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Resumo

A proposta deste trabalho é revisar técnicas de supressão óssea em imagens de tórax. A forma mais
comum, porém não acessível, é através da Subtração de Dupla Energia (DES). Essa técnica exige
um hardware específico para a gerar e receber diferentes níveis de energia capaz de diferenciar os
materiais pelo número atômico. Baseado em deep learning, nosso método utiliza redes adversárias,
conhecidas como GAN’s. Especificamente utilizamos um tipo de GAN condicional (cGAN).
Para quantificar os resultados foi necessária a revisão das principais métricas utilizadas pelo
estado da arte. A busca se deu por trabalhos que utilizassem o mesmo dataset da proposta ou
técnicas similares. Com o dataset da JSRT, alcançamos um indice PSNR de 35.604, que se
apresentou melhor que o revisto na literatura e um coeficiente de similaridade, conhecido como
SSIM de 0.9703. Quanto ao loss, calculado pelo MS-SSIM, obtivemos o menor em comparação
aos trabalhos revisados.

Palavras-chave: Supressão óssea. Redes Neurais Adversárias. Aprendizado Profundo. Redes
Neurais Profundas.



Abstract

The purpose of this work is to review bone suppression techniques in chest imaging. The most
common but not accessible way is through Double Energy Subtraction (DES). This technique
requires specific hardware to generate and receive di�erent levels of energy capable of di�erenti-
ating materials by atomic number. Based on deep learning, our method uses adversarial networks,
known as GAN’s. Specifically we use a conditional GAN type (cGAN). To quantify the results,
it was necessary to review the main metrics used by the state of the art. The library search was
made looking for works that used the same dataset as the proposal or similar techniques. With
the JSRT dataset, we reached a PSNR index of 35.604, which was better than that reviewed in
the literature, and a similarity coe�cient, known as SSIM of 0.9703. As for the loss, calculated
by MS-SSIM, we obtained the lowest compared to the reviewed works.

Keywords: Bone Suppression. GAN. Deep Learning. Deep Neural Networks.
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1 Introduction

The computer’s power and advanced methods are growing, and it is helping daily of
various professionals with their tasks. The techniques such as optimized algorithms and distributed
processing are advancing and can be used to auxiliary on di�cult and tiring human functions.
Sometimes a professional spends hours making analyses and diagnoses of medical exams. The
technology, and computer-aided systems, can help these professionals work spending some
computer processing.

According to (WANG et al., 2019) a challenge for medicine and computer-aided diagnosis
is to make the lung analysis. Detecting any disease, for example, pneumonia, tumors, or any
illness’s evolution, can be better without bones shadow. In especial, for the analysis of the soft
tissue, it would be perfect if, in an image, all bones could be suppressed. A notorious company
in the medical image area is Carestream (MATTERS, 2014), in 2014, was published in their
White Paper Journal the benefits of the analysis of body images without bones. According to
the interviewed doctors, this image processing facilitates detecting and observing every possible
lesion or disease.

One type of image to make the bone suppression on lung images is called Dual-Energy.
We can get an image with high intensity and another with low intensity of x-ray signal from the
image generator system. These two signals allow us to simultaneously get the di�erent intensities
of pixels from the same object. The attenuation coe�cient of a bone is greater than the other chest
parts. Because of this, we can calculate the di�erence between atomic number bone, denser, and
lung soft-tissue, less dense. Regardless of costs, the only requirement of a dual-energy approach
is a machine able to emit and receive this kind of signal and generate the image. The technique
that uses dual-energy images to eliminate bone shadow is called Dual Energy Subtraction (DES).
Since 1981 we can find studies that broach this technique, such as (KRUGER et al., 1981), and
with the X-ray digital images quality improving, new ways to do bone subtraction emerged.

With the growth of Graphic Process Unity power (GPU), techniques using Machine
Learning and Deep Learning are being very frequently studied and researched to solve medical
problems such as (RAJARAMAN et al., 2021a; SUJATH; CHATTERJEE; HASSANIEN, 2020;
OLIVEIRA et al., 2021). The bone shadow elimination by computer processing is a way not to
expend much money buying dual-energy hardware and is an alternative to updating single-energy
equipment to do the task. In this study, we will quickly review the main techniques for bone
elimination on chest images. These strands will be analyzed and related to the primary purpose
of this work. A study as (JUHÁSZ et al., 2010) relates an experiment using image processing in a
GPU and an object detection approach to eliminate the shadows. We can use artificial intelligence
techniques, such as deep learning, as it is a specific task. In this way, a more recent work solved
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the task in (GUSAREV et al., 2017), which uses deep learning models to clean the soft-tissue
image.

1.1 Justification

According to Andrew and Isaac S., leading researchers in the medical area, they relate
humans and machines solve health problems with algorithms. On the comment in (BEAM;
KOHANE, 2018), it is possible to comprehend how GANs are less human-dependent if they are
correctly applied. We can go further in the theme and find the importance of bone suppression in
the assistance to analyzing chest images such (BERG et al., 2016), how to suppress the bones on
clinical images improve the analysis and helps on the daily tasks of health professionals. Diseases
such as nodules, COVID-19, and any lung infection or lesion have been a significant problem
to humanity in the last few years. Creating public research on this area will be an essential
contribution to society. This work can be used in clinical research and improve any part of the
lung diagnosis system that requires a clean soft-tissue chest image.

1.2 Objectives

This work aims study computational techniques for bone shadow elimination in chest
x-ray through deep learning and image processing. The target is generate by software chest images
without bones. Comparing the Figures 1.1 and 1.2, it is better to detect any anomaly on soft tissue
if the bones are removed. To realize this task, we used a GAN to generate less noise in soft lung
tissue. We used a DES dataset, a bone-suppressed lung image, as a ground truth for the training
process.

