

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS DEPARTAMENTO DE GEOLOGIA

TRABALHO DE CONCLUSÃO DE CURSO

U-PbMAT - UMA NOVA FERRAMENTA DE CORREÇÃO DE DADOS PARA LA-

ICP-MS

João Paulo Alves da Silva

MONOGRAFIA nº 225

Ouro Preto, maio de 2017

U-PBMAT – UMA NOVA FERRAMENTA DE CORREÇÃO DE DADOS PARA LA-ICP-MS

FUNDAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO Reitora

Prof.ª Dr.ª Cláudia Aparecida Marliére de Lima

Vice-Reitor

Prof. Dr. Hermínio Arias Nalini Júnior

Pró-Reitora de Graduação

Prof.ª Dr.ª Tânia Rossi Garbin

ESCOLA DE MINAS

Diretor

Prof. Dr. Issamu Endo

Vice-Diretor

Prof. Dr. José Geraldo Arantes de Azevedo Brito

DEPARTAMENTO DE GEOLOGIA

Chefe

Prof. Dr. Luís Antônio Rosa Seixas

MONOGRAFIA Nº 225

U-PbMAT – UMA NOVA FERRAMENTA DE CORREÇÃO DE

DADOS PARA LA-ICP-MS

João Paulo Alves da Silva

Orientador Cristiano de Carvalho Lana Co-orientador Gladston Juliano Prates Moreira

Monografia do Trabalho de Conclusão de curso apresentado ao Departamento de Geologia da Escola de Minas da Universidade Federal de Ouro Preto como requisito parcial para avaliação da disciplina Trabalho de Conclusão de Curso – TCC 402, ano 2016/2

OURO PRETO

2017

Universidade Federal de Ouro Preto – http://www.ufop.br Escola de Minas - http://www.em.ufop.br Departamento de Geologia - http://www.degeo.ufop.br/ Campus Morro do Cruzeiro s/n - Bauxita 35.400-000 Ouro Preto, Minas Gerais Tel. (31) 3559-1600, Fax: (31) 3559-1606

Direitos de tradução e reprodução reservados.

Nenhuma parte desta publicação poderá ser gravada, armazenada em sistemas eletrônicos, fotocopiada ou reproduzida por meios mecânicos ou eletrônicos ou utilizada sem a observância das normas de direito autoral.

Revisão geral: João Paulo Alves da Silva

Catalogação elaborada pela Biblioteca Prof. Luciano Jacques de Moraes do Sistema de Bibliotecas e Informação - SISBIN - Universidade Federal de Ouro Preto

S586u	Silva, João Paulo Alves da. U-PbMAT - uma nova ferramenta de correção de dados para LA-ICP-MS [manuscrito] / João Paulo Alves da Silva 2017.
	39f.: il.: color; grafs; tabs.
	Orientador: Prof. Dr. Cristiano de Carvalho Lana. Coorientador: Prof. Dr. Gladston Juliano Prates Moreira.
	Monografia (Graduação). Universidade Federal de Ouro Preto. Escola de Minas. Departamento de Geologia.
	1. Geocronologia. 2. Geoquímica Isotópica. 3. Datação química. I. Lana, Cristiano de Carvalho. II. Moreira, Gladston Juliano Prates. III. Universidade Federal de Ouro Preto. IV. Titulo.
	CDU: 551.7

Catalogação: ficha@sisbin.ufop.br

Ficha de Aprovação

.

TRABALHO DE CONCLUSÃO DE CURSO

TÍTULO: U-PBMAT – Uma Nova Ferramenta de Correção de Dados para LA-ICP-MS

AUTOR: JOÃO PAULO ALVES DA SILVA

ORIENTADOR: Prof. Cristiano de Carvalho Lana

Aprovada em: 19 de maio de 2017

BANCA EXAMINADORA:

Prof. Cristiano de Carvalho Lana

Prof. Stefano Albino Zincone.

DEGEO/UFOP

DEGEO/UFOP

Guilherme de Oliveira Gonçalves

millormide henconcolic

DEGEO/UFOP

Ouro Preto, 19/05/2017

Aos meus pais

Agradeço aos meus pais, por seu apoio incondicional, sem eles não teria chegado até aqui.

À Escola de Minas e UFOP pelo ensino gratuito, público e de qualidade. À Fundação Gorceix por assistir seus alunos de forma única. Aos mestres pelo aporte de conhecimento e por me permitirem compreender o sistema dinâmico que é o nosso planeta.

