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Abstract
The present study investigates the application of machine learning algorithms to estimate
body fat percentage. A publicly accessible sample consisting of adult males with their
corresponding body fat percentage and anthropometric measurements was utilized to
train the various models. The dataset was divided into six categories based on weight
range. Five machine learning techniques, including linear regression, decision tree, and
random forest, were employed to analyze the data and predict body fat percentage. The
results indicated that the linear regression model demonstrated the highest accuracy and
that the predictions were more accurate for the group with weight greater than 90 kg.
Additionally, it was observed that the measurement of abdominal circumference alone
was sufficient for an adequate prediction. In conclusion, this study suggests that machine
learning can be a valuable tool for estimating body fat percentage. Further investigation
is required to confirm these findings in a larger and more diverse sample population.

Key-words: machine learning; body fat; anthropometric measurements



Resumo
Este estudo investiga a aplicação de algoritmos de aprendizado de máquina para estimar
o percentual de gordura corporal. Um conjunto de dados público de indivíduos com seus
respectivos percentuais de gordura corporal e medidas antropométricas foi utilizado para
treinar os vários modelos. O conjunto de dados foi dividido em seis categorias com base
na faixa de peso. Cinco técnicas de aprendizado de máquina, incluindo regressão linear,
árvore de decisão e floresta aleatória, foram utilizadas para analisar os dados e prever o
percentual de gordura corporal. Os resultados indicaram que o modelo de regressão linear
demonstrou a maior precisão e que as previsões foram mais precisas para o grupo com
peso maior que 90 kg. Além disso, observou-se que apenas a medida da circunferência
abdominal era suficiente para uma previsão adequada. Em conclusão, este estudo sugere
que o aprendizado de máquina pode ser uma ferramenta valiosa para estimar o percentual
de gordura corporal. Mais investigações são necessárias para confirmar estas conclusões
em uma amostra mais ampla e diversificada.

Palavras-chaves: aprendizado de máquina; gordura corporal; medidas antropométricas.
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1 Introduction

The human body exhibits several markers that highlight the importance of proper
health care, one of which is the body fat percentage. Body fat plays a crucial role in
regulating body temperature and providing energy. While it offers numerous benefits,
excessive body fat can also pose a risk to health and increase the likelihood of cardiovas-
cular disease. It is thus imperative to monitor and maintain a healthy body fat percentage
(powell-wiley et al., 2021).

Moreover, elevated body fat levels can also negatively impact physical appearance
by obscuring muscle definition. For those seeking to improve their physical appearance,
reducing body fat and enhancing muscle definition is the primary goal. This can be ac-
complished by reducing the amount of adipose tissue and making muscle definition more
apparent.

Computing an individual’s body fat percentage is not a straightforward task.
Healthcare professionals often rely on techniques that utilize skinfold calipers to estimate
body fat. The seven-site skinfold is the most widely used method of body composition
assessment (barreira et al.). As such, it is worthwhile to explain its workings.

The seven-site measurements are all taken on the same side of the body and
include the triceps, chest, subscapular, midaxillary, suprailiac, abdominal, and thigh. After
recording these measurements, the next step is to enter them into Pollock’s equation
(jackson; pollock, 1978).

𝐷 = 1.112 − (0.00043499 × ∑ 7𝑆) + [0.00000055 × (∑ 7𝑆)2] − (0.00028826 × 𝐴)
(1.1)

where:

𝐷 = body density
∑ 7𝑆 = sum of the seven measured skinfolds
𝐴 = age

Equation 1.1 gives us the body density, then we need to plug the result into Siri’s equation

𝐵𝐹 = (4.95
𝐷 − 4.5) × 100 (1.2)

where:

𝐵𝐹 = body fat
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In addition to the challenges associated with the use of equipment, the level of
expertise of the evaluator is also a crucial factor to consider. The procedure, which in-
volves a combination of manual labor and precision equipment, typically takes at least
20 minutes to complete. However, there are often significant discrepancies between the
results obtained from different methods and equipment options, making it difficult for
laypeople to determine which professional is providing accurate results.

Accuracy is also a concern with the use of skinfold calipers, which have a reported
accuracy range of around 1 mm (leger; lambert; martin, 1982). Despite the presence
of an experienced evaluator, there is still inherent uncertainty in the results. To address
these issues, bioelectrical impedance has emerged as a potential alternative for body com-
position assessment in fitness settings. However, the reliability of this method is often
disputed, as there is a wide range of product quality in the market, and low-end options
tend to provide results that cannot be trusted (bosy-westphal et al., 2013).

The gold standard for body composition assessment and evaluation is the Multi-
Compartment Models (MCM) (lukaski, 2017). MCM involves dividing the body into
compartments such as body mass, volume, water, and bone and conducting individual
tests for each compartment. For instance, bioelectrical impedance can be used to measure
the amount of body water, while Dual Energy X-ray Absorptiometry measures bone
density. The strength of this method lies in the combination of multiple tests to obtain
comprehensive information about the different body compartments. However, MCM is
also associated with disadvantages, such as time cost. With at least three tests required,
the process is both expensive and time-consuming, making it less practical for widespread
use.

