representing the words in a phrase.

According to Zhang et al. (2023), the Bahdanau attention mechanism has become one of
the most impactful innovations in deep learning over the last decade, serving as the foundation
for the development of Transformers and inspiring numerous related architectures.

2.1.3.5 Multi-head Attention

Multi-head attention combines FC layers with linear activation and attention mechanisms to
capture different knowledge subspaces. (Equation 2.9) Queries q ∈ Rdq , keys k ∈ Rdk and values

Chapter 2. Literature Review 15

Figure 2.8 – Layers in an RNN encoder-decoder model with the Bahdanau attention mechanism.

Sources

Embedding

RNN

Targets

Embedding

RNN

Attention

Aggregate

FC

Source: Adapted from Zhang et al. (2023).

v ∈ Rdv are used as input for an FC layer each with weights W(q)
i ∈ Rpq×dq , W(k)

i ∈ Rpk×dk and
W(v)

i ∈ Rpv×dv , respectively. The embedding from these FC layers is then used as input to an
attention-scoring function, which formalizes a head.

hi = f(W(q)
i q,W(k)

i k,W(v)
i v) ∈ Rpv (2.9)

This process increases the number of independent attention weights learned from the same
query, key, and values tuple, which leads to the discovery of different independent features from
various ranges of the same data. Multi-head attention concatenates the heads outputs and maps
them to a function (i.g. another linear transformation via an FC layer with weights Wo ∈ Rpo×hpv

- Equation 2.10). The output merges the several subspaces into a generalized and more represen-
tative embedding based on a query, keys, and values given (ZHANG et al., 2023; VASWANI et
al., 2017).

Wo


h1

...
hh

 ∈ Rpo (2.10)

Chapter 2. Literature Review 16

Figure 2.9 – Multi-head attention, where multiple heads are concatenated and then linearly trans-
formed.

Queries Keys Values

FC FC FC

. . .

FC FC FC

Attention Attention

Concat

FC

Source: Adapted from Zhang et al. (2023).

2.1.3.6 Self-Attention

Consider a series of input data x1, . . . , xn|xi ∈ Rd. Self-attention computes the embedding
from the attention mechanism using only this source for all queries, keys, and values. Vaswani
et al. (2017) also adds the output to the query through residual connections (HE et al., 2015).
This builds a more representative embedding based on how the original information fits inside
the context of all the data (ZHANG et al., 2023; VASWANI et al., 2017).

Deep learning layers should reduce their complexity, the number of sequential operations
performed, and the path between any combination of sequence positions from the input. This
leads to efficiency and permits leveraging parallel computation and learning long-range depen-
dencies in the data. Like recurrent and convolutional layers, self-attention layers encode a se-
quence of symbol representations into another sequence of the same length (Figure 2.10). Com-
pared to convolutional and recurrent layers (Table 2.2), self-attention layers enjoy parallelized
processing, leveraging GPU computation power, and have the shortest maximum path length
between the latter (VASWANI et al., 2017).

Furthermore, attention automatically and dynamically models the weights and induces bias
according to the input data relation to itself and the context, different from MLPs, CNNs, and
RNNs that have fixed weights and predefined inductive bias approaches (i.g. kernels, hidden
states). This leads to more generic architectures that need more data and computation resources
and have more representation power (VASWANI et al., 2017; SANFORD; HSU; TELGARSKY,

Chapter 2. Literature Review 17

Figure 2.10 – Comparing CNN (padding tokens are omitted), RNN, and self-attention architec-
tures.

X1

X2

X3

X4

X5

H1
1

H1
2

H1
2

H1
4

H1
5

H2
1

H2
2

H2
3

H2
4

H2
5

a) CNN architecture.

X1

X2

X3

X4

X5

H1
1

H1
2

H1
2

H1
4

H1
5

b) RNN architecture.

X1

X2

X3

X4

X5

H1
1

H1
2

H1
2

H1
4

H1
5

b) Self-attention architecture.

Source: Adapted from Vaswani et al. (2017).

Table 2.2 – Maximum path lengths, per-layer complexity, and minimum number of sequential
operations for different layer types. n is the sequence length, d is the representation
dimension, k is the kernel size of convolutions, and r is the size of the neighborhood
in restricted self-attention.

Layer Type Complexity Sequential Operations Maximum Path Length
Self-Attention O(n2.d) O(1) O(1)
Recurrent O(n.d2) O(n) O(n)
Convolutional O(k.n.d2) O(1) O(logk(n))
Self-Attention (restricted) O(r.n.d) O(1) O(n/r)

Source: Adapted from Vaswani et al. (2017).

2023; BAHDANAU; CHO; BENGIO, 2016).

2.1.3.7 Positional Encoding

Self-attention does not preserve the order of the sequence arrived, previously mentioned
as use cases of RNNs. To tackle this task, positional encoding avoids processing sequences
sequentially as the latter detours the quadratic computational complexity concerning the se-
quence length and leverages parallel computing. Given the sequence of d-dimensional embed-

Chapter 2. Literature Review 18

dings X ∈ Rn×d, the positional encoding outputs X+PE. Hence, the original embedding inher-
its positional information inside its values. For example, Vaswani et al. (2017) uses PE ∈ Rn×d

with positions pos, columns i and values

PEpos,2i = sin
(pos

100002j/d

)
,

PEpos,2i+1 = cos
(pos

100002j/d

)
.

(2.11)

2.1.3.8 Transformers

Unlike previous self-attention models that relied on RNNs or CNNs to generate inputs,
Vaswani et al. (2017) transformers (Figure 2.11) depended solely on attention mechanisms. The
model is composed of an encoder-decoder architecture. In contrast to Bahdanau, Cho e Bengio
(2016), transformers perform sequence-to-sequence learning using positional encoding in both
the encoder and decoder inputs.

The encoder is a stack of identical blocks composed of a multi-head self-attention layer with
normalization and a position-wise MLP with residual connection and normalization. These are
important for training a deep model. The inputs from a previous block feed the next one.

The positionswise MLP is two linear layer MLP, also known as expand-and-contract net-
work, with weights W1 ∈ Rd×h and W1 ∈ Rh×d. The weights expand the output embedding of
the dimension of the self-attention layer to h and then contract it back to its original size (Equa-
tion 2.12). This network operates independently and identically on each input sequence position,
allowing the model to learn positional information effectively while processing calculations in
parallel with parameter efficiency. After passing through the multi-head self-attention layer, this
small MLP is necessary to learn from the embeddings.

FFN(x) = σ(xW1 + b1)W2 + b2 (2.12)

The decoder is also built using the same strategy but inserts a third layer, encoder-decoder
cross-attention, between the previous two. The cross-attention layer is another normalized multi-
head self-attention layer that uses the keys and values from the encoder output, while queries
still come from the last layer. Cross-attention contextualizes the decoder with the encoder em-
beddings. The decoder also uses causal masked attention on the first multi-head self-attention
layer to preserve the model’s auto-regressive property, which ensures a sequential dependency
between data input (ZHANG et al., 2023; VASWANI et al., 2017).

Just like Bahdanau, Cho e Bengio (2016) model, transformers are suitable for NLP tasks
and can be fed with and learn new tokens. Note that although the transformer architecture uses

Chapter 2. Literature Review 19

Figure 2.11 – The Transformer - model architecture.

Inputs Outputs

Input
Embedding

Output
Embedding

Positional
Encoding

Positional
Encoding

Multi-head
Attention

Masked
Multi-head
Attention

Add & Norm
Add & Norm

Feed
Forward

Multi-head
Attention

Add & Norm
Add & Norm

Feed
Forward

Add & Norm

Linear

Softmax

Output
Probabilities

+ +

Source: Adapted from Vaswani et al. (2017).