This approach can be applied to soft-tissue lung analysis in any computer-aided diagnosis
(CAD) system. The final model will be able to make bone suppression to other applications that
use the lung image. With this system, we will be able to endorse the necessity of systems to clean
the chest radiography decreasing errors in the final diagnosis.
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Figure 1.1 – Complete rib cage Figure 1.2 – Bone suppressed

Figure 1.3 – Comparing the possibility of views

1.3 Work Organization

The composition of this work is divided into chapters and subsections. In Chapter 2,
we can find state-of-the-art techniques, theoretical references, and related works with similar
approaches for bone suppression. Chapter 3 contains the used methodology, the description of
a Generative Adversarial Network used, and its Conditional version. After that, we describe
the model and the development environment and together we explain the GAN architecture. In
Chapter 4, we start talking about the dataset. After, we describe the experimental protocol used to
reach our results. After, we also present the used metrics to measure the model quality and how to
calculate other examples of metrics mentioned in the library review. After all of that, we present
the obtained results from experiments made with the test dataset. Finally, on the Conclusions
in Chapter 5, we finalize talking about our strong and weak points of this work, related to the
literature and we close with new possible works.

1.3.1 Monography Structure

Chapter 1: Introduction

Chapter 2: Literature Review

Chapter 3: Materials and Methods

Chapter 4: Results and Discussion

Chapter 5: Conclusion and Future Works
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2 Literature Review

The literature review was done by research studies, articles, and books that assess bone
shadow elimination or bone suppression. Techniques were found using dual-energy subtraction,
deep learning, auto-encoder, convolutional networks, and adversarial networks. The research was
carried out looking for works with outstanding results and a similar scenario to ours. In this way,
it allows us to verify the results obtained according to the data set used. We considered the results
that preserved the maximum of the features presented in the soft-tissue lung part.

There are di�erent approaches developed for bone suppression. We established a chrono-
logical order to show the techniques.

The first of them is related to lung disease detection and monitoring. (HORVÁTH et al.,
2009) proposed a process to suppress the bone on the lung image. The proposal is composed of
three processes to detect the edge rib on the cage. The gradient is calculated to find the edges.
After that, a statistical bone model is built and recalculated the image from the modified gradient,
reducing the shadow’s intensity inside the approximated border. Their innovation does not use
any previous information or datasets, and the algorithm eliminates the shadow caused by the ribs
of each image.

Another way to eliminate bone shadows on lung radiography is presented in (JUHÁSZ
et al., 2010). The authors find the contours of the bones, including clavicles and rib cage, the
heart contours and try to eliminate the shadows of these parts. The active shape model (ASM)
segmented the chest areas and eliminated the shadows. After being determined by points, the
object’s boundary is described by a vector. This vector contains pairs of coordinates of the curve
points. Each contour point is perpendicular to the contour. These positions were estimated and
decided using a gradient method. They used the Mahalanobis distance to find the new point.
The process to match the best contour representation is repeated until the image’s resolution is
increased.

Another study made by (LEE et al., 2012) has eliminated rib shadows as a process
composed of lung field identification, rib segmentation, rib intensity estimation, and finally, the
suppression task. The authors used a classical technique called Active Shape Model (ASM) to
identify the ribs boundary. To reduce the noise during the estimation was applied a bilateral filter.
So, they used a Generalized Hough Transform (GHT) to accurately the segmentation finding the
upper and lower rib border. Then, the Real-coded Genetic Algorithm (RCGA) was used to estimate
the rib gray-scale intensity. This model estimates the ribs edge based on the image gradient
information. After identifying the rib borders, the corresponding intensity was subtracted from
the original chest radiography. The performance was evaluated quantitatively using a Normalized
Mean Absolute Error (NMAE) between rib-removed images and the corresponding ground-truth
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images. The NMAE index was 0.03, better than 0.06 presented in a previous study.

Another proposal similar to (HORVÁTH et al., 2009), but with some modifications, is
(HORVÁTH et al., 2013). Both works are from the same author, but the second one is updated
and has some improvements. The work uses a Support Vector Machine to eliminate the rib’s
shadow. The algorithm essence is thought that the CNN filter establishes an adaptable bone edge
model to be subtracted from the original image. After the image gradient is formed along the
bone edge, the bone cage model is finally built based on the curve equation found by the model;
the rib upper and lower neighborhoods are defined. The article evaluates and makes an overview
of rib-cage segmentation. The study applied two di�erent procedures for each part of the rib
cage. This study used the Jaccard index to measure the intersection between the area marked
by an observer and algorithm marks. The authors used a threshold of 0.55 of the Jaccard index
to detect the rib. A metric used was the Distance of Found, which is calculated by pairing the
points of the reference borders with the segmented borders. The study shows that the results of
disease detection get better with bone suppression, which could eliminate around 52% of the false
positives detection of rib borders. As a result of bone shadow elimination, they used a metric
based on the intersection of the marked area predicted by the model. They reached a method that
can eliminate approximately 80% of bone shadows in the chest frontal and 84% for the posterior
part.

(SUZUKI et al., 2006) proposed a model trained by generated images “bone-like-images”
thought dense linear layers, and the bone-suppressed images can be computed by subtracting the
generated bone image from the corresponding original. The Massive Artificial Neural Network
(MATANN) predicts the bone image from a standard chest radiograph, which can be subtracted
from a similar image resulting in a soft-tissue image. The proposed MATANN is a high nonlinear
filter that can be trained using chest radiographs and the corresponding target images. The pixel
value is extracted from a chest X-ray and is input into the Artificial Neural Network (ANN), also
called a neural filter. It can be trained with input and corresponding images, which will learn.