In an attempt to address the challenge of inconsistent results in body fat assess-
ments, a study was conducted to explore the use of machine learning techniques to predict
body fat percentage using only anthropometric measurements as input data (uçar et al.,
2021). This approach offers a dual benefit of obtaining two measurements, body circum-
ferences and body fat, from a single test.

To understand this alternative, a basic understanding of Machine Learning and
the process of anthropometric measurements is necessary. Machine Learning, as defined
by Arthur Samuel (1959), is a field of study that enables computers to learn without
being explicitly programmed. Anthropometric measurements involve taking several body
measurements, including abdominal, chest and arm circumferences, weight, height, body
mass index (BMI), and skinfold thickness.

The use of a Machine Learning model, as outlined in Uçar et al. (2021), represents
an innovative approach in predicting the body fat percentage based solely on anthropomet-
ric measurements. This model is capable of learning from the input data and producing
predictions by leveraging the information derived from the collected samples. As more
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data is added, the model becomes more robust and capable of estimating the values of
unseen samples.

However, to further enhance the consistency of the results, it is necessary to address
certain limitations. Specifically, defining the relevance of each measured body feature
and identifying irregularities in the dataset can help improve accuracy. Additionally, the
selection of an appropriate machine learning algorithm is crucial in achieving better results.
In this regard, five algorithms will be evaluated and analyzed: Linear Regression, Decision
Tree Regression, Random Forest, XGBoost, and Support Vector Machine.

In an effort to simplify the assessment process and reduce the stress on the indi-
vidual being assessed, it is proposed to minimize the number of necessary features for a
good prediction. The partitioning of the dataset into six parts, to understand how the
model performs for each weight range, is also a key step in the analysis.

1.1 Objectives
The general objective is to predict the body fat percentage of new samples with the

highest degree of accuracy and efficiency, using the minimal number of anthropometric
measurements. To attain this goal, various algorithms and techniques will be utilized to
optimize the machine learning model and improve its performance.

The specific objectives are:

1. Apply data cleaning concepts.

2. Test different machine learning algorithms.

3. Test different feature selection methods.

4. Analyze accuracy of models for different weight ranges.
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2 Machine Learning for Body Fat Prediction

2.1 Machine Learning Models
The term “learning” in the context of machine learning refers to the process of

improvement through training and experience. A machine learning system can be viewed
as a computer system that acquires knowledge and develops new skills from data. This
can raise questions such as what constitutes the machine’s past experiences and how it is
able to gain knowledge without explicit programming. The answer is that the machine’s
experiences are represented by the data it has been exposed to.

In the same way that humans use memories and associated emotions to form
judgments, machines do so by using data. This is the central principle of the learning
process. For each piece of information, a new bias is formed. An analogy can be made
to the growth of students’ grades as they progress in their studies. In machine learning,
the performance of the model is measured by its experiences, as described in (mitchell,
1997). In essence, machine learning models can be seen as a solution that aims to improve
the performance measure P from experience E for a given task T.

With a clear understanding of the underlying principles of machine learning, we
can delve into the advantages and disadvantages of utilizing this approach to address real-
world problems. One of the main benefits of this method is its ability to efficiently process
vast amounts of data, allowing the computer to perform the arduous task of analysis and
provide data-driven recommendations. However, it is crucial to note that the quality of the
model’s predictions is highly dependent on the quality of the input data. In cases where
the data is of poor quality, the model’s predictions can be significantly impacted. This
underscores the importance of investing effort into data corpus development to ensure
that high-quality data is fed into the machine learning algorithm.

When it comes to learning tasks, the first step is to comprehend the available
data. In the case where both the target and input features are provided, the method used
is referred to as supervised learning. For the problem we are trying to solve, which is
predicting body fat, a dataset with such structure can be found at 1 and it will be used
for our analysis.

It is also essential to note that there are two main types of problems encountered
in machine learning: Regression and Classification. The objective of Regression tasks is
to predict continuous values, such as price, salary, and age. Conversely, in Classification
tasks, the aim is to predict discrete values, such as true or false, or to classify instances into
1 kaggle.com/datasets/fedesoriano/body-fat-prediction-dataset
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predefined categories, such as dog or cat, or spam or not spam. Based on these definitions,
it can be inferred that the problem of predicting body fat percentage is a Regression task.

2.1.1 Linear Regression
The regression analysis is a statistical method and, because of its wide applicability

in almost every field, it is seen as the basic tool of data science and the the most widely
used statistical technique (montgomery; peck; vining, 2021).

In machine learning, linear regression is used to model the linear relationship
between a dependent variable and an independent one. In other words, it is a way of finding
the best straight line for a dataset. Once the coefficients are determined, the equation can
be used to make predictions for new data points. A scatter graph is commonly used to
determine this relation as we can see at Figure 1.

Figure 1 – Linear Regression model.

A model using this method makes a prediction by computing the weighted sum of
the input features.

𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ + 𝜃𝑛𝑥𝑛 (2.1)

where:

𝑦 = predicted value
𝑛 = number of features
𝑥𝑖 = 𝑖𝑡ℎ feature value
𝜃0 = bias
𝜃𝑗 = 𝑗𝑡ℎ feature weight
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To better illustrate the usage of this algorithm, we can take the sample from Figure
2 as example. To determine its body fat, we can replace the 𝑥 values from Equation 2.1.
It gives us:

𝑦 = 𝜃0 + 𝜃1 × 0.82 + 𝜃2 × 1.00 + 𝜃3 × 1.93 + 𝜃4 × 87 (2.2)

Figure 2 – Example of sample.

2.1.2 Decision Tree
The decision tree model is structured based on a hierarchy of nodes, which divide

the dataset according to a comparison criterion defined at each node. Based on the values
of the input features, the samples are separated into groups through branches, as seen in
the accompanying illustration (Figure 3). This process continues, from branch to branch,
until a leaf node is reached, at which point the model generates a prediction based on the
input features present at that node.

For regression tasks, such as the prediction of body fat percentage, the predicted
value at each leaf node is usually the mean of the target values for all training examples
that end up at that node. The final prediction for a new input is made by traversing the
tree and computing the mean of the target values at the reached leaf node.

Figure 3 – Example of a Decision Tree structure.
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The use of Decision Trees as a method for solving problems provides a clear ad-
vantage in terms of interpretability and comprehension of the process. This is achieved
through the ease of plotting the trees, which facilitates visual representation of the decision
making process. However, it is important to note that deep trees are prone to overfitting,
which occurs when a model has a high accuracy on training data but performs poorly on
new and unseen data. This highlights the need to balance interpretability with the risk
of overfitting.

As depicted in Algorithm 1, the Decision Tree algorithm operates with the set of
possible conditions (Cs), the target features (Y), and the set of training examples (Es) as
inputs. The output of this algorithm is a function that predicts the value of Y.

To make a prediction in a decision tree for a regression problem, the algorithm
follows a series of splitting rules based on the feature values of the input data. At each
node of the tree, the algorithm selects the feature that provides the best split, based on
the reduction of the mean squared error (MSE) or mean absolute error (MAE). Once
the tree is built, a new data point is passed down the tree from the root node, and the
splitting rules are applied based on the values of its features, until the prediction is made
at a leaf node. The prediction at the leaf node is typically the mean or median value of the
target variable for the training examples that reached that node. The resulting prediction
is the output of the decision tree algorithm for the given input data point.

Algorithm 1 Decision Tree
0: procedure Decision_tree_learner(𝐶𝑠, 𝑌 , 𝐸𝑠)
1: if stopping criterion is true then
2: let 𝑣 = 𝑝𝑜𝑖𝑛𝑡_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑌 , 𝐸𝑠)
3: define 𝑇 (𝑒) = 𝑣
4: return 𝑇
5: else
6: pick condition 𝑐 ∈ 𝐶𝑠
7: 𝑡𝑟𝑢𝑒_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 := {𝑒 ∈ 𝐸𝑠 : 𝑐(𝑒)}
8: 𝑡1 := 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑡𝑟𝑒𝑒_𝑙𝑒𝑎𝑟𝑛𝑒𝑟 (𝐶𝑠 ∖ {𝑐}, Y, 𝑡𝑟𝑢𝑒_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠) ;
9: 𝑓𝑎𝑙𝑠𝑒_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 := {𝑒 ∈ 𝐸𝑠 : ¬𝑐(𝑒)}

10: 𝑡1 := 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑡𝑟𝑒𝑒_𝑙𝑒𝑎𝑟𝑛𝑒𝑟 (𝐶𝑠 ∖ {𝑐}, Y, 𝑓𝑎𝑙𝑠𝑒_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠) ;
11: define 𝑇 (𝑒) = if 𝑐(𝑒) then 𝑡1(𝑒) else 𝑡0(𝑒)
12: return 𝑇
13: end if
13: end procedure=0
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To demonstrate the flow of this algorithm, we may utilize the aforementioned
example, as shown in Figure 2. By utilizing the decision tree depicted in Figure 4, our
sample would traverse the nodes highlighted in red. The quartet of values highlighted
in green denote the body fat percentage of the training samples that underwent this
identical flow. Thus, we can deduce that our sample shares a physical resemblance with
the aforementioned training samples. Consequently, we can posit that calculating the
mean of these four values would furnish us with a reliable estimate for the body fat of
our sample.

Figure 4 – Example of flow of the Decision Tree.

2.1.3 Random Forest
The Random Forest algorithm is an ensemble model that comprises multiple Deci-

sion Trees (as illustrated in Figure 5). This model functions by training multiple Decision
Trees on randomized subsets of the data and aggregating the predictions produced by each
tree to produce the final prediction. The utilization of an ensemble approach results in im-
proved performance, although this improvement comes with an increase in computational
cost.

Figure 5 – Example of a Random Forest structure.
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The primary benefit of utilizing the Random Forest algorithm is the reduction of
overfitting, achieved through the training of multiple Decision Trees on different subsets
of the data, which introduces randomness into the model.

For regression problems, the prediction is made by aggregating the predictions of
multiple decision trees. Each decision tree is constructed using a random subset of the
training data and a random subset of the features. When making a prediction for a new
data point, the random forest takes the average of the predictions from all decision trees
to arrive at the final prediction.