Chapter 2. Literature Review 20

both an encoder and decoder, this is not always true for every application (DEVLIN et al., 2019;
BROWN et al., 2020).

2.2 Related Work

EAP can entail multimodal data (RGB, depth, skeleton, etc.), and the typical methods in
the literature work on egocentric/first-person videos. Our research focuses on RGB video-only
data and third-person or second-person views for the human-robot collaboration (HRC) context.
We extensively research the literature to understand the state of robotic vision within this scope
and search for EAP models.

Vision Transformer-based approaches are highly prominent and significantly influential in
action recognition and EAP. Therefore, we begin by discussing the HRC context research field.
Then we introduce an older model that tackles the HRC context, and explore the fundamentals
of Vision Transformers (ViT) and Video Vision Transformers (ViViT). Finally, we perform a
deeper investigation into specific EAP models.

2.2.1 Robotic Vision for Human-Robot Collaboration (HRC)

Human-robot collaboration (HRC) is an area of research that studies how to work out team-
work between humans and robots to achieve shared goals with a common purpose and directed
outcome. "Collaboration with a robot can help to improve task speed and work productivity,
reduce the number of errors, and improve human safety to minimize repetition fatigue and in-
juries" (ROBINSON et al., 2023). This monograph focuses on the impact of robotic vision in
the HRC context.

Robotic vision is a crucial and mainstream computer vision process for robots to analyze
human actions. By integrating machines with visual sensors, such as cameras and LiDARs, they
can better understand and interact with the natural world and make relevant decisions and ac-
tions. For action prediction and collaborative tasks, Robinson et al. (2023) shows that these two
contexts have been poorly investigated.

Robinson et al. (2023) also shows that little work has been done on robotic vision for
handover and collaborative manipulation between humans and robots. Furthermore, only three
transformer-based approaches were cited, none for EAP, and no dataset with second- and third-
view visual data was used for training in the presence of both the robot and the human. Also,
no “studies that have attempted to combine a shared representation, prediction, and signaling to
achieve true collaboration” (BÜTEPAGE; KRAGIC, 2017) were found.

Chapter 2. Literature Review 21

Figure 2.12 – Fusion of CNN and LSTM architecture for action recognition and model evalua-
tion using InHard and a new dataset.

Source: Tuli, Patel e Manns (2022).

2.2.2 Harnets

Tuli, Patel e Manns (2022) work shows a common deep-learning approach to tackle action
recognition in videos: a fusion between a CNN and an LSTM. Since videos are composed of
spatial and temporal information, this type of model uses CNNs to encode spatial data and feed
an LSTM that uncovers the temporal relationship embedded within the generated values. The
model used in the paper is composed of an Inception V3 model (SZEGEDY et al., 2015) as the
backbone and an LSTM (ZHANG et al., 2023) adapted to the length of the video data as the
head. Figure 2.12 shows the model architecture.

The model created by Tuli, Patel e Manns (2022) was trained on human activity recognition
datasets and showed the importance of robots performing intelligent behavior inside working
environments. It showed the lack of research published in the field and also generated a custom
dataset within the context. Some of the outcomes obtained from this paper are then used as a
comparison to our work in the results chapter.

2.2.3 Vision Transformers (ViT)

“Similar to the landscape of network architecture design in natural language processing,
Transformers have also become a game-changer in computer vision ” (ZHANG et al., 2023).

Although Vaswani et al. (2017) transformer architecture emerged as the state of the art in
various NLP tasks, substituting RNNs, it could not be trained on image data. Cordonnier, Loukas
e Jaggi (2020) proved that a multi-head self-attention layer with sufficient heads is at least as
expressive as any convolutional layer. Then, Dosovitskiy et al. (2021) created a transformer-

Chapter 2. Literature Review 22

based model for image classification called Vision Transformer (ViT - Figure 2.13).

This model extracts non-overlapping m = hw/p2 patches from the input image with height
h, width w, and c channels, where p is the height and width of the patch. These are then flat-
tened to a vector of length cp2. The flattened image patches are mapped to D dimensions with
a trainable linear projection E ∈ R(P 2·C)×D and summed with learnable positional embeddings
Epos ∈ R(N+1)×D (Equation 2.13). The patches are fed together with a special token <cls> to
the Transformer that outputs the same number of vectors. Finally, the Transformer encodes the
m + 1 vectors, and the <cls> token is used to find the class using an MLP (ZHANG et al., 2023).

z0 = [xclass; x1
pE ; x2

pE ; · · · ; xN
p E] + Epos (2.13)

Different from the original Transformer architecture, ViT only uses the encoder block. Also,
layers are normalized before the multi-head attention and the MLP, leading to more effective or
efficient training for Transformers (XIONG et al., 2020).

Three variations of the ViT architecture were implemented in Dosovitskiy et al. (2021) as
shown in Table 2.3.

Table 2.3 – Details of Vision Transformer model variants.

Model Layers Hidden size D MLP size Heads Params
ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Source: Adapted from Dosovitskiy et al. (2021).

When trained with large datasets, ViT outperforms the state-of-the-art CNN-based models,
demonstrating Transformers’ scalability superiority. A lot of effort has been put into how to
effectively train this model (TOUVRON et al., 2021) and use high-quality images (LIU et al.,
2021b).

2.2.4 Video Vision Transformer (ViViT)

Videos are a type of data that merges spatial and temporal information. Each unit of the
data sequence that composes a video is called a frame and contains an image. Since they are
inside a sequence, frames are related to each other just like tokens in NLP.

To deal with both types of information simultaneously, CNNs were initially adapted to
deal with 3D information in models defined as deep 3D convolutional architectures. After the
emergence of transformers, this model was augmented by introducing attention mechanisms into
their layers, following the same trend as what happened to RNNs in Bahdanau, Cho e Bengio

Chapter 2. Literature Review 23

Figure 2.13 – The vision Transformer architecture. In this example, an image is split into nine
patches. A special "<cls>" token and the nine flattened image patches are trans-
formed via patch embedding and n Transformer encoder blocks into ten represen-
tations, respectively. The “<cls>” representation is further transformed into the
output label.

Source: Dosovitskiy et al. (2021).

(2016). Inspired by Dosovitskiy et al. (2021), Arnab et al. (2021) introduces pure-transformer
models for video classification, called Video Vision Transformers.

Arnab et al. (2021) first defines 2 ways of tokenizing a video V ∈ RT×H×W×C into ẑ ∈
Rnt×nh×nw×d. Uniform Frame Sampling extracts nt frames, embeds each independently using
the same method as in Dosovitskiy et al. (2021), and concatenates them, generating nt · nh · nw.
Tubelet Embedding (Figure 2.14) extracts "tubes" ∈ Rt×h×w, where nt = bT

t
c, nh = bH

h
c

and nw = bW
w
c from the video volume and linearly project them into Rd. The latter extends

Dosovitskiy et al. (2021) embedding and is analogous to a 3D convolution. Arnab et al. (2021)
shows that Tubelet Embedding performs better and uses it to train its models.

According to Arnab et al. (2021), this approach integrates spatiotemporal information dur-
ing the tokenization process, unlike “Uniform frame sampling”, where temporal information
from various frames is combined by the Transformer.

Next, four models are defined and tested based on the ViT-Base as the backbone. The first
model, Spatio-Temporal Attention, feeds a ViT using uniform frame sampling. Its downside is
that self-attention layers do not perform well on long videos due to their quadratic complexity

Chapter 2. Literature Review 24

Figure 2.14 – Tubelet embedding: extract and linearly embed non-overlapping tubelets that span
the spatio-temporal input volume.