Ao meu orientador Cristiano Lana pela oportunidade, apoio e ensinamentos.

Ao LOPAG e ao AIR Group pela amizade e aprendizados.

À República Kaos, meu lar e meus irmãos kaóticos. À todas as pessoas que de alguma forma estiveram comigo ao longo dessa caminhada.

À cidade de Ouro Preto pela experiência de vida ímpar.

SUMÁRIO

1 - INTRODUÇÃO	1
1.1.GENERALIDADES	1
1.2.JUSTIFICATIVA E RELEVÂNCIA DO TRABALHO	2
1.3.OBJETIVOS	6
2 - METODOLOGIA	7
2.1.REVISÃO BIBLIOGRÁFICA	7
2.2.A LINGUAGEM MATLAB	7
3 - ESTADO DA ARTE	9
3.1. INTRODUÇÃO	9
3.2.MODELO DE DATAÇÃO PELO MÉTODO U-Th-Pb	9
3.2.1.0 CÁLCULO DAS IDADES U-Pb	10
3.2.2.PRESENÇA DE Pb INICIAL	11
3.2.3.DESEQUILÍBRIO NO SISTEMA U-Th-Pb	12
3.3.ZIRCÕES UTILIZADOS COMO MATERIAL DE REFERÊNCIA	16
3.3.1.ZIRCÃO GJ-1	16
3.3.2.ZIRCÃO PLEŠOVICE	17
3.3.3.ZIRCÃO BLUE BERRY (BB)	17
4 - RESULTADOS	19
4.1.TRATAMENTO DOS DADOS	19
4.2.CORREÇÃO DE CHUMBO COMUM	23
4.3.CÁLCULO E PROPAGAÇÃO DE INCERTEZAS	25
5 - DISCUSSÃO	29
6 - CONCLUSÕES	35
REFERÊNCIAS BIBLIOGRÁFICAS	37
APÊNDICES	41

ÍNDICE DE FIGURAS

FIGURA 1.1 - REPRESENTAÇÃO ESQUEMÁTICA DO LA-ICP-MS
FIGURA 1.2 - SOFTWARE DE REDUÇÃO DE DADOS, GLITTER
FIGURA 1.3 - PLANILHA DE EXCEL COM MACROS ISOPLOT PARA REDUÇÃO DE DADOS
FIGURA 3.1 - SÉRIE DE DECAIMENTO RADIOATIVO DO ²³⁸ U (RADIOATIVO) PARA ²⁰⁶ PB (ESTÁVEL)10
FIGURA 3.2 - DIAGRAMA CONCÓRDIA E PRINCIPAIS FATORES QUE AFETAM O PLOT DO DADO13
FIGURA 3.3 - IMAGENS DE FRAGMENTOS CASTANHO-CLARO TRANSLÚCIDOS DO ZIRCÃO BB:
FIGURA 3.4 - ZIRCÕES BB E RP SOB LUZ TRANSMITIDA E CATODO LUMINESCÊNCIA
FIGURA 4.1 - DADOS EXPORTADOS NO FORMATO XLS19
FIGURA 4.2 - BACKGROUND E SINAL (INÍCIO E FIM) A SER ANALISADO DE ²³⁸ U20
FIGURA 4.3 - BACKGROUND E SINAL (INÍCIO E FIM) A SER ANALISADO DE ²⁰⁶ PB / ²³⁸ U21
FIGURA 4.4 - BACKGROUND E SINAL (INÍCIO E FIM) A SER ANALISADO DE ²⁰⁷ PB / ²⁰⁶ PB21
FIGURA 4.5 - DIAGRAMA CONCORDIA GERADO, SEM AS IDADES DAS AMOSTRAS
FIGURA 5.1 - AS AMOSTRAS SELECIONADAS SÃO CARREGADAS EM VARIÁVEIS UTILIZADAS PELO
ALGORITMO
FIGURA 5.2 - TELA INICIAL DA INTERFACE GRÁFICA DE INTERAÇÃO COM O ALGORITMO30
FIGURA 5.3 - CONCÓRDIA DAS IDADES CALCULADAS PARA O MATERIAL DE REFERÊNCIA
FIGURA 5.4 - CONCÓRDIA DAS IDADES CALCULADAS PARA AS AMOSTRAS E PARA OS MATERIAIS DE
REFERÊNCIA UTILIZADOS DURANTE A RODADA (BB, GJ-1, PLEŠOVICE) COM O SINAL ABERTO32
FIGURA 5.5 - CONCÓRDIA DAS IDADES CALCULADAS PARA AS AMOSTRAS E PARA OS MATERIAIS DE
REFERÊNCIA UTILIZADOS DURANTE A RODADA (BB, GJ-1, PLEŠOVICE) COM O SINAL CORTADO.
FIGURA 5.6 - GRÁFICOS DAS IDADES ²⁰⁶ PB/ ²³⁸ U DOS MATERIAIS DE REFERÊNCIAS UTILIZADAS PARA
CONTROLE