The decision tree structure depicted in Figure 2 shall now serve as a basis for
elucidating the workings of the Random Forest. As an ensemble of trees, the algorithm
creates distinct trees, each of which specializes in appraising a particular feature. As
a consequence of this, the sample undergoes diverse nodes and criteria, leading to the
derivation of distinct means for each tree. To compute the body fat percentage of the
given sample, we calculate the mean value across all trees. This example is depicted in
Figure 6.

Figure 6 – Usage of a Random Forest.

2.1.4 XGBoost
The XGBoost (eXtreme Gradient Boosting) is a sophisticated decision tree algo-

rithm that leverages the technique of gradient boosting to achieve improved performance.
Unlike traditional decision tree algorithms, XGBoost builds trees in a sequential manner,
with each tree correcting the errors made by the previous one, leading to a weighted sum
of individual weak learners as the final model (chen; guestrin, 2016).

To better understand the process, we can follow some steps:

1. The training data is fed into the XGBoost model. The data includes a set of input
variables (features) and a target variable (label).

2. The model uses the input variables to make predictions about the target variable.
Initially, these predictions will be poor, because the model has not been trained yet.

3. The model then compares the predicted values to the actual values of the target
variable in the training data.
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4. The model then builds a decision tree based on the input variables, with the goal
of minimizing the difference between the predicted values and the actual values.

5. The model then repeats the process, building additional decision trees and using
them to correct the mistakes made by the previous trees.

6. The process is repeated until the model has built a sufficient number of trees, at
which point the training process is complete.

7. The trained model can then be used to make predictions on new data, using the
input variables to predict the value of the target variable.

The model can be represented by the following algorithm, where 𝐿 represents the
loss function 𝐿(𝑦𝑖, 𝐹 (𝑥)), 𝑀 is the number of weak learners, 𝛼 is the learning rate and
the input is the training set (𝑥𝑖, 𝑦𝑖)𝑁

𝑖=1

Algorithm:

1. Initialize the model

̂𝑓(0)(𝑥) = arg min
𝜃

𝑁
∑
𝑖=1

𝐿(𝑦𝑖, 𝜃) (2.3)

2. For m = 1 to M

a) Compute the ’gradients’ and ’hessians’:

̂𝑔𝑚(𝑥𝑖) = [𝜕𝐿(𝑦𝑖, 𝑓(𝑥𝑖))
𝜕𝑓(𝑥𝑖)

]
𝑓(𝑥)= ̂𝑓(𝑚−1)(𝑥)

(2.4)

ℎ̂𝑚(𝑥𝑖) = [𝜕2𝐿(𝑦𝑖, 𝑓(𝑥𝑖))
𝜕𝑓(𝑥𝑖)2 ]

𝑓(𝑥)= ̂𝑓(𝑚−1)(𝑥)
(2.5)

b) Fit a base learner (or weak learner, e.g. tree) using the following training set

{𝑥𝑖, − ̂𝑔𝑚(𝑥𝑖)
ℎ̂𝑚(𝑥𝑖)}

𝑁

𝑖=1
by solving the optimization problem below:

̂𝜙𝑚 = arg min
𝜙∈Φ

𝑁
∑
𝑖=1

1
2ℎ̂𝑚(𝑥𝑖) [− ̂𝑔𝑚(𝑥𝑖)

ℎ̂𝑚(𝑥𝑖)
− 𝜙(𝑥𝑖)]

2

(2.6)

̂𝑓(𝑚)(𝑥) = 𝛼 ̂𝜙𝑚(𝑥) (2.7)

c) Update the model:
̂𝑓(𝑚)(𝑥) = ̂𝑓(𝑚−1)(𝑥) + ̂𝑓(𝑚)(𝑥) (2.8)

3. Output:

̂𝑓(𝑥) = ̂𝑓(𝑀)(𝑥) =
𝑀

∑
𝑚=0

̂𝑓𝑚(𝑥) (2.9)
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2.1.5 Support Vector Machine
The Support Vector Machine (SVM) is a type of supervised machine learning al-

gorithm that is utilized for both classification and regression problems. It operates by
identifying a hyperplane in a high-dimensional space that maximizes the separation be-
tween different classes. This line is found through the analysis of a set of training data.
The selected hyperplane serves as the boundary between the different classes and can be
used to classify new data points in classification problems. In regression tasks, SVM seeks
to find the line that best fits the data and predicts continuous values, as shown at the
Figure 7.

Figure 7 – Example of Support Vector Machine.

Here are the steps of the SVM algorithm:

1. Select a kernel function (e.g. linear, polynomial, radial basis function) to map the
input data into a higher dimensional space where it can be linearly separated.

2. Find the hyperplane that best fits the data while minimizing the margin violations,
which is the difference between the predicted value and the actual value of the target
variable.

3. Use the support vectors to define the hyperplane equation, which can then be used
for making predictions on unseen data.

The optimization problem in the Support Vector Machine (SVM) algorithm aims
to minimize the discrepancy between the predicted and actual values by utilizing the
epsilon-insensitive loss function as the cost metric. The epsilon-insensitive loss function
enables the algorithm to tolerate errors within a specified threshold, which is represented
by the epsilon (𝜖) parameter (sharp, 2020).