Source: Arnab et al. (2021).

concerning the number of tokens. The Factorised Encoder model (Figure 2.15) uses a two-stage
encoding process and has the best performance and floating-point operations (FLOPs) tradeoff.
First, it uses a spatial encoder to process tokens extracted from the same temporal index. It
transforms the representations outputted and feeds them into a temporal encoder that predicts
a class. The Factorised self-attention and Factorised dot-product attention models proposed did
not perform as well.

2.2.5 EAP attention models

Although the works of Dosovitskiy et al. (2021) and Arnab et al. (2021) showed some
advantages of using self-attention for image encoding, 3D convolution networks still held the
best results as backbones for feature extraction in EAP models among most of the benchmarks.
Several of these networks have been inspired by Howard et al. (2017) and He et al. (2015) (LIU
et al., 2022; KONDRATYUK et al., 2021). Instead of focusing on only one architecture choice,
Stergiou e Damen (2023) leverages both attention and 3D convolutional architecture advantages
at once in one model, called TemPr (Figure 2.16).

Stergiou e Damen (2023) tackles the EAP task by working on multiple video scales us-
ing progressive sampling. Sampling videos uniformly, generating segments of equal size might
separate discriminative action patterns between segments. Given the partially observed video
Tρ, progressive sampling separates the segments into scales si = {1, . . . , Tsi}, where Tsi =

d i
n
· Tρe ∀i ∈ N = 1, . . . , n, and selects F frames randomly from each.

For each scale si, an volume xi of size 3× F ×H ×W , where F is ordered, H is height
and W is width. The volumes are input to a shared encoder Φ that outputs the per-scale, multi-
dimensional spatio-temporal encoded features volumes zi, of size C × t × h × w. Then, zi is
reshaped to C × (thw) and concatenated to Fourier Positional Embeddings of size n × (thw).

Chapter 2. Literature Review 25

Figure 2.15 – Factorized encoder (Model 2). This model consists of two transformer encoders in
series: the first model interacts between tokens extracted from the same temporal
index to produce a latent representation per time index. The second transformer
models interactions between time steps. It thus corresponds to a “late fusion” of
spatial and temporal information.

Source: Arnab et al. (2021).

The features zi are them fed to an attention tower Ti that outputs ẑi.

Each tower is composed of two components. A cross multi-head attention block (Equa-
tion 2.14) uses a trainable latent array u to produce of size C × d (d � thw) to create the
asymmetric attention dot-product between u and zi. This bottleneck approach with a latent vec-
tor turns attention tower models more efficient than using only a stack of L self-attention mod-
els, which is the second component. Additionally, the attention tower shares a linear classifier
ŷ = f(ẑi,L) that establishes a joint feature space across scales.

hi,0 = MCA(LN(u), LN(zi)) + u ∀ i ∈ N

ẑi,0 = MLP (LN(hi,0)) + hi,0

(2.14)

Finally, the ŷ labels generated are fed to the adaptive aggregation function, which calculates
the individual attention tower’s predictions and confidences. The aggregation function chosen
for the model in the paper was the Adaptive Pooling (STERGIOU; POPPE, 2023), shown in
Equation 2.15. The class agreement EeICW reduces the uncertainty of individual predictions
using the Exponential Inverse Coefficient Weighting, in which DSC(·) is the Dice-Sørensen

Chapter 2. Literature Review 26

Figure 2.16 – (Left) TemPr architecture. Features are extracted over each input xi sampled from
video scale si and combined with the scale and spatiotemporal positional encod-
ings. The encoded features zi are passed to attention towers Ti which output ten-
sors ẑi,L in the latent space. The shared-weight classifier f(·) is applied to every
tower output to make per-scale predictions. These predictions are aggregated by
the aggregation function E(·) for early action prediction over the observed frames.
(Right) Attention Tower. Each utilizes pre-norm and a shared latent array u for the
cross-attention block (Cross MAB). This is followed by a stack of L self-attention
blocks (Self MAB).

Source: Stergiou e Damen (2023).

Coefficient (Equation 2.16). The confidence agreement EeM gives higher weights to predictions
with higher class probability using exponential maximum (i.e. softmax) across all predictions.
The hyperparameter β weights the importance of each agreement.

E(ŷ1,...,n) =
∑
i∈N

β · EeICW

(
ŷi, ¯̂y

)
+ (1− β) · EeM (ŷi) (2.15)

EeICW

(
ŷi, ¯̂y

)
=

eDSC(ŷi,¯̂y)−1∑
k∈N e

DSC(ŷk,¯̂y)−1
· ŷi (2.16)

Stergiou e Damen (2023) model is state of the art across all major benchmarks for EAP.

2.3 Final remarks

Several works create approaches to Action Recognition and EAP within the HRI context
(RYOO et al., 2015; TULI; PATEL; MANNS, 2022). However, to our knowledge, we are the
first to tackle the EAP task using attention mechanisms within the HRC context. Moreover, we
advance research to achieve true collaboration between humans and robots using such tools.

27

3 Development

In this chapter, we describe how the EAP models were evaluated in terms of suitability for
the HRC setting using the InHARD dataset (DALLEL VINCENT HAVARD, 2020). The only
attention-based model proposed for EAP found in the literature that uses RGB second and third-
view video data was the TemPr (STERGIOU; DAMEN, 2023). Therefore, we focus our work on
evaluating this model broadly.

3.1 Methodology

This section describes the instruments and methodological procedures chosen as the base
decisions repeated in every experiment.

3.1.1 Standardized Experiment environment

3.1.1.1 Virtual environment

We used a Docker Container (MERKEL, 2014) to keep experiment runs consistent and
comparable. The Docker file inherits a base image from the Nvidia GPU Cloud (NGC) Catalog
with CUDA version 12.4.1 (NVIDIA, 2024). Also, the Docker file is adapted to support the
Stergiou e Damen (2023) model code † dependencies.

3.1.1.2 Physical environment

The virtual environment is executed on a machine with an Intelő Core™i7-8700K CPU,
an NVIDIA GEFORCE GTX 1080 GPU, and 32GB DDR4 RAM. This project only runs on
machines with GPU support.

3.1.2 Dataset

The Industrial Human Action Recognition Dataset (InHARD) is an RGB+S (RGB + Skele-
ton) collection of videos from a real-world setting for industrial human action recognition (DAL-
LEL VINCENT HAVARD, 2020). The goal of the dataset is to foster the development of learning
techniques for analyzing human actions in settings involving human-robot collaboration. It con-
tains over 2 million frames collected from 16 distinct subjects, 13 industrial action classes, and
over 4,800 action samples. For the sake of this project’s scope, only the RGB video data is used
for training.

†Code available at: <https://github.com/alexandrosstergiou/progressive-action-prediction>

https://github.com/alexandrosstergiou/progressive-action-prediction

Chapter 3. Development 28

Figure 3.1 – InHARD frame example.

Source: DALLEL Vincent HAVARD (2020).

Three C920 cameras were used to capture RGB video data from different perspectives of
the same action. To capture the left and right views, two cameras were positioned at the same
height but at different horizontal angles, -45ř and +45ř. The third camera was mounted above
the subjects to capture a top-down view.

The dataset saves the recordings of every camera in a mosaic style. Camera 1 records top
views and is displayed in the top left quarter. Camera 2 records left-side views and is shown
in the top right quarter. Camera 3 records right-side views and is displayed in the bottom right
quarter (Figure 3.1).

The data is labeled using 13 meta-action labels and 74 action labels - full description in
Annex A. Meta-action labels generally describe the action being executed. In contrast, action
labels describe the specifics of the action using more details of the environment, objects used,
place, and distance measures, etc. Furthermore, the latter includes the goal operation ID.