In 2016, (BERG et al., 2016) proposed a method for bone shadow suppression in radiog-
raphy and preserving the original signal. The technical resource was developed using a neural
network trained by subtracting dual-energy images. The model trains with 146 images to extract
the rib cage. Their study used Spatial Transformation and did not present any clear metric to
measure the accuracy of bone suppression. The main challenge was maintaining the intercostal
una�ected because the front signal could overlay the backward representation. Their di�erential
showed it is possible to separate the lung and remove the shadow ribs even with a pacemaker.

The study developed by (GUSAREV et al., 2017) was made with a non-identified dataset.
The dataset was composed of 35 di�erent sources. From this amount of data, they generated
an augmented dataset with 4000 images. Just 10 images, not derived from the stage of data
augmentation, were used to test. A Contrast Limited Adaptive Histogram Equalization (CLAHE)
was applied to improve the quality of training images and feature extraction. This study proposed
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a Convolutional Neural Network (CNN) with 6-layers filters. The input layer of the model has a
440⇥ 440 pixels dimension. The Loss of Multi-Scale Structural Similarity Index (MS-SSIM)
obtained was 0.093. The authors did not calculate the PSNR. Other work related to our research
was (OH; YUN, 2018). They used a no-identified dataset composed of 348 paired images of
bones and suppressed. The division of train and test was not specified and the model architecture
used is composed of a CNN, GAN, and Haar Wavelets. The model input size was di�erential
because of the 1024⇥ 1024 pixels resolution. The MS-SSIM reached was 0.930 and the PSNR
24.08.

(YANG et al., 2017) test their proposal on the same dataset. They reached 0.976 of SSIM
and 38.7 of PSNR. They propose a Deep Learning method for bone suppression in a single
X-ray using cascade architecture of deep Convolutional Neural Networks (ConvNets) to map the
bone’s gradient domain. The main idea was to fuse with multi-scale bone gradients to improve
prediction quality. More specifically, they used a Cascade of Multi-scale ConvNets (CamsNet).
Their method does not require teaching from DES, but it requires segmentation and the border
locations of bony structures. A positive point in their research is that their method works and
performs considerably with di�erent types of X-ray sources.

In 2018, (ZHOU et al., 2018) divided the dataset into 170 images to train and 40 to test.
They used a Multi-scale Conditional Adversarial Network (MCA-Net). Their process produces a
virtual high-resolution chest soft-tissue image from a synthetic rib chain generated. The process
consists of two parts; the first generates bone images using a multi-scale fully convolutional
network, and the second generates soft-tissue chest images using bone suppression of the standard
CR with the virtual bone image generated. The model was tested with the JSRT dataset, and the
images were divided into 170 for train and 40 to test. The model reached a PSNR of 39.7 and an
SSIM of 0.884.

(OH; YUN, 2018) present two approaches; the first uses a conditional generative adversar-
ial network, and the second a Haar 2D wavelet decomposition. They used the Euclidean distance
between pairwise outputs to calculate the final result precision. They add to the experiments
adversarial training to maintain the sharpness of specific lesions and avoid suppressing them. The
main objective was to minimize the pixel-wise di�erences in bone suppression. The objective
was to propose an image-to-image translation better than disposed on literature. Furthermore,
they used a 2D wavelet decomposition as a perceptual guideline to minimize generic and ground
truth di�erences. Finally, it is proposed a rigorously evaluated model to suppress bones from
Dual Energy X-rays (DXRs). The Haar 2D wavelet decomposition is designed to have specific
features for a signal process. A domain and frequency are specified similarly to Fourier Transform.
The proposed architecture is based on (ISOLA et al., 2017), they changed the input system to
grayscale and the input size of the generator to 1024⇥ 1024. They did the experiments with a
non-identified dual-energy dataset. All the images were in DICOM format and were divided 80%
for the train and 20% for the test. According to the quantitative results, they used PSNR, NPS, and
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SSIM. For comparing the generated image and the target, histogram matching was used. The best
result was using CNN with GAN and Haar Wavelets. The PSNR index was 24.080, and on the
lungs region, they got 28.582. For the SSIM on the lung region, they got 0.93. For bone detection,
several images were observed, and so was perceptible parallel ribs arrangement. The proposed
model estimates an angle position for each image based on bone position. After this, they could
use the ribs contour estimation to determine the structure edges. Dynamic programming was
used to optimize the approximate curves, estimating the ribs’ lower and upper outlines. They got
a result of subtracting the clavicles as well. The shadow elimination is based on creating intensity
profiles on subtraction of vertically di�erentiated images, which can return to the original domain
by integration.

(ZARSHENAS et al., 2019) propose a study that has significant results. They propose
generating virtual dual-energy images, separating ribs and clavicles from soft-tissue chest radio-
graphs. The proposal is an Orientation-frequency-specific Deep Neural Network Convolution.
They evaluated the proposal in their dataset, composed of 118 chest images, and reached a PSNR
index of 29.82 and as SSIM of 0.912.

(CHEN et al., 2019) proposed a Cascaded Convolutional Network Model in Wavelet
Domain Decomposition to do the bone shadow elimination using 504 images from a proprietary
dataset, divided into 404 for training and 100 for testing. The trained network is used to predict
the wavelet coe�cients of the bone images. Thus, the predicted bone image is subtracted from the
source, generating a bone-free image to train the model. Their trained model reached an SSIM of
0.977 and a PSNR of 39.7.