ÍNDICE DE TABELAS

TABELA 3.1 - RELAÇÕES DE DECAIMENTO DE ISÓTOPO PAI-FILHO DE URÂNIO E TÓRIO	10
TABELA 5.1 - ZIRCÕES UTILIZADOS COMO MATERIAIS DE REFERÊNCIA CONHECIDOS E SUAS	
RESPECTIVAS IDADES	30
TABELA 5.2 - TABELA COMPARATIVA DOS RESULTADOS OBTIDOS COM O MÉTODO DESENVOLVIDO I	E
OUTROS JÁ UTILIZADOS	33

Resumo

A aquisição de dados por Laser Ablation-Inductively Coupled -Mass Spectrometry (LA-ICP-MS), seja por peak jumping em sistema monocoletor ou aquisição simultânea por sistema multicoletor demandam de um tratamento dos mesmos. A redução de dados consiste no cálculo das razões, incertezas e nas correções que devem ser aplicadas subsequentemente a rodada analítica (ex.: fracionamento induzido pelo laser, interferências isobáricas). Em geral, quanto menos o dado precisar ser reduzido (ou corrigido), menor serão as incertezas que deverão ser propagadas, resultando em incertezas totais menores. Atualmente há diversos softwares disponíveis para este propósito (ex.: Glitter, Iolite), que possuem uma interface amigável e permitem a redução de dados on-line. Por outro lado, essas ferramentas não permitem correções de Pb comum (no primeiro caso) ou o controle do *dead time* para os contadores de íons, dentre outras limitações. Outra abordagem possível é a redução de dados off-line por meio de macros em planilhas de Excel. Neste caso, é possível aplicar todas as correções e parâmetros desejados, porém a redução não é alcançada de forma direta ou dinâmica. O objetivo deste trabalho, então, foi a utilização da linguagem de programação MatLAB para o desenvolvimento de um software de redução de dados obtidos para sistema de multi collector (MC) LA-ICP-MS, direcionado para geocronologia U-Th-Pb. A opção de se utilizar a linguagem de programação MatLAB se deve à sua interface amigável para o desenvolvimento de algoritmos e construção de interfaces gráficas, além de ferramentas próprias do ambiente a fim de se lidar com o tratamento estatísticos de dados. Os procedimentos e equações para cálculo de concentrações e razões foram retiradas da literatura, assim como as correções de diversas interferências e propagação de incertezas. Foram avaliados os métodos e equações já utilizadas, buscando-se eliminar componentes da correção, de forma que foram obtidas incertezas melhores. Foram analisados dados previamente cedidos de projetos realizados por pesquisadores do Departamento de Geologia (DEGEO) da Universidade Federal de Ouro preto (UFOP) comprovando assim a eficácia deste software e seus algoritmos. Os dados reduzidos pelo U-PbMAT foram comparados com outros métodos já utilizados pelo Departamento, resultando em uma redução de dados com menores incertezas e com uma interface gráfica amigável, permitindo que o processo de redução de dados fosse mais eficiente e confiável.

Palavras chave: Geocronologia, Geoquímica Isotópica, Datação U-Th-Pb, LA-ICP-MS. 5, Data reduction.

1.1 GENERALIDADES

O tempo é a peça-chave para as ciências que, como a geocronologia, dependem dele direta e indiretamente para a locação de eventos em um determinado momento ou sua duração. É o principal objetivo de estudo no que remete ao entendimento e compreensão dos processos que levaram à formação e desenvolvimento do cosmos e sistemas planetários. Portanto, fornece ampla contribuição nos estudos de eventos geológicos e processos evolutivos da Terra sólida, hidrosfera, biosfera e atmosfera. As geociências remetem ao estudo dos constituintes da dinâmica da Terra, tanto internos quanto externos. Seu estudo engloba o uso de outros ramos das ciências exatas, tal como a química, matemática, física e estatística a fim de validar suas conjecturas e teorias com base nos dados obtidos.