Chapter 2. Machine Learning for Body Fat Prediction 19

SVM is a robust machine learning algorithm that can effectively handle non-linear
problems, handle high-dimensional spaces and deal with a large number of features. De-
spite its strengths, SVM may entail a longer processing time when training on large
datasets and does not provide probability estimates. It is imperative to consider the com-
plexity of the problem and data when selecting SVM as the solution.

For the linear kernel, the objective function is the following weighted sum:

𝑦 = 𝑥′𝜃′ + 𝜃0 (2.10)

where:

𝑦 = predicted value
𝑥′ = feature value vector
𝜃′ = feature weight vector
𝜃0 = bias

During the training, the algorithm aims to minimize the vector of weights and the
sum of acceptable errors. The objective in doing it is to find the line that best fits the
data.

min 1
2𝜃′𝜃 + 𝜃0 ∑(𝜀 + 𝜀∗) (2.11)

where:

𝜀 = distance from data and soft margin

Subject to the following restrictions:

∀ ∶ 𝑦𝑛 − (𝑥′
𝑛𝜃′ + 𝜃0) ≤ 𝜖 + 𝜀𝑛 (2.12)

∀ ∶ (𝑥′
𝑛𝜃′ + 𝜃0) − 𝑦𝑛 ≤ 𝜖 + 𝜀∗

𝑛 (2.13)

∀ ∶ 𝜀∗
𝑛 ≥ 0 (2.14)

∀ ∶ 𝜀𝑛 ≥ 0 (2.15)

2.2 Feature Selection
In the field of machine learning, feature selection refers to the process of deter-

mining a subset of input features that are most relevant to the model being trained. The
objective of feature selection is to enhance the model’s generalization capacity, reduce
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computational resources required for model building and application, and to improve the
model’s learning performance and decrease memory storage (li et al., 2017).

Besides that, there are several reasons why feature selection is important:

1. Reducing the number of input features can reduce the risk of overfitting, which
occurs when a model is too complex and fits the training data too closely, resulting
in poor generalization to unseen data.

2. A smaller number of features can make the model easier to interpret and understand,
which can be useful for explaining the model’s predictions to stakeholders.

3. Using a smaller number of features can also make the model faster to train and apply,
which can be important when working with large datasets or when the model needs
to be deployed in real-time.

There are various techniques available for feature selection, including manual se-
lection, wrapper methods, and filter methods. In the present case, for the selection of the
most suitable features from the anthropometric measurements, a range of methods were
tested, including Pearson Correlation, Recursive Feature Elimination, and Lasso.

2.2.1 Pearson Correlation
Pearson correlation is a measure of the linear relationship between two continuous

variables. It ranges from -1 to 1, where -1 represents a perfectly negative correlation, 0
represents no correlation, and 1 represents a perfectly positive correlation.

A positive correlation means that as the value of one variable increases, the value
of the other variable also increases. For example, there may be a positive correlation
between the number of hours a student studies and their test scores. As the number of
hours studied increases, the test scores may also increase. For the negative correlation, we
have the value of one variable increasing while the value of the other decreases.

With respect to the prediction of body fat percentage, the correlation matrix
(Figure 8) reveals a positive correlation between body fat percentage and abdominal
circumference, meaning that as one increases, so does the other.

The Pearson Correlation can be calculated using the following formula:

𝑟 = ∑(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)
√∑(𝑥𝑖 − 𝑥)2 ∑(𝑦𝑖 − 𝑦)2 (2.16)

where:
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Figure 8 – Correlation matrix.

𝑟 = predicted value
𝑥𝑖 = values of the x-variable in a sample
𝑥 = mean of the x values
𝑦𝑖 = values of the y-variable in a sample
𝑦 = mean of the y values

2.2.2 Recursive Feature Elimination
Recursive Feature Elimination (RFE) is a method of feature selection that in-

volves recursively removing features from the model until a desired level of performance
is achieved.

Here is a simple example of how RFE might work:

1. Begin with a set of input features and train a model using all of the features.

2. Calculate the performance of the model using some evaluation metric (e.g. mean
squared error or mean absolute error).

3. Remove the feature that has the least impact on model performance, as measured
by the evaluation metric.

4. Train a new model using the remaining features.

5. Repeat steps 2-4 until a desired level of performance is achieved or until there are
no more features to remove.
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The Recursive Feature Elimination (RFE) method is an effective tool for selecting a
relevant subset of features for a model, taking into account the interplay between features.
Despite its benefits, it can be computationally intensive, as it necessitates the training of
multiple models during the process of adding and removing features.