In 2019, (MATSUBARA et al., 2020), proposed a Convolutional Neural Filter (CNF) for a
spatial filtering via CNN regression. This filter outputs a value for the bone component according
to the neighborhood of the target pixel. In this process, a bone image is generated and subtracted
from the original chest X-ray image. The images used in the study were obtained from Computer
Tomography (CT) data. These CT images were converted in isotropic voxels, projecting them in
the ventral-dorsal direction and applying a nonlinear transformation for bone enhancement. After
that, the filter is applied, isolating the bone-specific signal. Finally, the bone-extracted image
is obtained by subtracting the bone isolated from the original chest X-ray. Using the Japanese
Society of Radiological Technology (JSRT) to evaluate the trained model, they reached a PSNR
of 36.23 and an SSIM of 0.96.

Another study is (LIANG et al., 2020), the proposal is based on a Generative Adversarial
Network (GAN) that learns bone suppression from dual-energy chest radiographs. A GAN is
composed of two networks: a generator and a discriminator. The former creates images similar to
the training set, while the latter discriminates them, classifying them as real or artificial. The
authors evaluate two variations of GANs, namely Pix2Pix (ISOLA et al., 2017) with paired
radiographs and Cycle-GAN with unpaired radiographs. With a private dataset composed by
1,867 anonymized dual-energy the data was divided in 70% to train, 20% to test, and 10% to
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validation. The authors got an SSIM of 0.867 and a 36.078 on PSNR index for the suppression
task.

Another approach that makes bone segmentation for diagnoses uses a neural network
to segment the chest region. (ESLAMI et al., 2020) propose a multitask model that does organ
segmentation, and one of those processes on their pipeline is bone shadow elimination. A CNN-
based PatchGAN is used as a model architecture to do the bone suppression task. This architecture
produces a matrix of size k ⇤ k ⇤ 1 from an input tensor where k is the size of the image. They
used the JSRT dataset with 247 CXRs, including lung nodule images. All the images have the
2048⇥ 2048 pixel dimension, which was resized to 512⇥ 512 to adapt to the model entrance.
The architecture used to translate the images was Pix2Pix (ISOLA et al., 2017). The results
were evaluated by the SSIM, looking for similarity estimation and the MSE to measure the
di�erence between the predicted and ground truth values. Calculating the MS-SSIM the authors
got state-of-the-art results of 0.97.

On (SIRAZITDINOV et al., 2020) was used the ChestX-ray-14, a public dataset provided
by (GUSAREV et al., 2017). They used 24 images for the train, 7 for the test, and 4 for the
validation, with di�erent models and architectures such as autoencoder, U-Net, cGAN. With
all of them, the best precision was reached by the U-Net approach with 0.95 SSIM and 33.45
PSNR. Another study we can present is (ESLAMI et al., 2020), which used the augmented dataset
of JSRT. Composed by 1,235, the study did not mention the division size of the train and test
for the bone suppression part, just for the lung segmentation, but this is not our focus. For the
bone suppression part, the architecture was pix2pix, the model input size was 512x512, and they
calculated just the MS-SSIM, which was around 0.96 and 0.97.

Other similar work we can find on (ZHOU; ZHOU; SHEN, 2020). They propose a neural
network model for bone suppression based on image-to-image translation. The model consists of
dilated convolutions to avoid contextual information loss. Furthermore, the proposed method
enforces pixel intensity similarity to improve the suppression quality using a deep convolutional
network between the generated chest X-ray and the ground truth. The dilated convolution obtains a
more e�ective receptive field, improving the performance of the conditional GAN. The extraction
of visual features to generate the synthetic image was improved by expanding the receptive field to
preserve the resolution. This module was plugged into the encoder and decoder and is composed
based on U-Net architecture. Thus, the model bu�er zone is filled with zeros to complete this
process. The model of (ZHOU; ZHOU; SHEN, 2020) consists of a generator and a discriminator.
For the generator, they use a U-net-like architecture with dilated convolutions/deconvolutions. The
discriminator is based on PatchGAN to enforce the similarity of high-level feature representations.
Using the JSRT, divided into 192 images to train and 42 to test, they reached 0.97 for SSIM index
and 33.5 for PSNR.

(GOZES; GREENSPAN, 2020) presented a di�erent approach, building their dataset
from a Digital Reconstructed Radiographs (DRR) from a 664 Computer Tomography from a
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cancer dataset, the LIDC-IDRI. The division had 386 images to train, 129 to test, and 129 to
validate. The model and technique used were based on segmenting the bone structures in the CT
domain to generate a bone-suppressed image to train a Fourier Convolutional Neural Network
(FCNN) model available on (PRATT et al., 2017). The input of the trained network is 512⇥ 512,
and they got 0.7 on the SSIM index and 22.6 for PSNR. The di�erential was to apply a dilated
convolution and build an own dataset from a di�erent source.

(RAJARAMAN et al., 2021b) used the JSRT dataset available at (HYUNH, 2021). They
enhanced the contrast of the pixel values by 1%. The dataset composed of 4500 images was
divided into 90% to train, 10% to test, and 10% for validation. The proposed architecture is a
Residual Network model (ResNet-BS), where BS means Bone Suppression. The image size is
256⇥ 256, they experimented with 4 di�erent architectures with the same dataset. For this last
study, they got 0.9492 of SSIM and 34.0678 of PSNR.

To compare di�erent views and approaches for bone suppression, we established some
categories and main points to compare. One of them is the metrics, we focus on the PSNR index,
SSIM, and derivatives. The other was observing the used dataset and pre-processing of images.
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3 Materials and Methods

This Development section starts by describing the used methodology. After that, we
briefly explain a Generative Adversarial Network (GAN). After this stage, we present how works
a conditional GAN, known by cGAN. After that, we describe how is the training model and how
to generate the images during the training. In the end, we present the complete model composition
process and a brief description of each process on the full pipeline to the image processing.

3.1 Methodology

In this section, we present how Adversarial Networks are built and how a conditional
variation of a GAN works. After this, we present the step-by-step used to build the model and
illustrate the general architecture.