DALLEL Vincent HAVARD (2020) suggests that the data is divided into two categories
of subjects: experts and beginners, according to the subject’s expertise with the manipulation.
Subjects who complete the entire manipulation in an average duration of less than 6 minutes are
classified as experts, whereas the remaining subjects are categorized as beginners. The training,
validation, and test splits are defined based on these categories (Table 3.1).

Table 3.1 – Number of beginner and expert subject video files on the training, validation, and
testing sets defined in DALLEL Vincent HAVARD (2020).

Begginer Expert
Training 17 9

Validation 4 2
Testing 4 2

Source: DALLEL Vincent HAVARD (2020).

Chapter 3. Development 29

3.1.3 Model

The complete model architecture consists of a backbone, a head, and a fusion layer, and
several strategies were chosen to train it in different experiments.

3.1.3.1 Backbone

Following the same strategy as in Stergiou e Damen (2023), the backbone extracts features
from the videos and feeds the head. Two models were selected as backbones for the experiments:
X3D-M (FEICHTENHOFER, 2020) and VideoMAEv2-Base (WANG et al., 2023a). They were
chosen because the X3D network represents the best backbone from the results of Stergiou e
Damen (2023), and the VideoMAEv2 network is the state-of-the-art model for Action Recogni-
tion. All parameters of the backbone are pre-trained and set as not trainable.

X3D uses convolutional layers, whilst VideoMAEv2 uses attention. By comparing the re-
sults from these models, it is possible to determine which kind of approach, convolution or
attention, works best within this work’s architectural organization as backbones.

3.1.3.2 Head

The model’s head is a TemPr block with three attention towers. The data feed to the head
is first pre-processed by sampling progressive video scales from the RGB video data. The sam-
pling strategy followed is withdrawing three groups of 16 frames of the video randomly and
sequentially for the training and validation/testing phases, respectively. All parameters from the
head are trainable.

The TemPr module has 256 latent arrays with dimension 512, that compose the trainable la-
tent array u used to create the asymmetric attention dot-product with the features extracted from
the backbone. Moreover, owers with one cross-attention layer and one self-attention layer. The
cross-attention and self-attention layers have one and eight heads, respectively, with a dimension
of 64.

3.1.3.3 Fusion

The fusion block used is the Adaptive Pooling (STERGIOU; POPPE, 2023) shown in 2.15,
which had the best results at Stergiou e Damen (2023) across several other fusion options. The
parameters from the Fusion block are trainable.

3.1.3.4 Precision

The whole model is trained using half-precision (16 bits). A PyTorch scaler and auto-casting
adapt the backbone and ensure all three parts of the model work with the same precision.

Chapter 3. Development 30

3.1.3.5 Optmization

The model is optimized using the Weighted Cross Entropy Loss in which the weights are
calculated using the balanced heuristics from the Pedregosa et al. (2011) library, inspired by
King e Zeng (2001). This strategy is chosen to deal with the InHARD dataset class imbalance.

Furthermore, the optimization strategy is built upon a sequence of optimizers and learning
rate schedulers. First, the AdamW optimizer with a weight decay of 0.01 is used together with
two learning rate schedulers: a RAdam warmup (LIU et al., 2021a) and a cosine annealing with
warm restarts (LOSHCHILOV; HUTTER, 2017). After a specific number of epochs, defined
as a hyperparameter, the optimizer is changed to a Stochastic Gradient Descent (SGD) with a
momentum of 0.9 and a cosine annealing learning rate scheduler. Moreover, an early stopping
procedure with patience 7 that observes the mean validation loss was used.

3.1.4 Metrics

In this section, we described the metrics used to evaluate the model. MLflow (MLFLOW,
2024) is used to track and compare different experiment-run models’ prediction metrics.

3.1.4.1 Accuracy

The accuracy score is the probability that the model’s prediction is correct. It gives differ-
ent importance to classes based on their frequency in the dataset (Equation 3.1) (GRANDINI;
BAGLI; VISANI, 2020).

Accuracy =
Correctly classified predictions

Total of predictions
(3.1)

3.1.4.2 OvR macro-average ROC AUC score

Precision (Equation 3.2) and recall (Equation 3.3) are the number of False Positives (FP)
and False Negatives (FN), respectively, compared to the number of True Positives (TP) predicted.
The Receiver Operating Characteristic (ROC) curve illustrates the performance of a classifier
by plotting the precision against the recall over various classification thresholds of confidence,
which determines the minimum probability required for a positive prediction. These are called
false positive rates and true positive rates, respectively.

The ROC Area Under the Curve (AUC) score, representing the area under the ROC curve,
summarizes a model’s ability to distinguish between positive and negative instances across
all thresholds. One over Rest (OvR) macro-average ROC AUC score calculates the average of
ROC for each class using the macro-average precision (Equation 3.4) and recall (Equation 3.5),
and then calculates the AUC. This strategy considers under-represented classes as important as

Chapter 3. Development 31

highly populated classes. High OvR macro-average ROC AUC values indicate good performance
in all the K classes; the opposite is true for low performance (PEDREGOSA et al., 2011).

Precisionk =
TPk

TPk + FPk

(3.2)

Recallk =
TPk

TPk + FNk

(3.3)

Macro Average Precision =
K∑
k=1

Precisionk (3.4)

Macro Average Recall =
K∑
k=1

Recallk (3.5)

3.2 Experiments

This section describes the experiment variables and the procedures they are related to.

3.2.1 Hyperparameters tuning

Many hyperparameters are tunable in the TemPr network and the model optimization. The
hyperparameters tuned in the experiments are found with a description and their possible val-
ues in Table 3.2. Optuna (AKIBA et al., 2019) is used to tune all the chosen hyperparameters
automatically using the Tree-structured Parzen Estimator (OZAKI; NOMURA; ONISHI, 2020)
with the validation loss as the objective function. Furthermore, the fANOVA algorithm (HUT-
TER; HOOS; LEYTON-BROWN, 2014) is used to calculate the hyperparameters’ importance
to analyze the impact each of them has on the results. MLflow (MLFLOW, 2024) is used to track
all the variations of the experiment and compare each.

3.2.2 Training, validation and testing

Each model with its unique set of hyperparameters is trained using batches of 8 from the
training set with an observation ratio of ρ = 1.0 (complete video). For every epoch, the model
loss is calculated by inferring all data from the validation set. Every time the mean loss from the
inference of the validation set batches surpasses the loss from the last epoch the inference was
made, the current model is saved using MLflow’s PyTorch functionalities.

After training all model variations, the best trials, as decided by the Optuna algorithm, are
tested based on the harmonic mean of the chosen metrics for this project. The model with the
best testing results is recorded as the best model. Then, the best model hyperparameters set is
used to train two models using the observation ratio ρ = 0.3 and 0.5, respectively.

Chapter 3. Development 32

Table 3.2 – Hyperparameters with descriptions and possible values used for the experiments.

Hyperparameter Description Possible values

Training

epochs Number of epochs used to train the
model

Integer from 30 to 40

lr Base learning rate Float from 0.01 to 0.1

lr_change_optimizer Epoch to trigger change in model opti-
mizer

Integer from 20 to 30

Architecture

attn_dropout Dropout rate for dropout layer at the out-
put of each attention block

Float from 0.01 to 0.15

ff_dropout Dropout rate for dropout layer at the out-
put of each positionwise MLP

Float from 0.01 to 0.15

backbone Backbone used in the model X3D or VideoMAEv2

Source: Elaborated by the author.

33

4 Results

In this chapter, the results are shown and discussed.

4.1 Hyperparameters tuning results

First, five experiments were executed using variations of the selected hyperparameters,
which were chosen using the Optuna algorithm for each experiment. These experiments used
full short action videos (observation ratio ρ = 1.0). Table 4.1 shows the hyperparameters selected
for each run.