A determinação de tempo dos processos sempre despertou a curiosidade dos cientistas desde a medição de segundos, minutos ou horas. Há, entretanto, um outro tempo que corresponde a prolongados períodos e eras, responsável por moldar eventos cósmicos de larga escala: o tempo profundo. No ocidente esse conceito foi primeiramente usado por James Hutton e Charles Lyell no século XIX, ao argumentarem que rochas sedimentares contendo diferentes camadas necessitariam de um tempo de formação infinitamente grande, da ordem de milhares de anos, reforçando o conceito de que a idade do planeta era maior do que aquela até então defendida pela Igreja. Nesse contexto enquadra-se a geocronologia, ciência que faz uso de diferentes métodos para a datação de rochas, fósseis, sedimentos, eventos relacionados à história da Terra e a sua própria idade. Métodos estes baseados nas análises matemáticas, estatísticas, físicas e químicas das amostras de interesse. Existe uma larga variedade de ferramentas, equipamentos e técnicas a serem empregadas nos métodos geocronológicos para datação e estimativa qualitativa e quantitativa dos dados obtidos (Geraldes, 2010).

Dentre os métodos geocronológicos utilizam-se os sistemas de decaimentos de isótopos como Sm-Nd, Rb-Sr, Re-Os, Lu-Hf, Ar-Ar, K-Ar, Pb-Pb, ¹⁴C, U-Th-Pb, e os métodos analíticos *Chemical Abrasion-Isotope Diluition - Thermal-Ionisation Mass Spectrometry* (CA-ID-TIMS) (Titon *et al.*, 1955; Wetherill, 1956), *Secondary Ion Mass Spectrometer* (SIMS), *Sensitive High Resolution Ion Microprobe* (SHRIMP) (Moorbarth, 1983; Ireland,

1995; Compston et al., 1984), Laser Ablation-Inductively Coupled-Mass Spectrometry (LA-ICP-MS) (Feng et al., 1993; Fryer et al., 1993).

CA-ID-TIMS apresenta uma grande precisão (0.1 - 0.01%) das idades), sendo aplicado principalmente na datação de zircões de rochas vulcânicas e plutônicas e calibração de colunas estratigráficas (Schaltegger *et al.* 2015). Os métodos de alta resolução espacial (SIMS e SHRIMP) apresentam também uma alta precisão (2% das idades) sendo aplicado principalmente em zircões detríticos mais complexos (de domínios magmáticos e metamórficos) que necessitam de uma maior resolução espacial (Schaltegger *et al.* 2015).

O sistema U-Th-Pb se destaca e é comumente aplicado na datação de grãos de zircões através do método LA-ICP-MS. A utilização deste método destaca-se devido pela agilidade na geração de dados (sem necessidade de tratamento químico das amostras), à alta sensibilidade de análises de íons monoatômicos, possibilitando as análises in-situ através da ablação a laser. (*Mass Spectrometry*). Possui larga aplicabilidade onde os demais métodos são limitados pelo tamanho, quantidade de dados necessários e complexidade interna das amostras utilizadas, além de uma boa precisão para multi coletor (0.5% das idades) e Quadrupolo (2% das idades) (Schaltegger *et al.* 2015).

1.2 JUSTIFICATIVA E RELEVÂNCIA DO TRABALHO

A aquisição de dados por LA-ICP-MS consiste de um sistema onde a amostra, que se encontra na célula de ablação, passa por ablação *laser*, onde seus íons são liberados e carregados pelo gás carreador (He) até o ICP, onde as partículas geradas (um aerossol) são atomizadas e ionizadas (Figura 1.1) (Günther & Hattendorf, 2005). Após a ionização, os átomos são direcionados por vácuo para um analisador de massa. Os analisadores podem ser setormagnético (Multicoletor-MC) ou Monocoletor (SF)) ou quadrupolo (Q). A escolha pelo sistema LA-MC-ICP-MS, mesmo não atingindo a alta precisão do que o TIMS ou a pequena resolução espacial do SHRIMP (Dickin, 2005), se deve ao fato de uma menor necessidade de correção das interferências isobáricas e da maior sensibilidade do equipamento. Possui uma boa resolução espacial (~30 μ m) além da vantagem de ser de rápida execução e valor relativamente baixo para ser executado. Seja a análise dos dados por *peak jumping*, quando o *background* (leitura realizada antes da ablação *laser* da amostra analisada) deve ser extraído de cada leitura de cada um dos elementos analisados em diferentes intervalos de tempo, em