3.1.1 Generative Adversarial Network (GAN)

This work uses Generative Adversarial Network (GAN) as architecture. GAN is a Ma-
chine Learning (ML) framework that uses two neural networks. These networks are called
Generative Network (Generator) and Discriminative Network (Discriminator). The Generator
is a Convolutional Neural Network (CNN), and the Discriminator is a Deconvolutional Neural
Network (DNN). The Generator aims to produce data as close as possible to the train data, and the
Discriminator classifies the generated data. To illustrate the context in this work, we use images
without bones so that the Generator would generate artificial images like that. The Discriminator
will work on classifying these generated images as real or fake. To illustrate, we show Figure 3.1.

To better illustrate the architecture of a GAN, we can cite (OH; YUN, 2018). In an
adversarial relationship, we identified G as the generator and D as discriminators. The Generator

is a di�erentiable function, which takes the z variable for initial input for the model, so the
sample G(z) intent draw with the same distribution as observed in variable x. The Discriminator

is a di�erentiable function called D as a binary classifier taking x and G(z) and it outputs the
probability. The discriminator is trained for a real and fake sample di�erently from traditional
supervised learning. Finally, it generates a cross-entropy using a Sigmoid function. Below we
can see the illustration on 3.1
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Figure 3.1 – GAN schema based on (OH; YUN, 2018)

3.1.2 Condictional Generative Adversarial Networks (cGAN)

A Conditional GAN can be comprehended according to (MIRZA; OSINDERO, 2014). To
illustrate, for example, in a traditional GAN, we do not have control over the generated data, this
is called an unconditioned generative model. Nevertheless, we can direct the model predictions
to the objective, establishing conditions and class labels or part of the target data. In the figure
below based on (OH; YUN, 2018), we can illustrate, through the 3.2, the discriminator x and y

presented as inputs to a discriminative function.

Figure 3.2 – Condictional GANs schema

As described, our proposal is based on a Conditional GAN, because the generator and
discriminator are conditioned to an auxiliary image target.

3.2 Model and develop environment

We present a diagram that expresses the model composition and explains each devel-
opment step in this section. First, we create the functions and elements for the Generator. It is
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composed by Downsample and Upsample layers. To complete the process, we create the loss

function that will be useful on Generator adjustment weights. After that, we create the Discrim-
inator with its internal layers. Finally, we define the checkpoints rules and the Train and Test
functions. This can be illustrated by a figure 3.3.

Figure 3.3 – Model description

3.2.1 Building the Model

The training process can be divided into two steps. The first moment, we created the
folders to dispose of the data to be consumed by the train part of the model, and after creating
the folder to receive the model checkpoints. During the training process, a set of few images are
getting to readjust the model weights called validation set.

As we can see in the reference study, our proposal is composed of a generator based on a
U-Net architecture and a discriminator represented by a PatchGAN, as proposed by (ISOLA et
al., 2017). In a few words, the PatchGAN is a type of discriminator that only penalizes the scale
of local image patches. Each patch of images is classified as whether a sample is real or fake.

Figure 3.4 – Model description
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The input image is composed of 2 parts. According the 3.4 The left is the chest x-ray
without the bones, which is our ground truth. The right one is the source image with the bones.
The process starts dividing the image input to encoding each half to the format uint8 tensor. This
is the common format that is usually used on Tensorflow framework. After loading the pair of
images, they are separated into two parts to train the model. After that, we establish the bu�er
size, the batch size, and the image dimensions in 256⇥ 256.

The generator is based on a U-net architecture composed of an encoder (down-sampler)
and a decoder that makes the up-sampling. The encoder block has the convolution process after
a batch normalization and has as activation function Leaky ReLU. We know that activation
functions can be changed based on our purpose. ReLU function does not activate all neurons
simultaneously, and it makes the network sparse.

Inside the Generator, the architecture is composed by down stack and up stack. The first
one is formed by 8 downsample layers and the second one is formed by 7 upsample layers with
dropout. On the Discriminator layers we have 3 downsample sequential operations with Leaky
Relu as activation function. To comprehend details we ilustrate the architecture on 3.5.

Figure 3.5 – Upsample and Downsample

3.2.1.1 Downsample - Encoder layer

The Downsample model, starts with a random normal initialize and is composed by
Sequential Keras layer, which uses a standard 2D convolutional operations. We deactivated the
Batch normalization in the first convolutional block, but the other layers are activated by default.
The last step is applied and the Leaky ReLU. The down_stack is composed of 8 layers, and it
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starts with the shape (256, 256, 3). In the future, we can adapt the model to a single-channel
image. However, initially, just for tests and study, we decided to leave it.

3.2.1.2 Upsample - Decoder layer

This layer starts with a random normal initialization and is composed of a Sequential
Keras model that also uses a standard 2D convolutional network. As on the first Sequential
process mentioned, both were built to provide training and inference features on the model. Some
of them were applied the dropout on intention to reduce the processing time.

3.2.2 Generator Loss

As described in (ISOLA et al., 2017), GAN’s learn a loss and adapt it to the data. So
the output which is distant from the target is penalized. A sigmoid cross-entropy represents the
generator loss in this study. Another metric used was an L1 loss, calculated between the generated
image and the target image based on mean absolute error (MAE). The formula to calculate it
proposed by the authors was:

Generator_loss = gan_loss+ LAMBDA ⇤ l1_loss

3.2.3 Discriminator

The Discriminator proposed in pix2pix is a convolutional PatchGAN classifier. It tries to
classify each image as artificial or real. The steps are composed of Convolution layers, Batch
normalization, and a Leaky ReLU activation layer. The classifier receives the target and generated
images, and the Discriminator classifies both images.