2.2.3 LASSO
The LASSO (Least Absolute Shrinkage and Selection Operator) equation is a

mathematical formula utilized in the context of regression analysis for the purpose of
feature selection. This equation involves the addition of a regularization term to the linear
regression objective function, where the regularization term is calculated as the sum of the
absolute values of the coefficients multiplied by a penalty parameter, denoted as lambda
(𝜆). The optimization of the objective function, with the added LASSO term, results in
a sparse solution where some coefficients are set to zero, thereby selecting only a subset
of the features as important predictors in the model. The equation can be represented
mathematically as:

min
𝛽

1
2𝑛||𝑦 − 𝑋𝛽||22 + 𝜆||𝛽||1 (2.17)

Where 𝑦 represents the response variable, 𝑋 denotes the feature matrix, 𝛽 repre-
sents the vector of coefficients, 𝑛 is the number of samples, and ||.||1 and ||.||2 represent the
L1 and L2 norms, respectively. The L1 norm encourages the coefficients to have as small
a magnitude as possible, while the penalty parameter 𝜆 controls the balance between the
fit of the model to the data and the magnitude of the coefficients.

Here are the steps of the method:

1. Begin with a set of input features and train a model using all of the features.

2. Calculate the importance of each feature using the coefficients of the model.

3. For each feature, add a penalty term to the cost function that shrinks the coefficient
of the feature towards zero if it is not important.

4. Train a new model using the modified cost function.

5. Repeat steps 2-4 until the desired level of feature selection is achieved.

Comparing the steps to the aforementioned method (2.2.2), we can see that the difference
is at the third step. The LASSO method adds a penalty term to the equation.
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2.3 Model Evaluation
In the field of machine learning, model evaluation refers to the systematic as-

sessment of the performance of a model on a specified dataset. The objective of model
evaluation is to quantify the discrepancy between the predicted output of the model and
the actual output. This is achieved by comparing the two outputs and calculating an
appropriate metric that reflects the difference. This chapter will provide an overview of
some commonly used metrics for model evaluation.

2.3.1 Cross-validation
The method of Cross-validation is employed to evaluate the effectiveness of a

model by dividing the available data into multiple subsets. The model is trained on one
subset and tested on another, with the final result being the average of all iterations. This
repetition of the process with different partitions leads to an improvement in the model’s
ability to estimate unseen data, resulting in a more robust and accurate evaluation.

There are two commonly used approaches to Cross-validation, namely k-fold and
leave-one-out. Both approaches have their own advantages and disadvantages, which will
be discussed in the subsequent section.

2.3.2 K-fold
The K-fold cross-validation consists in splitting the dataset into k random folders

with approximately equal size. By each iteration, the model is trained and tested with
different sets. There are four factors impact the accuracy of the model and must be
considered when using this method of cross-validation (wong, 2015):

• The number of folds.

• The number of samples in a fold.

• The level of averaging.

• The repetition of k-fold cross validation.

2.3.3 Leave-One-Out
Leave-one-out cross validation (LOO-CV) is a special type of k-fold cross validation.

In LOO-CV, the data is partitioned into subsets by leaving out one sample at a time. The
model is then trained on all samples except for the one that was left out, and, then, it is
tested on that single one. This process is repeated for every data point in the dataset, so
that each point is used once as a test point and the remaining points are used for training.
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Figure 9 – K-fold cross-validation.

This method is useful when the dataset is small and the goal is to maximize the
number of test points while still having a sufficient number of training points. By using
each sample as the test set, the process is more computational intensive in comparison to
k-folds. The advantage is that there is no randomness in the evaluation.

Figure 10 – Leave-one-out cross-validation.
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2.4 Evaluation Criteria
An evaluation criterion is used to evaluate the performance of a model in predicting

an outcome variable. That means it is a measure of the difference between predicted and
actual values. For regression problems, two common criteria are recommended: The Root
Mean Squared Error and the Mean Absolute Error (james et al., 2013).

2.4.1 Root Mean Squared Error
The Root Mean Squared Error (RMSE) is the square root of the average of the

squared differences between the predicted and observed values. In simple terms, it is a
way to measure how far the predicted values are from the actual values, on average, and it
is expressed in the same units as the outcome variable. A lower RMSE indicates a better
fit of the model to the data (willmott; matsuura, 2005).

𝑅𝑀𝑆𝐸 = √∑𝑛
𝑖=1(𝑦𝑖 − 𝑥𝑖)2

𝑛 (2.18)

where:

𝑦𝑖 = predicted value
𝑥𝑖 = true value
𝑛 = sample size

2.4.2 Mean Absolute Error
Mean Absolute Error (MAE) is the average of the absolute differences between the

predicted and actual values. Unlike the Root Mean Squared Error(RMSE), which gives
more weight to larger errors, MAE gives equal weight to all errors. A lower MAE indicates
a better fit of the model to the data (willmott; matsuura, 2005).

𝑀𝐴𝐸 = ∑𝑛
𝑖=1 |𝑦𝑖 − 𝑥𝑖|

𝑛 (2.19)

where:

𝑦𝑖 = predicted value
𝑥𝑖 = true value
𝑛 = sample size
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2.4.2.1 Mean Absolute Percentage Error

As MAE measures the average absolute difference between predicted and actual
values, without taking into account the scale of the data. For example, if the MAE of a
model is 5, it means that the average absolute error in the predictions is 5 units.

MAPE, on the other hand, measures the percentage difference between the pre-
dicted and actual values. This means that it takes into account the scale of the data and
allows for a more meaningful comparison across different data sets. For example, if the
MAPE of a model is 10%, it means that the average percentage error in the predictions
is 10%.