sistema de detecção monocoletor (SF); ou aquisição simultânea por sistema de detecção multicoletor (MC), necessita de um tratamento dos mesmos (Takenaka 2013). No entanto, existem fatores externos e internos que podem vir a prejudicar a leitura dos dados ou mesmo a interpretação dos resultados, tais como a fracionamento no tempo e o fracionamento estático. Primeiramente, a calibragem do LA-ICP-MS pode vir a variar no decorrer do dia em que se esteja analisando as amostras. Para corrigir tal eventualidade são realizadas análises de materiais de referência para que essa variação possa ser corrigida com base na divergência dos dados. Em segundo lugar, a variação na medição das interferências isobáricas (interferências de elementos distintos com mesma massa atômica, como. Ex.: ²⁰⁴Hg e ²⁰⁴Pb).

Figura 1.1 - Representação esquemática do LA-ICP-MS. (Modificado de Günther & Hattendorf 2005).

A redução de dados consiste no cálculo das razões, incertezas e nas correções que devam ser aplicadas aos dados (ex.: fracionamento de massa induzido pelo laser e interferências isobáricas). Em geral, quanto menos o dado precisar ser reduzido (ou corrigido), menor serão as incertezas que deverão ser propagadas, resultando incertezas totais menores. Atualmente há diversos softwares disponíveis para este propósito (ex.: *Glitter* (Figura 1.2), *Iolite*), que possuem uma interface amigável e permitem a redução de dados *online*. Por outro lado, essas ferramentas não permitem correções para ²⁰⁴ Pb, além de apresentarem uma interface gráfica amigável (Figura 1.2), demanda um tempo prolongado de interação usuário-software e está sujeito ao erro humano na seleção dos dados (no primeiro caso) ou o controle do *dead time* para os contadores de íons (no segundo caso), dentre outras

limitações. Outra abordagem possível é a redução de dados *off-line* por meio de macros em planilhas de *Excel*. Neste caso, é possível aplicar todas as correções e parâmetros desejados, porém a redução não é alcançada de forma direta ou dinâmica (no caso de seleção de partes do sinal, etc) além da necessidade de um tempo maior de interação usuário - interface.

Dentre as ferramentas disponíveis para o tratamento e redução de dados, pode-se observar vantagens e desvantagens. Assim, faz-se necessária a aplicação de uma ferramenta que utilize de maneira eficaz tais métodos, porém, sem as barreiras de suas limitações. Utilizando-se do modelo de Stacey & Kramers (1975) para a correção de ²⁰⁴Pb nas razões medidas de ²⁰⁷Pb, ²⁰⁶Pb e ²⁰⁸Pb, levando-se em consideração a interferência do fracionamento isobárico de Hg com a massa total 204, trabalhando em meio as correções da razão ²⁰²Hg / ²⁰⁴Hg, a propagação da incerteza no cálculo das idades antes e após as correções de ²⁰⁴Pb comprova a eficiência da aplicação de tal método (Storey et al. 2006). Com tratamento off*line* dos dados efetua-se menos correções para os mesmos. Utiliza-se, para tanto, materiais de referência junto às amostras analisadas, o que permite um controle de qualidade dos dados obtidos (Figura 1.3) (Gehrels & Zeh, 2006) medindo assim as variações do aparelho no decorrer do dia em que se realizaram as análises. As correções para as taxas elevadas de ²⁰⁴Pb devem ser aplicadas devido à interferência isobárica, podendo esta ser causada devido ao zircão analisado ser muito jovem, por razões cristalográficas ou alterações hidrotermais do zircão (Horstwood et al. 2003). Logo, torna-se essencial a determinação dos dados contidos no sinal lido durante a ablação laser para a redução, tratamento e determinação de idades e propagação de incertezas, levando em consideração os pontos expostos acima.

Figura 1.2 - Software de redução de dados, *Glitter* (Griffin *et al.*, 2008) e sua interface gráfica durante análises realizadas no Departamento de Geologia da Universidade Federal de Ouro Preto.