The fANOVA algorithm results are shown in Figure 4.1. The high importance given to
the attention dropout shows once more how this kind of layer is critical to the learning process.
Related to this hyperparameter is the Pointwise FC layer dropout, which is affected directly by
the latter. The Optuna algorithm could not find an equilibrium between how much each of these
two related hyperparameters should affect the network.

Following in terms of importance is the learning rate scheduler hyperparameter. This shows
that the learning strategy adopted has a great impact on the results and the combination. The other
hyperparameters from the fANOVA results still lack new experiments to point out results that
show any other suitable approach related to them.

Figure 4.2 shows the final results from the Optuna optimization problem for each trial. Trial
3 did not improve the optimization results, therefore, it was disconsidered by Optuna, and that is
the reason for the graph to only show that the optimization objective result remained the same.
The graph shows a tendency of the validation loss to decrease with noise. This indicates that
the Optuna optimization algorithm is going in the right direction to find the trial closest to the
optimum.

4.2 Training and validation results

The training loss, validation loss, accuracy, and OvR macro-average ROC AUC score were
collected during the training. The results per epoch for the collected data are found in Figures 4.3
to 4.6. The values in the graphs were pre-processed using Univariate Spline Interpolation (VIR-
TANEN et al., 2020) smoothing function for enhanced visualization. The model from Trial 4
performed best and was chosen by Optuna as the only trial for testing.

In all of the metrics collected, it is clear that the models have learned successfully. However,

Chapter 4. Results 34

Figure 4.1 – fANOVA hyperparameters’ importance results.

Source: Elaborated by the author.

Figure 4.2 – Optuna optimization results based on the validation loss.

Source: Elaborated by the author.

Chapter 4. Results 35

Table 4.1 – Hyperparameters selected in the experiments.

Hyperparameter Trial 0 Trial 1 Trial 2 Trial 3 Trial 4

epochs 34 39 32 31 36

lr 0.064 0.012 0.057 0.051 0.025

lr_change_optimizer 21 30 24 28 20

attn_dropout 0.14 0.094 0.036 0.051 0.017

ff_dropout 0.112 0.109 0.053 0.061 0.095

backbone X3D VideoMAEv2

Source: Elaborated by the author.

the low complexity of the TemPr block at the head of the model led to an underfitting issue, and
it seems that only Trial 1 was still evolving at a higher rate. This can be explained by the fact
that Trial 1 had the lowest base learning rate and high dropout rates.

Overall, on all trials, all trial models have overcome the InHARD class imbalance, as shown
in Figure 4.6. The high OvR macro-average ROC AUC score demonstrates that the optimization
and learning strategies have led to success in training the models without giving importance
to more representative classes. Furthermore, the models still could achieve a relevant accuracy
result, shown in Figure 4.5.

4.3 Testing metrics results

The model with the hyperparameters set of Trial 4 was tested using the testing set, and
the accuracy and OvR macro-average ROC AUC score were collected. The results from the
inference using this model are found in Table 4.2. The high accuracy results, markedly near the
validation and training metrics results, show that the trained model achieved high generalization
power.

Chapter 4. Results 36

Figure 4.3 – Training loss per epoch.

Source: Elaborated by the author.

Figure 4.4 – Validation loss per epoch.

Source: Elaborated by the author.

Chapter 4. Results 37

Figure 4.5 – Accuracy per epoch.

Source: Elaborated by the author.

Figure 4.6 – OvR macro-average ROC AUC score per epoch.

Source: Elaborated by the author.

Chapter 4. Results 38

Table 4.2 – Result of the metrics for experiments with ρ = 1.0.

Accuracy OvR macro-average ROC AUC score
0.598 0.933

Source: Elaborated by the author.

4.4 Training, validating, and testing with lower observation
metrics

The hyperparameters set from Trial 4 were used to train two models with observation ratio
ρ = 0.3 and 0.5, respectively. The accuracy, OvR macro-average ROC AUC score, training loss,
and validation loss per epoch collected during the training are found in Figures 4.7 to 4.10. The
testing accuracy and OvR macro-average ROC AUC score from the inference using these models
are found in Table 4.3.

Figures 4.7 to 4.10 show very similar results to the ones when the observation ratio ρ was
equal to 1.0. The same conclusions from the metrics are visible and the success in training too.
Thus, the models trained with lower ρ manage to learn exceptionally considering the lack of
information given.

The fact that with ρ = 0.3 the model surpassed the accuracy compared to when trained
with ρ = 0.5 emphasizes the underfitting issue with the model, and increases the possibility of
even greater results with a more complex model. Nevertheless, the model still presents great
generalization even in this scenario.

Table 4.3 – Result of the metrics for experiments with ρ = 0.3 and 0.5.

Accuracy OvR macro-average ROC AUC score
ρ = 0.3 0.558 0.921
ρ = 0.5 0.548 0.928

Source: Elaborated by the author.

4.5 Results comparison and discussion

To evaluate the results of our model, we compare it to the work of Tuli, Patel e Manns
(2022), which has also dealt with the InHARD dataset. Their model has achieved a total of 74%
accuracy while our model achieved 59%. The advantage found in our model relies on the fact that
even when reducing the observation ratio to ρ = 0.3, our model still performs with 55% accuracy.
This slight reduction shows its suitability for EAP. Furthermore, our model also excelled on the
OvR macro-average ROC AUC score, 93%, which is a more reliable performance metric when
dealing with imbalanced datasets such as the InHARD.

Chapter 4. Results 39

Figure 4.7 – Training loss per epoch when using lower observation ratios ρ = 0.3 and 0.5.

Source: Elaborated by the author.

Figure 4.8 – Validation loss per epoch when using lower observation ratios ρ = 0.3 and 0.5.

Source: Elaborated by the author.

Chapter 4. Results 40

Figure 4.9 – Accuracy per epoch when using lower observation ratios ρ = 0.3 and 0.5.

Source: Elaborated by the author.

Figure 4.10 – OvR macro-average ROC AUC score per epoch when using lower observation
ratios ρ = 0.3 and 0.5.

Source: Elaborated by the author.

Chapter 4. Results 41

The small number of trainable parameters might explain the low accuracy ρ = 1.0 and the
increase in the validation loss of the model when ρ is set as 0.5. An oversimplified model may not
be able to learn all the different characteristics of each action when more information about it is
given. Furthermore, the accuracy when dealing with lower observation ratios would also increase
with a more complex structure. Therefore, it is noticeable that the standard architectural decisions
for the TemPr model could be changed for higher performance, and there is a high chance this
strategy will succeed.

In addition, the hyperparameters’ importance results show that some of them were slightly
unimportant. Since they are all crucial for the training of the model, the range in which they
were constrained did not give the Optuna algorithm enough freedom to choose a better value.
Therefore, the choice of the hyperparameters’ possible range could be improved to accept more
options.

42

5 Final Considerations

This chapter presents the final considerations of the monograph, describing the objectives
reached and future work proposals.

5.1 Conclusion

The present work developed an approach for early action prediction using attention mecha-
nisms in the human-robot collaboration context. First, the only model known to tackle the early
action prediction task, TemPr, proposed by Vaswani et al. (2017), is identified by systematically
uncovering and extracting a range of early action prediction models from existing literature. To
our knowledge, we are the first to tackle the EAP task using attention mechanisms within the
HRC context.

The uncovered model was extensively tested using automatic hyperparameter tuning and
modern metric comparison tools, Optuna and Mlflow. The results show that the training on the
Industrial Human Action Recognition Dataset (InHARD) was successful. Moreover, the model
performed exceptionally on lower observation ratios ρ, demonstrating the great capabilities of
the strategy adopted for the model.