To relate MAPE and MAE, we can say that MAPE is a normalized version of MAE
that expresses the errors as a percentage of the actual values. In other words, MAPE is
MAE divided by the actual value, multiplied by 100

Mathematically, we can express this relationship as:

𝑀𝐴𝑃𝐸 = 𝑀𝐴𝐸
𝐴𝑐𝑡𝑢𝑎𝑙𝑉 𝑎𝑙𝑢𝑒 × 100% (2.20)

2.5 Machine Learning for Body Fat Estimation: Proposed Approach
The objective of this study was to model a machine learning problem by utilizing

five learning algorithms and three feature selection techniques, in accordance with the
flowchart depicted in Figure 11. The primary purpose was to assess the performance of
the various combinations of learning algorithms and feature selection methods.

2.5.1 The dataset
The dataset utilized in this study encompasses 252 observations and 15 variables,

comprising estimates of the percentage of body fat obtained through underwater and
anthropometric measurements. It is crucial to note that the dataset is comprised of adult
males and, therefore, the results should not be generalized beyond this population.

In the table below we can see variables available:
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Id Variable
1 Density determined from underwater weighing
2 Percent body fat from Siri’s equation (1.2)
3 Age (years)
4 Weight (kg)
5 Height (inches)
6 Neck circumference (cm)
7 Chest circumference (cm)
8 Abdomen 2 circumference (cm)
9 Hip circumference (cm)
10 Thigh circumference (cm)
11 Knee circumference (cm)
12 Ankle circumference (cm)
13 Biceps (extended) circumference (cm)
14 Forearm circumference (cm)
15 Wrist circumference (cm)

Table 1 – Variables in dataset.

2.5.2 Methodology
1. The initial step in preparing the data for modeling involved the removal of incon-

sistent samples from the dataset, leaving 249 observations for further processing. In
addition, a column containing “density” values was dropped from the dataset as it
was dependent on the target value (body fat) for calculation, yielding a total of 13
features.

2. As apparent from Table 1, there are at least four distinct measurement units. Hence,
the normalization of the data is essential to facilitate their assimilation into a model.
Consequently, the subsequent step involved scaling all the data within the range of
0 to 1.

3. To analyze the efficiency of the model over different weight ranges, the dataset was
splitted as follows:

• All samples.

• Less than 70 kg - 45 samples.

• 70 kg to 75 kg - 39 samples.

• 75 kg to 80 kg - 40 samples.

• 80 kg to 90 kg - 66 samples.

• Greater than 90 kg - 59 samples.

4. For each partition, Leave-One-Out cross-validation was executed to compute the
mean of the evaluation metrics.
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5. Subsequently, an examination of three feature selection methods, namely Pearson
Correlation, Recursive Feature Elimination (RFE), and Least Absolute Shrinkage
and Selection Operator (LASSO), was conducted to produce a rank. This rank
was then applied to every training set of the partitions to establish a hierarchy of
features.

6. In the following step, the aforementioned five learning algorithms, namely Linear
Regression, Decision Tree, Random Forest, XGBoost, and Support Vector Machine,
were utilized to train the datasets using the selected features obtained through the
rank.

The full factorial design of variations leaded to ninety experiments. All the analyzes
were conducted in Python using the scikit-learn library and all the implementation of
models used the default parameters.

Figure 11 – Methodology flowchart.
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3 Results

3.1 Algorithms
In accordance with the aforementioned methodology, we conducted an evaluation

of the performance of five distinct machine learning algorithms for predicting body fat
percentage. Figure 12 illustrates the performance of the each algorithm, using MAPE as
evaluation criteria. The results obtained from our study demonstrate significant disparities
in the performance of the algorithms.

The Linear Regression (LR) algorithm demonstrated the best performance, with a
mean absolute percentage error of 26.9%. The Random Forest (RF) and XGBoost (XGB)
algorithms also showed good results, with a mean MAPE of 28.6% and 29.9%, respectively,
which were slightly larger than the performance of the Linear Regression algorithm. How-
ever, the standard deviation for both of them is smaller, which compensates for the higher
mean. For the SVR algorithm, with a mean absolute error of 35.5%, it was found to be
the worst performing algorithm.

In summary, the results of this study suggest that the Linear Regression algorithm
is the best performing algorithm for predicting body fat percentage, followed closely by
the random forest and XGBoost algorithms. The decision tree algorithm was found to
perform worse than the other algorithms, and the SVR algorithm had the highest error
rate.

Figure 12 – MAPE for each ML algorithm.
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3.2 Partitions
Continuing with the analysis, the performance of machine learning models was

evaluated by partitioning the data according to weight ranges. The dataset was divided
into five weight ranges, namely, less than 70 kg, 70 to 75 kg, 75 to 80 kg, 80 to 90 kg, and
greater than 90 kg.

The results illustrated by Figure 13 showed that the best-performing models (LR,
RF and XGB) were observed in the weight range of more than 90 kg, with a mean MAPE
of 17.8%. When using all the available 249 samples, the mean MAPE achieved was 29.1%.
However, the partition with samples weighing less than 70 kg showed the worst results
(46.5%).