Figura 1.3 - Planilha de Excel com macros *Isoplot* para redução de dados e correção para chumbo comum (Gehrels & Zeh, 2006).

1.3 OBJETIVOS

O presente trabalho possui como proposta a criação de uma ferramenta para a redução dos dados adquiridos pela ablação de grãos de zircão no *Neptune* LA-MC-ICP-MS através de tratamento *off-line*, com uma interface gráfica amigável. Possibilitando assim uma redução de dados de maneira dinâmica e ágil.

Cálculo de idades e incertezas com tempo reduzido de interação *software*-usuário que permita a visualização gráfica dos dados em diagrama um diagrama concórdia, sem a necessidade de se exportar os dados e fazer uso de macros de *Excel* no processo. Visualização do intervalo do sinal selecionado, graficamente, correção para ²⁰⁴Pb e exportação dos dados obtidos em forma de tabelas.

E por fim, a compreensão e aprendizado do método geocronológico U-Th-Pb em zircão na geocronologia.

2.1 REVISÃO BIBLIOGRÁFICA

Uma compilação bibliográfica foi efetuada, a fim de levantar informações sobre o estado da arte do tema, além de uma pesquisa prévia a respeito da metodologia empregada no processo de tratamento dos dados e redução para o sistema U-Th-Pb e cálculo de idade. Outro tema investigado foi acerca das características de cada método, pontos positivos e limitações.

2.2 A LINGUAGEM MATLAB

A escolha pela linguagem computacional MATLAB (Matrix Laboratory) foi realizada devia a sua aplicabilidade para computação numérica e criação de gráficos. Esse ambiente de programação dispensa a necessidade de declaração de variáveis, utilização de ponteiros e alocação e pré-alocação de memória. Além da capacidade de se trabalhar com um grande volume de dados e matrizes de maneira rápida e eficiente a visualização dos dados e valores de variáveis é importante no que diz respeito a desenvolvimento de ferramentas experimentais e solução de problemas e ser um ambiente interativo que destina-se a cálculos numéricos, matriciais e facilidade de manipulação dos mesmos. O ambiente possui ferramentas que auxiliam de maneira eficaz a criação de gráficos científicos, com uma demanda menor de tempo de processamento, comparando-se com programas desenvolvidos em outras linguagens como *Fortran, Basic* ou C e possuir uma gama de ferramentas e possibilidades. (Costa, 2003).

No ambiente MATLAB são encontradas funções matemáticas-estatísticas já implementadas e otimizadas para seu uso no tratamento dos dados adquiridos. O presente trabalho tornou-se capaz de ser desenvolvido com o uso de uma licença de estudante, que mesmo possuindo limitações quanto as ferramentas disponíveis, se mostrou suficiente para a tarefa proposta. Outra característica do ambiente está relacionada com a praticidade da criação de uma interface gráfica. De maneira dinâmica, e depuração de linhas de código de maneira direta e precisa (Costa, 2003).

Silva, J.P.A., 2017, U-PbMAT - UMA NOVA FERRAMENTA DE CORREÇÃO DE DADOS PARA LA-ICP-MS

3.1 INTRODUÇÃO

Este capítulo possui ênfase sobre os principais aspectos do uso do sistema U-Th-Pb na geocronologia, a importância das correções para ²⁰⁴Pb, remobilização de Pb radiogênico (²⁰⁸Pb, ²⁰⁷Pb e ²⁰⁶Pb), razões das massas isotópicas, idades obtidas e a necessidade do uso de materiais de referência nas análises.

3.2 MODELO DE DATAÇÃO PELO MÉTODO U-Th-Pb

A determinação da idade de eventos geológicos, assim como a idade da Terra, possibilita uma melhor compreensão da evolução crustal do planeta e das consequências de determinados eventos no passado geológico da Terra, propiciando a elaboração de modelos para tais. Devido à alta temperatura de fechamento, resistência ao intemperismo físico e químico dos minerais que possuem concentrações de U-Pb, estes minerais possuem uma ampla aplicação na geocronologia.