3.2.4 Discriminator loss

To evaluate the discriminator, we calculate its loss function. It means how the model is
performing classifying real and artificial images. Basically, we pass to the discriminator loss
function the real images and the generated images and we do the data verification for each image
that was classified correctly by the discriminator. The final loss is the sum of the real and the
generated losses. The real and the generated loss, are calculated using the Sigmoid Cross-entropy.

3.2.5 Training the model

We feed the input and target images into the network in the training step. After that, the
generator calculates the discriminator loss. The gradient loss is optimized over each interaction. To
train our GAN we use a loop interaction, this loop, involves the process of generate, discriminate,
and validation during the train. Every 1k step is displayed the generated images to show the
progress, and every 5k step is saved the checkpoints.
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3.2.5.1 Generate images and Test

Finally, with the generator compiled and trained, we can use it to generate artificial images.
We load the model, input the test data, and compare visually the Input Image, the Ground Truth,
and the Predicted Image.

After all this process, we have a model ready to be used to predict lung images with the
bone suppressed. This saved checkpoint can be found in a specific folder indicated on the code.
It is possible to measure the checkpoint’s quality and take the best one. We need to separate a
known set of images source and targets for this process.
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4 Results and Discussion

In this chapter, we will discuss about the dataset and results obtained from this study in
comparing other works with a similar approach.

4.1 Dataset

The dataset used in our research comprises 240 pairs of dual energy chest radiography..
Available on (HYUNH, 2021), is a set of DES images. This dataset is available on the Institute
of Electrical and Electronics Engineers (IEEE) site. The Japanese Society of Radiological
Technology (JSRT) dataset is available with augmented data such as rotation and horizontal and
vertical position changes between -30 and 30 degrees. These images were prepared, with each
correspondent paired with bones and the other with removed shadows. These 240 pairs were
rotated less than 90 degrees to augment the data.

For example we present some images below from the JSRT dataset.

Figure 4.1 – Complete rib cage Figure 4.2 – Bone suppressed



Chapter 4. Results and Discussion 17

Figure 4.3 – Complete rib cage Figure 4.4 – Bone suppressed

Figure 4.5 – Complete rib cage Figure 4.6 – Bone suppressed

4.2 Experimental protocol

To reproduce these experiments is necessary to use the (ISOLA et al., 2017) framework
for cGAN architecture. If is used a GPU with 16G of RAM, on this code the bu�er size has
to be 400. The batch size needs to be 1. The image input size can be 256⇥ 256, 512⇥ 512 or
1024⇥1024. Inside the Generator or Discriminator, the activation function is a Leaky ReLU with
Batch normalization on each convolution. The Generator optimizer is the Adam with a learning
rate of 2�4 and a beta value of 0.5. The Discriminator optimizer is also the Adam optimizer with
a learning rate of 2�4 and a beta value of 0.5. For the training phase, we used 45K interactions.
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We used a total of 4,080 images. To do our experiments, we divided the image pairs into
three categories: 3223 for the train (79%), 816 for the test (20%), and 40 for validation (1%).
The training set was used to extract the features and balance the weights of the proposed cGAN.
During the training, the validation set was used to check the train’s model output. Finally, the test
set was used to measure how accurate the model was.

4.3 Metrics

Below, we presented a brief description and explanation of the most used metrics to
measure the model quality on the bone suppression task and make the literature review. In our
proposal, we decided to use PSNR, SSIM, and MS-SSIM.

4.3.0.1 Mean Square Error (MSE)

Before understand Peak Signal-to-Noise Ratio (PSNR), we must explain the Mean Square
Error (MSE). Given the images f and g, both of M ⇥N size. The relation is a squared di�erence
between two pixels value and can be expressed by the Equation 4.1.

MSE(f, g) =
1

MN

MX

i=1

NX

i=1

(fij � gij)
2 (4.1)

4.3.0.2 Peak Signal-to-Noise Ratio (PSNR)

Given the images f and g, both of M ⇥N size (HORE; ZIOU, 2010) calculate the PSNR
index with the Equation 4.2.

PSNR(f, g) = 10 ⇤ log10(
2552

MSE(f, g)
) (4.2)

In other words, according to (RAJARAMAN et al., 2021b), the Peak Signal-to-noise
Ratio is a metric that computes pixel values between the predicted and ground truth images.
This ratio is used to provide a quantitative assessment of the predicted image. A higher value for
PSNR indicates a higher quality of prediction. Concluding, when PSNR approches infinity, MSE
approaches zero.

4.3.0.3 Structural Similarity Index Measure (SSIM)

Measuring image quality is a challenging problem without a reference. A metric that
measures an image’s content is needed independent of the di�erence of color intensity or lumi-
nosity. To solve this problem in 2004, (WANG et al., 2004) developed an index called Structural
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Similarity Index Measure (SSIM). This index compares pixel intensities’ local patterns with the
normalized luminance and contrast. We must have the same image size to measure the signal
quality. For example, we have two images x and y, respectively. First, we measure the luminance,
contrast, and structure. Finally, the three components are combined to yield an overall similarity
measure. For more details of this metric, please review (WANG et al., 2004).

To understand the SSIM, we need to know some details and variables that compose the
formula. The luminance is calculated by Eq. 4.3:

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
(4.3)

The contrast is calculated by Eq. 4.4:

c(x, y) =
2�x�y + c2
�2
x + �2

y + c2
(4.4)

The structure is calculated by Eq. 4.5:

s(x, y) =
�xy + c3
�x�y + c3

(4.5)

The SSIM index can be calculated using the luminosity, the contrast, and the structure
like below on Eq. 4.6.