In conclusion, both of our main objectives were achieved. The EAP model found after sys-
tematic research on papers in the area was trained on a Human-Robot Collaboration dataset and
succeeded in inferring short-term action videos. Furthermore, this study provided significantly
useful information to evolve robotics vision for providing a safer and more collaborative working
environment for humans and robots.

5.2 Future work

To achieve better results, the model architectural decisions, such as the number of attention
towers, the number of layers and their dimensions, the number of latents, and attention layer
heads, could be included as hyperparameters to be tuned automatically by Optuna. Furthermore,
the range of values the hyperparameters can assume could be extended for further experimen-
tation. The skeleton and depth data available in the InHARD dataset could also be used for
training.

A bigger model would be necessary to learn more data patterns and this would require
higher computational power. In addition, if multi-GPU training is possible the Fully Sharded
Data Parallel (FSDP) would also be important for better distribution of the model parameters.

43

Bibliography

AKIBA, T.; SANO, S.; YANASE, T.; OHTA, T.; KOYAMA, M. Optuna: A Next-
generation Hyperparameter Optimization Framework. 2019. Disponível em: <https:
//arxiv.org/abs/1907.10902>.

ARNAB, A.; DEHGHANI, M.; HEIGOLD, G.; SUN, C.; LUI, M.; SCHMID, C. ViViT: A
Video Vision Transformer. 2021. Disponível em: <https://arxiv.org/abs/2103.15691>.

BAHDANAU, D.; CHO, K.; BENGIO, Y. Neural Machine Translation by Jointly Learning to
Align and Translate. 2016. Disponível em: <https://arxiv.org/abs/1409.0473>.

BRATMAN, M. Intention, Plans, and Practical Reason. Cambridge: Cambridge, MA: Harvard
University Press, 1987.

BROWN, T. B.; MANN, B.; RYDER, N.; SUBBIAH, M.; KAPLAN, J.; DHARIWAL,
P.; NEELAKANTAN, A.; SHYAM, P.; SASTRY, G.; ASKELL, A.; AGARWAL, S.;
HERBERT-VOSS, A.; KRUEGER, G.; HENIGHAN, T.; CHILD, R.; RAMESH, A.;
ZIEGLER, D. M.; WU, J.; WINTER, C.; HESSE, C.; CHEN, M.; SIGLER, E.; LITWIN,
M.; GRAY, S.; CHESS, B.; CLARK, J.; BERNER, C.; MCCANDLISH, S.; RADFORD, A.;
SUTSKEVER, I.; AMODEI, D. Language Models are Few-Shot Learners. 2020. Disponível
em: <https://arxiv.org/abs/2005.14165>.

BÜTEPAGE, J.; KRAGIC, D. Human-Robot Collaboration: From Psychology to Social
Robotics. 2017. Disponível em: <https://arxiv.org/abs/1705.10146>.

CORDONNIER, J.-B.; LOUKAS, A.; JAGGI, M. On the Relationship between Self-Attention
and Convolutional Layers. 2020. Disponível em: <https://arxiv.org/abs/1911.03584>.

CYBENKO, G. V. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems, v. 2, p. 303–314, 1989. Disponível em: <https://api.
semanticscholar.org/CorpusID:3958369>.

DALLEL VINCENT HAVARD, D. B. X. S. M. An industrial human action recogniton dataset
in the context of industrial collaborative robotics. In: IEEE International Conference on Human-
Machine Systems ICHMS. [s.n.], 2020. Disponível em: <https://github.com/vhavard/InHARD>.

DAMEN, D.; DOUGHTY, H.; FARINELLA, G. M.; FIDLER, S.; FURNARI, A.; KAZAKOS,
E.; MOLTISANTI, D.; MUNRO, J.; PERRETT, T.; PRICE, W.; WRAY, M. Scaling egocentric
vision: The epic-kitchens dataset. In: Proceedings of the European Conference on Computer
Vision (ECCV). [S.l.: s.n.], 2018. p. 720–736.

DEVLIN, J.; CHANG, M.-W.; LEE, K.; TOUTANOVA, K. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. 2019. Disponível em:
<https://arxiv.org/abs/1810.04805>.

DOSOVITSKIY, A.; BEYER, L.; KOLESNIKOV, A.; WEISSENBORN, D.; ZHAI, X.;
UNTERTHINER, T.; DEHGHANI, M.; MINDERER, M.; HEIGOLD, G.; GELLY, S.;
USZKOREIT, J.; HOULSBY, N. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. 2021. Disponível em: <https://arxiv.org/abs/2010.11929>.

https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/2103.15691
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1705.10146
https://arxiv.org/abs/1911.03584
https://api.semanticscholar.org/CorpusID:3958369
https://api.semanticscholar.org/CorpusID:3958369
https://github.com/vhavard/InHARD
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2010.11929

Bibliography 44

DUCHI, J.; HAZAN, E.; SINGER, Y. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, v. 12, n. Jul, p. 2121–2159,
2011.

FEICHTENHOFER, C. X3D: Expanding Architectures for Efficient Video Recognition. 2020.
Disponível em: <https://arxiv.org/abs/2004.04730>.

GIRASE, H.; GANG, H.; MALLA, S.; LI, J.; KANEHARA, A.; MANGALAM, K.; CHOI, C.
LOKI: long term and key intentions for trajectory prediction. CoRR, abs/2108.08236, 2021.
Disponível em: <https://arxiv.org/abs/2108.08236>.

GOYAL, R.; KAHOU, S. E.; MICHALSKI, V.; MATERZYNSKA, J.; WESTPHAL, S.;
KIM, H.; HAENEL, V.; FRUEND, I.; YIANILOS, P.; MUELLER-FREITAG, M. et al. The
"something something" video database for learning and evaluating visual common sense. In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV). [S.l.: s.n.],
2017. p. 5842–5850.

GRANDINI, M.; BAGLI, E.; VISANI, G. Metrics for Multi-Class Classification: an Overview.
2020. Disponível em: <https://arxiv.org/abs/2008.05756>.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep Residual Learning for Image Recognition. 2015.
Disponível em: <https://arxiv.org/abs/1512.03385>.

HOWARD, A. G.; ZHU, M.; CHEN, B.; KALENICHENKO, D.; WANG, W.; WEYAND,
T.; ANDREETTO, M.; ADAM, H. MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. 2017. Disponível em: <https://arxiv.org/abs/1704.04861>.

HUTTER, F.; HOOS, H.; LEYTON-BROWN, K. An efficient approach for assessing
hyperparameter importance. In: XING, E. P.; JEBARA, T. (Ed.). Proceedings of the
31st International Conference on Machine Learning. Bejing, China: PMLR, 2014.
(Proceedings of Machine Learning Research, 1), p. 754–762. Disponível em: <https:
//proceedings.mlr.press/v32/hutter14.html>.

KARPATHY, A.; TODERICI, G.; SHETTY, S.; LEUNG, T.; SUKTHANKAR, R.; FEI-FEI,
L. Large-scale video classification with convolutional neural networks. In: CVPR. [S.l.: s.n.],
2014.

KING, G.; ZENG, L. Logistic regression in rare events data. Political Analysis, v. 9, p. 137–163,
Spring 2001.

KINGMA, D. P.; BA, J. Adam: A Method for Stochastic Optimization. 2017. Disponível em:
<https://arxiv.org/abs/1412.6980>.

KISHIMOTO, M. Naruto. Tokyo, Japan: Shueisha, 1999.

KON, Y.; FU, Y. Human action recognition and prediction: A survey. International Journal of
Computer Vision, v. 130, p. 1366–1401, 2022.