Figure 13 – MAPE for each partition.

Furthermore, the performance of algorithms varied with different weight ranges.
Figure 14 illustrates the algorithmic performance for each weight range. For the partitions
with samples weighing less than 70 kg and from 75 to 80 kg, Random Forest outperformed
the other algorithms. For all the other weight ranges, Linear Regression performed better.

3.3 Feature Sets
The table denoting feature identifiers, presented in Table 2, provides a numerical

identification to each feature of the training dataset to aid in comprehending the subse-
quent tables. An examination of Table 3 reveals that all three feature selection methods
agree that abdominal circumference is the most significant feature in the training set.
However, the importance of the other features varies among the methods. Therefore, it is
necessary to rank these features based on their relevance in each method, as presented in
Table 4.
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Figure 14 – MAPE for each partition by algorithm.

Id Feature (Name)
1 Age
2 Weight
3 Height
4 Neck
5 Chest
6 Abdomen
7 Hip
8 Thigh
9 Knee
10 Ankle
11 Biceps
12 Forearm
13 Wrist

Table 2 – Feature Id.

Id LASSO RFE Pearson
1 6 6 6
2 13 2 5
3 2 13 7
4 4 7 2
5 1 8 8
6 12 1 9
7 3 4 11
8 7 5 4
9 8 12 12
10 11 11 13
11 5 3 1
12 9 10 10
13 10 9 3

Table 3 – Order of feature importance
for each method.

The relationship between the performance of each feature set for the rank from
Table 4 is illustrated in Figure 15. The conclusion drawn from the image is that adding
more features generally worsens the performance of the models after the third feature.
This observation can be attributed to the varying importance of each feature in relation
to body fat. Certain features are more closely related to body fat than others, which may
account for this trend.

3.4 Feature Selection Methods
The performance of each feature selection method is depicted in Figure 16, where

all available features in the dataset are used. The inference drawn from the figure is that
the choice of method will not have a substantial influence on our models since we have a
difference of less than one percent between their means and their deviation is similar.
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Rank Feature Score
1 Abdomen 3
2 Weight 9
3 Wrist 15
4 Hip 15
5 Thigh 19
6 Age 19
7 Neck 21
8 Chest 22
9 Forearm 24
10 Biceps 27
11 Height 31
12 Knee 31
13 Ankle 37

Table 4 – Rank of features by score.

Figure 15 – MAPE for each feature set.

The performance of each method according by each algorithm is illustrated by
Figure 17. From that, we can notice that changing the algorithm is more impactful than
chnaging the feature selection method.

Based on the results presented in Figure 15, it can be inferred that superior out-
comes can be achieved by considering solely the initial three features (abdomen, weight
and wrist). Additionally, Figure 18 showcases the performance of feature sets separated
by the feature selection techniques employed. It can be discerned that the Pearson method
yields the most optimal models, registering a mean accuracy of 27.7% while only utilizing
the first two features. On the other hand, the other techniques require the inclusion of
the third feature to enhance performance, leading to a mean accuracy of 28.5%.

The association between feature selection methods and algorithms is demonstrated
in Figure 19. Based on the findings, it can be inferred that selecting an appropriate
algorithm contributes more significantly to the outcome than the feature selection method.
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Figure 16 – MAPE for each feature selection method.

Figure 17 – MAPE for each feature selection method.

Figure 18 – MAPE for each feature selection method.
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Figure 19 – MAPE for each feature selection method.
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4 Conclusion and Future Work

In conclusion, the present study aimed to assess the accuracy of machine learning
models in predicting body fat percentage through the examination of various combinations
of algorithms, feature selection methods, data partitions, and feature sets. The results in-
dicated that the solution performed well for the partition with more than 90 kg, with a
mean absolute percentage error of 12.22 % for the best model (Linear Regression + Pear-
son + abdomen circumference). The best model for each partition can be seen at Table 5.
While the values generated by the model can serve as a reference, further research is nec-
essary to validate its efficacy on larger and more diverse populations. This investigation
underscores the viability of using machine learning for body fat prediction and paves the
way for further exploration in the field.

Partition Algorithm Feat Selection No Feats MAPE (%)
All LR Score 2 24.35

< 70 kg XGB Pearson 8 34.38
70 - 75 kg XGB Score 7 22.05
75 - 80 kg DT Score 11 19.38
80 - 90 kg LR Pearson 1 26.68
> 90 kg LR Score 2 12.22

Table 5 – Best model by partition.

Linear Regression showing the better results can be explained by two factors:

• Linearity between the most important feature (abdomen circumference) and the
target (body fat).

Figure 20 – Linearity between Abdomen and Body Fat.

• Lack of fine-tuning of the other algorithms.
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As future work, it is recommended to validate the model on a larger and more
diverse population and to conduct the following:

• A comparison of the machine learning model with alternative methods of body
fat prediction, such as skinfold thickness measurements or bioelectrical impedance
analysis.

• The tune of the models by setting specific parameters to achieve better accuracy in
predicting body fat percentage.

• The hypothesis about the motives for the best predictions for greater 90 kg cases.
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