SSIM(x, y) = [l(x, y)]↵.[c(x, y)]�.[s(x, y)]� (4.6)

Using 4.6 to form the main equation, we just set the weights ↵, �, � to 1, the formula can
be reduced to Eq. 4.7:

SSIM(x, y) =
(2µxµy + c1)(2�xy + c2)

(µ2
x + µ2

y + c1)(�2
x + �2

y + c2)
(4.7)

To better understand the variables, c1, c2 and c3 are constants to stabilize the division
and avoid a null denominator. Those µx and µy are the average of x and y signal values. The �x

and �y are the variance of x and y signal values. We use in our work, the SSIM according to
(RAJARAMAN et al., 2021b), the index provides a measurement of the similarity between the
ground truth and predicted images.
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4.3.0.4 Multi Scale Structural Similarity Index Measure (MS-SSIM)

Another version of SSIM, called Multi Scale Structural Similarity Index Measure (MS-
SSIM), was created to solve some specific class of measurement. According to (WANG et al.,
2004), this index is conducted over multiple scales to evaluate overall image quality. This index
is calculated based on SSIM, and the equation is:

PSNR(f, g) = 10 ⇤ log10
✓

2552

MSE(f, g)

◆
(4.8)

On Equation 4.8, the variables xj and yj are the content of the signal extraction window.
The M , on the equation, means the number of local signal extraction windows of the image.

4.4 Experimental results

We made a table with all results to be analyzed easily. Then, we will discuss and compare
our results with all the cited works. More specifically, we established the SSIM and PSNR as
basic metrics to compare. Another comparison key is the size of the digital image generated
from the models, which are 256⇥ 256, 512⇥ 512, and 1024⇥ 1024. Furthermore, we directly
compared our work and the approaches that used the same GAN architecture as ours.

Figure 4.7 display a sample generated from our GAN model after 45K training iterations.
The output is of the same size as the input algorithm. It has a size of 256 ⇥ 256. The model
is prepared to receive three channels, but our source is gray-scale. It generates the same color
output. Next, we present the Table 4.4 summarizing the main results.

Figure 4.7 – Input image (Source), Target image (Ground truth) and Predicted images
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Approaches Model and techniques SSIM PSNR

(GUSAREV et al., 2017) Auto-encoder and convolutional layers,
Auto-encoder and without down/up sample operations 0.907 -

(OH; YUN, 2018) Haar 2d Wavelet decomposition and vanilla pix2pix 0.930 24.08
(ESLAMI et al., 2020) Condictional GAN and dilated convolutions 0.97
(ZHOU; ZHOU; SHEN, 2020) Dilated convolution to expand the receptive field 0.97 33.5
(YANG et al., 2017) Cascade of multiscale CNN 0.976 38.7

(ZARSHENAS et al., 2019) Anatomy-specific orientation-frequency-specific
deep neural network convolution 0.912 29.82

(CHEN et al., 2019) Cascade of multiscale CNN & wavelet decomposition 0.977 39.40
(ZHOU et al., 2018) Multi-scale and conditional adversarial network 0.884 39.7

(MATSUBARA et al., 2020) Bone suppression for chest X-ray image
susing a convolutional neural 0.930 24.08

(LIANG et al., 2020) Cycle-GAN - Image-to-image translation 0.867 36.078
(SIRAZITDINOV et al., 2020) autoencoder, U-net, FPN, cGAN 0.955 33.45
(OH; YUN, 2018) CNN + GAN + Haar Wavelets 0.930 24.08
(GOZES; GREENSPAN, 2020) Hounsfield unit (HU) based segmentation and FCNN 0.70 22.6

(RAJARAMAN et al., 2021b) Residual Network Model (ResNet-BS),
where BS means Bone Suppression. 0.9492 34.0678

Our approach Conditional GAN 256⇥ 256 0.9402 34.604
Our approach Conditional GAN 512⇥ 512 0.9629 35.575
Our approach Conditional GAN 1024⇥ 1024 0.9703 35.604

Table 4.1 – Results from related works for bone suppression

In Table 4.4, we present the mean results of three executions . This table contains the
metrics from the reviewed studies indicating their precision in lung soft-tissue image generation.
At the end of the table, we can find our results according to the related metrics. We adapted our
results to possibly compare them with studies with similar approaches and used datasets.

Metric/Input Size 256⇥ 256 512⇥ 512 1024⇥ 1024
PSNR 34.6068 35.5753 35.6047
SSIM 0.9402 0.9629 0.9703

All the reviewed studies have a trade-o� between time to train the model, train data
amount, and if it is a supervised or non-supervised method. Our model depends directly on the
number of dual-energy images and the computational time training the cGAN.

In the reviewed literature, we find two studies with the input size of the image being
256⇥ 256. Using the dilated conditional GAN, (ZHOU; ZHOU; SHEN, 2020) with a smaller
input image size, they reached an SSIM 0.970 and a PSNR 33.50. Compared to our study, we did
not reach this accuracy using the same image size. In contrast, we proposed extending the image’s
dimensions and getting better accuracy. The (RAJARAMAN et al., 2021b) used a Residual
Network and divided the dataset in 90% for train 10% test and 10% for validation. Enhancing
1% the pixel contrast values, they got an SSIM of 0.9492 and a PSNR of 34.0678 with a low-
resolution image. Working with images of 256⇥ 256, we got results better than (RAJARAMAN
et al., 2021b), and with our architecture, our work is more embracing using high quality images
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than (ZHOU; ZHOU; SHEN, 2020). On the 256⇥ 256 size category we reached on this image
size an SSIM of 0.940 and a PSNR of 34.606.