KONDRATYUK, D.; YUAN, L.; LI, Y.; ZHANG, L.; TAN, M.; BROWN, M.; GONG, B.
MoViNets: Mobile Video Networks for Efficient Video Recognition. 2021. Disponível em:
<https://arxiv.org/abs/2103.11511>.

https://arxiv.org/abs/2004.04730
https://arxiv.org/abs/2108.08236
https://arxiv.org/abs/2008.05756
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1704.04861
https://proceedings.mlr.press/v32/hutter14.html
https://proceedings.mlr.press/v32/hutter14.html
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2103.11511

Bibliography 45

KONG, Y.; TAO, Z.; FU, Y. Deep sequential context networks for action prediction. In: IEEE.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[S.l.], 2017. p. 1473–1481.

LECUN, Y.; JACKEL, L. D.; BOSER, B.; DENKER, J. S.; GRAF, H. P.; GUYON, I.;
HENDERSON, D.; HOWARD, R. E.; HUBBARD, W. Comparison of learning algorithms for
handwritten digit recognition. In: Proceedings of the International Conference on Artificial
Neural Networks (ICANN). [S.l.: s.n.], 1989.

LIU, L.; JIANG, H.; HE, P.; CHEN, W.; LIU, X.; GAO, J.; HAN, J. On the Variance of the
Adaptive Learning Rate and Beyond. 2021. Disponível em: <https://arxiv.org/abs/1908.03265>.

LIU, Z.; LIN, Y.; CAO, Y.; HU, H.; WEI, Y.; ZHANG, Z.; LIN, S.; GUO, B. Swin
Transformer: Hierarchical Vision Transformer using Shifted Windows. 2021. Disponível em:
<https://arxiv.org/abs/2103.14030>.

LIU, Z.; MAO, H.; WU, C.-Y.; FEICHTENHOFER, C.; DARRELL, T.; XIE, S. A ConvNet for
the 2020s. 2022. Disponível em: <https://arxiv.org/abs/2201.03545>.

LOSHCHILOV, I.; HUTTER, F. SGDR: Stochastic Gradient Descent with Warm Restarts.
2017. Disponível em: <https://arxiv.org/abs/1608.03983>.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, Springer, v. 5, p. 115–133, 1943.

MERKEL, D. Docker: lightweight linux containers for consistent development and deployment.
Linux journal, v. 2014, n. 239, p. 2, 2014.

MICCHELLI, C. A. Interpolation of scattered data: Distance matrices and conditionally
positive definite functions. Constructive Approximation, v. 2, p. 11–22, 1986. Disponível em:
<https://api.semanticscholar.org/CorpusID:14461054>.

MLFLOW. MLflow: A Tool for Managing the Machine Learning Lifecycle. 2024.
<https://mlflow.org/>. Accessed: 2024-09-30.

NAIR, V.; HINTON, G. E. Rectified linear units improve restricted boltzmann machines.
In: Proceedings of the 27th International Conference on International Conference on
Machine Learning. Madison, WI, USA: Omnipress, 2010. (ICML’10), p. 807–814. ISBN
9781605589077.

NVIDIA. NVIDIA GPU Cloud (NGC) Containers. 2024. <https://catalog.ngc.nvidia.com/>.
Accessed: 2024-09-30.

OZAKI, Y.; NOMURA, M.; ONISHI, M. Hyperparameter optimization techniques in machine
learning: Overview and features. IEICE Journal D, J103-D, n. 9, p. 615–631, 09 2020. ISSN
1881-0225. Early release date: 2020/05/14.

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.;
GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V. et al.
Scikit-learn: Machine learning in python. Journal of machine learning research, v. 12, n. Oct,
p. 2825–2830, 2011.

https://arxiv.org/abs/1908.03265
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/1608.03983
https://api.semanticscholar.org/CorpusID:14461054
https://mlflow.org/
https://catalog.ngc.nvidia.com/

Bibliography 46

ROBINSON, N.; TIDD, B.; CAMPBELL, D.; KULI, D.; CORKE, P. Robotic vision for
human-robot interaction and collaboration: A survey and systematic review. ACM Transactions
on Human-Robot Interaction, Association for Computing Machinery (ACM), v. 12, n. 1, p. 1–
66, fev. 2023. ISSN 2573-9522. Disponível em: <http://dx.doi.org/10.1145/3570731>.

RUSSELL, S.; NORVIG, P. Inteligência Artificial - Uma Abordagem Moderna. GEN LTC,
2022. ISBN 9788595158870. Disponível em: <https://books.google.com.br/books?id=
5Xf0zwEACAAJ>.

RYOO, M. S.; AGGARWAL, J. K. UT-Interaction Dataset, ICPR con-
test on Semantic Description of Human Activities (SDHA). 2010.
"http://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html".

RYOO, M. S.; FUCHS, T. J.; XIA, L.; AGGARWAL, J. K.; MATTHIES, L. Robot-centric
activity prediction from first-person videos: What will they do to me? In: 2015 10th ACM/IEEE
International Conference on Human-Robot Interaction (HRI). [S.l.: s.n.], 2015. p. 295–302.

SANFORD, C.; HSU, D.; TELGARSKY, M. Representational Strengths and Limitations of
Transformers. 2023. Disponível em: <https://arxiv.org/abs/2306.02896>.

SCHOLTZ, J. Theory and evaluation of human robot interactions. In: 36th Annual Hawaii
International Conference on System Sciences, 2003. Proceedings of the. [S.l.: s.n.], 2003. p. 10
pp.–.

SHOEYBI, M.; PATWARY, M.; PURI, R.; LEGRESLEY, P.; CASPER, J.; CATANZARO, B.
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.
2020. Disponível em: <https://arxiv.org/abs/1909.08053>.

SIMONYAN, K.; ZISSERMAN, A. Very Deep Convolutional Networks for Large-Scale Image
Recognition. 2015. Disponível em: <https://arxiv.org/abs/1409.1556>.

STERGIOU, A.; DAMEN, D. The wisdom of crowds: Temporal progressive attention for early
action prediction. In: IEEE/CVF Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.],
2023.

STERGIOU, A.; POPPE, R. Adapool: Exponential adaptive pooling for information-retaining
downsampling. IEEE Transactions on Image Processing, v. 32, p. 251–266, 2023.

SZEGEDY, C.; VANHOUCKE, V.; IOFFE, S.; SHLENS, J.; WOJNA, Z. Rethinking the
Inception Architecture for Computer Vision. 2015. Disponível em: <https://arxiv.org/abs/1512.
00567>.

TOUVRON, H.; CORD, M.; DOUZE, M.; MASSA, F.; SABLAYROLLES, A.; JéGOU, H.
Training data-efficient image transformers distillation through attention. 2021. Disponível em:
<https://arxiv.org/abs/2012.12877>.

TRAN, D.; BOURDEV, L.; FERGUS, R.; TORRESANI, L.; PALURI, M. Learning
Spatiotemporal Features with 3D Convolutional Networks. 2015. Disponível em: <https:
//arxiv.org/abs/1412.0767>.

TULI, T. B.; PATEL, V. M.; MANNS, M. HARNets: Human Activity Recognition
Networks Based on Python Programming Language. Zenodo, 2022. Disponível em:
<https://doi.org/10.5281/zenodo.6366665>.

http://dx.doi.org/10.1145/3570731
https://books.google.com.br/books?id=5Xf0zwEACAAJ
https://books.google.com.br/books?id=5Xf0zwEACAAJ
https://arxiv.org/abs/2306.02896
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/1412.0767
https://arxiv.org/abs/1412.0767
https://doi.org/10.5281/zenodo.6366665

Bibliography 47

VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.; GOMEZ, A. N.;
KAISER, L.; POLOSUKHIN, I. Attention is all you need. CoRR, abs/1706.03762, 2017.
Disponível em: <http://arxiv.org/abs/1706.03762>.