Comparing our proposal with the reviewed works that used images with 512⇥ 512 size
dimensions (ESLAMI et al., 2020), used the same approach of image-to-image translation using
GAN. But to measure their model got 0.970, of a multi-scale SSIM. With the same image size
and neural architecture, (MATSUBARA et al., 2020) got an SSIM of 0.960 and a PSNR of
36.230. However, they set 19 images to train and just one for the test, which is small. Thus, we
can have an idea of their Convolutional Filter of six layers, but we can not confirm that the model
is accurate. Referring to that, we had more consistent results because we used more data in the
training phase. The (LIANG et al., 2020) divided their image set in 70% train 20% test and 10%
for validation, with a Cycle-GAN image-to-image translation, they got an SSIM of 0.867 and a
PSNR of 36.078.

In the same way, (GOZES; GREENSPAN, 2020) used the same input size of images and
got an SSIM of 0.70 and a PSNR of 22.6. The smallest size of 440⇥440 was used by (GUSAREV
et al., 2017), and they reached a multiscale SSIM of 0.907. The accuracy can not be compared
directly because of the di�erent input sizes. However, comparing our study with all those with
the same architecture and input size of 512⇥ 512, we got better results in this category.

Evaluating the performance of di�erent approaches using a bigger image size 1024⇥1024

dimension, we can find (OH; YUN, 2018), the authors used a similar approach like us, using a
CNN with GAN and wavelets. They reached an SSIM of 0.930 and a PSNR of 24.08 with 348
pairs of images. The dataset division was not detailed, and the source was not specified. On the
literature with 1080⇥ 1080 image size, we got (YANG et al., 2017; CHEN et al., 2019; ZHOU
et al., 2018; SIRAZITDINOV et al., 2020; ZARSHENAS et al., 2019) proposals. (YANG et
al., 2017) reached an SSIM better than ours, but the source dataset is not public, so we cannot
reproduce it. The (ZHOU et al., 2018) used 170 images to train and 40 to test. They used the
same architecture as us, but due to the little data to train, they reached an SSIM of 0.884 and a
PSNR of 39.70.

According to Table 4.4, we can observe that our results are close to the state-of-the-art
results, even better than some methods. Papers like (ESLAMI et al., 2020; ZHOU; ZHOU; SHEN,
2020; ZHOU et al., 2018; RAJARAMAN et al., 2021b) and our, used the JSRT dataset with a
similar approach. It is possible to see that our model achieved significant results. Studies like
(ESLAMI et al., 2020; ZHOU; ZHOU; SHEN, 2020; YANG et al., 2017; CHEN et al., 2019)
presented high results of similarity, but it is hard to reproduce their results because the dataset
and hyperparameters are not specified on the paper.

Below we present a table of the works that used the same JSRT dataset and the same
approach using GAN to solve the bone supression problem:
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Approaches Model and techniques SSIM PSNR
(OH; YUN, 2018) Haar 2d Wavelet decomposition and vanilla pix2pix 0.930 24.08
(ESLAMI et al., 2020) Condictional GAN and dilated convolutions 0.970
(ZHOU et al., 2018) Multi-scale and conditional adversarial network 0.884 39.7
(LIANG et al., 2020) Cycle-GAN - Image-to-image translation 0.867 36.078
(SIRAZITDINOV et al., 2020) autoencoder, U-net, FPN, cGAN 0.955 33.45
(OH; YUN, 2018) CNN + GAN + Haar Wavelets 0.930 24.08
Our approach Conditional GAN 256 ◊ 256 0.9402 34.604
Our approach Conditional GAN 512 ◊ 512 0.9629 35.575
Our approach Conditional GAN 1024 ◊ 1024 0.9703 35.604
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5 Conclusions and Future Works

In 2020, many researchers focused on lung research because of COVID-19; obtaining
a soft-tissue chest image facilitates the analyses and diagnosis of the disease. As we can see
in the literature review, the bones on the chest image can sometimes be noisy when the soft
tissue is diagnosed. There are plenty of ways to attenuate the shadows to improve the medical
analysis. Some of those require a specific type of equipment that the costs are not accessible and
exposes the patient to a double x-ray emission. Other approaches use classical computer image
processing, looking for contours and edges. Other approaches use neural networks as filters or
feature extractors. The choice of our work was to use deep learning with Adversarial Networks.

Our proposal is a CNN-based solution that learns from a dataset source. Our solution
uses a DES dataset to show the cGAN the source and the target, and the model will learn how to
generate an artificial image like the target dataset as possible. In the literature review, we could
observe some not covered points. Some studies did the experiments and did not mention how
many iterations or code parameters were used. Our results were near similar to state-of-the-art
methods using the same metrics. For example, our approach is the third-best using PSNR, and
for SSIM, we got results closer to the average performances.

To conclude this study, we could analyze the literature review and compare our results.
We could conclude that our approach is promising, getting better results than classical methods
and other deep learning strategies. As we can see, the model is promising, and that it can be
trained with real-size images such as 1024⇥ 1024 or bigger. Furthermore, the proposed model
is a proof of concept that uses a public dataset and public code and shows better results than
state-of-the-art methods.

5.1 Future Works

In the future, we aim to increase the input model for a high resolution, such as 2048⇥2048,
as we can use it with real images in a Digital Imaging and Communications in Medicine (DICOM)
format. We are planning, as well, to apply more image processing techniques to increase the image
quality, reduce the noise, and attenuate the shadows. Another future work is to use a dual-energy
dataset, make the bone subtraction with classic techniques, and train our cGAN-based model.

Also, we would like to leave this work open to be used in other research, such as detecting
lesions, infections, or diseases in the lung.
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5.2 Published Works

This work gave rise to the scientific article "Applying a Conditional GAN for Bone
Suppression in Chest Radiography Images", published in 2022, at the Integrated Software and
Hardware Seminar (SEMISH), one of the main events of the academic and technology community
in the area of computing.

1. Hugo Ziviani. Applying a Conditional GAN for Bone Suppression in Chest Radiography
Images. Niterói - Rio de Janeiro: Conferência, 2022.
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