VIRTANEN, P.; GOMMERS, R.; OLIPHANT, T. E.; HABERLAND, M.; REDDY, T.;
COURNAPEAU, D.; BUROVSKI, E.; PETERSON, P.; WECKESSER, W.; BRIGHT, J.; van
der Walt, S. J.; BRETT, M.; WILSON, J.; MILLMAN, K. J.; MAYOROV, N.; NELSON, A.
R. J.; JONES, E.; KERN, R.; LARSON, E.; CAREY, C. J.; POLAT, İ.; FENG, Y.; MOORE,
E. W.; VanderPlas, J.; LAXALDE, D.; PERKTOLD, J.; CIMRMAN, R.; HENRIKSEN, I.;
QUINTERO, E. A.; HARRIS, C. R.; ARCHIBALD, A. M.; RIBEIRO, A. H.; PEDREGOSA,
F.; van Mulbregt, P.; SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, v. 17, p. 261–272, 2020.

WANG, L.; HUANG, B.; ZHAO, Z.; TONG, Z.; HE, Y.; WANG, Y.; WANG, Y.; QIAO, Y.
VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking. 2023. Disponível em:
<https://arxiv.org/abs/2303.16727>.

WANG, S.; XIE, Z.; LI, Y.; LIN, D.; LUO, P. Videomae v2: Scaling video masked autoencoders
with dual masking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). [S.l.: s.n.], 2023.

WANG, W.; CHANG, F.; ZHANG, J.; YAN, R.; LIU, C.; WANG, B.; SHOU, M. Z. Magi-net:
Meta negative network for early activity prediction. IEEE Transactions on Image Processing,
v. 32, p. 3254–3265, 2023.

WANG, Y.; LI, K.; LI, X.; YU, J.; HE, Y.; WANG, C.; CHEN, G.; PEI, B.; YAN, Z.; ZHENG,
R.; XU, J.; WANG, Z.; SHI, Y.; JIANG, T.; LI, S.; ZHANG, H.; HUANG, Y.; QIAO, Y.;
WANG, Y.; WANG, L. InternVideo2: Scaling Foundation Models for Multimodal Video
Understanding. 2024. Disponível em: <https://arxiv.org/abs/2403.15377>.

XIONG, R.; YANG, Y.; HE, D.; ZHENG, K.; ZHENG, S.; XING, C.; ZHANG, H.; LAN,
Y.; WANG, L.; LIU, T.-Y. On Layer Normalization in the Transformer Architecture. 2020.
Disponível em: <https://arxiv.org/abs/2002.04745>.

ZHANG, A.; LIPTON, Z. C.; LI, M.; SMOLA, A. J. Dive into Deep Learning. [S.l.]:
Cambridge University Press, 2023. <https://D2L.ai>.

ZHANG, W.; TANIDA, J.; ITOH, K.; ICHIOKA, Y. Shift-invariant pattern recognition neural
network and its optical architecture. In: Proceedings of Annual Conference of the Japan Society
of Applied Physics. [S.l.: s.n.], 1988.

http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2303.16727
https://arxiv.org/abs/2403.15377
https://arxiv.org/abs/2002.04745
https://D2L.ai

Annex

49

ANNEX A – Meta-actions and actions
from the InHARD dataset

ID Meta action label Action label

0 No action No action
1 Consult sheets Consult sheets
2 Turn sheets Turn sheets
3 Take screwdriver Take screwdriver
4 Put down screwdriver Put down screwdriver
5 Picking in front Catch Profile P040

Catch Fixation FIXA1
Catch Fixation FIXA2
Catch Pillow block bearing PAL4019

6 Picking left Catch Fixation FIXT
Catch Fixation FIXL
Catch Cover CAPO
Catch Nut ECR8
Catch Bolt B835
Catch Bolt B840
Catch Bolt B820
Catch Fixture key LARD
Catch Bolt B820PT
Catch Strap clamps BRIT

7 Take measuring rod Take measuring rod
8 Put down measuring rod Put down measuring rod
9 Take component Catch Fixation FIXT

Catch Fixation FIXL
Catch Cover CAPO
Catch Nut ECR8
Catch Bolt B835
Catch Bolt B840
Catch Bolt B820
Catch Fixture key LARD
Catch Bolt B820PT

ANNEX A. Meta-actions and actions from the InHARD dataset 50

Catch Strap clamps BRIT
10 Put down component Put down Fixation FIXT

Put down Fixation FIXL
Put down Cover CAPO
Put down Nut ECR8
Put down Bolt B835
Put down Bolt B840
Put down Bolt B820
Put down Fixture key RD
Put down Bolt B820PT
Put down Strap clamps BRIT
Put down Fixation FIXT
Put down Fixation FIXL
Put down Cover CAPO
Put down Nut ECR8
Put down Bolt B835
Put down Bolt B840
Put down Bolt B820
Put down Fixture key RD
Put down Bolt B820PT
Put down Strap clamps BRIT

11 Assemble system Place LARD on Profile P360-1
Place FIXA1 on LARD at 160mm
Screw FIXA1 with B820
Place LARD on P360-1
Place CAPO on P360-1
Place BRIT1 and BRIT2 on P360-2
Place FIXL on P360-2
Place FIXA2 on P360-2
Screw FIXL with B820PT
Screw FIXA2 with B820
Place BRIT1 and BRIT2 on P040
Place P040 on P360-2
Screw P040 with B820PT
Place LARD on P040 (P360-2)
Place FIXA1 on P360-2
Place FIXA2 on P360-2

ANNEX A. Meta-actions and actions from the InHARD dataset 51

Place DI2T on P360-2
Place ECR8 on DI2T
Screw P360-2 with B835

12 Take subsystem Put down Profile P360-1
Put down Lower Part

13 Put down subsystem Catch P360-1
Catch P360-2

Source: DALLEL Vincent HAVARD (2020).

	f571df2c94e5d004c442cecd6f352a2b5263ff95a91fcb3d9d29a50d80b4b1fb.pdf
	201f9bdce281ce329b2fc404553f14cacabdab8047dc6c742e2a7e520d8cccd1.pdf
	f571df2c94e5d004c442cecd6f352a2b5263ff95a91fcb3d9d29a50d80b4b1fb.pdf
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations and Acronyms
	List of Symbols
	Contents
	Introduction
	Justification
	Objectives
	Main objectives
	Specific objectives

	Structure of the Monograph

	Literature Review
	Theoretical Foundations
	Action
	Action recognition
	Action prediction
	Long-term action prediction
	Short-term action prediction
	Early action prediction

	Deep Learning
	Artificial Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	3D Convolutional Networks

	Attention Mechanisms and Transformers
	Attention
	Attention Scoring Functions
	Masked Attention
	Bahdanau Attention Mechanism
	Multi-head Attention
	Self-Attention
	Positional Encoding
	Transformers

	Related Work
	Robotic Vision for Human-Robot Collaboration (HRC)
	Harnets
	Vision Transformers (ViT)
	Video Vision Transformer (ViViT)
	EAP attention models

	Final remarks

	Development
	Methodology
	Standardized Experiment environment
	Virtual environment
	Physical environment

	Dataset
	Model
	Backbone
	Head
	Fusion
	Precision
	Optmization

	Metrics
	Accuracy
	OvR macro-average ROC AUC score

	Experiments
	Hyperparameters tuning
	Training, validation and testing

	Results
	Hyperparameters tuning results
	Training and validation results
	Testing metrics results
	Training, validating, and testing with lower observation metrics
	Results comparison and discussion

	Final Considerations
	Conclusion
	Future work

	Bibliography
	Annex
	Meta-actions and actions from the InHARD dataset