O Urânio possui três isótopos radioativos que ocorrem naturalmente (²³⁸U, ²³⁵U e ²³⁴U) e o Tório existe primariamente como um isótopo radioativo (²³²Th). Devido ao fato do ²³⁴U ocorrer como parte da série de decaimento do ²³⁸U, sendo um isótopo radiogênico "filho" intermediário. Têm-se que ²³⁸U, ²³⁵U, ²³²Th são isótopos radiogênicos "pais". Cada um destes três isótopos "pais" têm o fim de sua série de decaimento em isótopos radiogênicos estáveis ("filhos") de Pb (²⁰⁸Pb, ²⁰⁷Pb e ²⁰⁶Pb) (Holmes, 1948). Em meio essa cadeia de decaimento existe vários elementos químicos que, devido ao seu curto tempo de meia-vida (Figura 3.1), são ignorados quando se trata da datação de eventos na escala de tempo geológico, os quais envolvem milhões de anos (Tabela 3.1).

Tabela 3.1 - Relações de decaimento de isótopo pai-filho de Urânio e Tório. Alterado de Jaffey *et al.* (1971) em Dickin 2005.

Caminho de Decaimento	t _{1/2} , Bilhões de anos	Constante de Decaimento λ, 1/ano
$^{238}\text{U} \rightarrow ^{206}\text{Pb}$	4.47	1.55125 x 10 ⁻¹⁰
$^{235}\text{U} ightarrow ^{207}\text{Pb}$	0.704	9.8485 x 10 ⁻¹⁰
$^{232}\text{Th} ightarrow ^{208}\text{Pb}$	14.01	0.49475 x 10 ⁻¹⁰

3.2.1 O CÁLCULO DAS IDADES U-Pb

O caminho seguido pelas relações de decaimento de isótopo pai-filho e elementos intermediários (Figura 3.1) ocorre devido ao equilíbrio secular (Krane, 1987) que se atinge após o ciclo de tempo de cinco meias-vidas. Sendo assim, o número de átomos de um isótopo radioativo é controlado pelo número de isótopos iniciais, conforme a equação (3.1).

$$N_{\text{pai}} \times \lambda_{\text{pai}} = N_{\text{filho}} \times \lambda_{\text{filho}}$$
(3.1)

Onde têm-se que N_{pai} representa o número de isótopos pai, N_{filho} o número de isótopos filhos, λ_{pai} a constante de decaimento do isótopo pai e λ_{filho} a constante de decaimento do isótopo filho. No equilíbrio secular, a produção de isótopos – filho iguala-se à taxa de

Figura 3.1 - Série de decaimento radioativo do ²³⁸U (Radioativo) para ²⁰⁶Pb (estável) através de emissão de partículas Alfa e Beta. (Modificado de Krane, 1987).

decaimento radioativo (Faure, 1986).

A partir do pressuposto de que o a razão ²⁰⁸Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb e ²⁰⁶Pb/²⁰⁴Pb de um sistema que se manteve fechado para a adição e remobilização de U, por difusão, e seus demais isótopos filhos, são utilizadas as equações (3.2), (3.3) e (3.4) como base para o cálculo das idades.

$$\binom{^{206}Pb}{^{204}Pb} = \binom{^{206}Pb}{^{204}Pb}_0 + \binom{^{238}U}{^{204}Pb} (e^{\lambda_{238}t} - 1)$$
(3.2)

$$\binom{2^{07}Pb}{2^{04}Pb} = \binom{2^{07}Pb}{2^{04}Pb}_0 + \binom{2^{35}U}{2^{04}Pb} \left(e^{\lambda_{235}t} - 1\right)$$
(3.3)

$$\binom{^{208}Pb}{^{204}Pb} = \binom{^{208}Pb}{^{204}Pb}_0 + \binom{^{232}Th}{^{204}Pb} \left(e^{\lambda_{232}t} - 1\right)$$
(3.4)

Onde índice "0" representa o tempo inicial da cristalização do grão mineral a ser analisado, "t" representa o tempo decorrido a partir da cristalização do mineral e λ_{238} , λ_{235} , λ_{232} a constante de decaimento específica de ²³⁸U, ²³⁵U, ²³²Th. (Tabela 1).

Para a normalização das idades é utilizado o único isótopo não radiogênico estável, ²⁰⁴Pb. Uma vez realizada a normalização, é possível focar apenas em sua razão que pode ser medida com uma precisão maior em comparação com a sua concentração. Com o conhecimento da concentração de ²⁰⁴Pb em t=0, e utilizando as equações acima descritas, consequentemente são encontradas as idades com base nas razões das massas dos isótopos pai-filho.

3.2.2 PRESENÇA DE Pb INICIAL

Um dos principais desafios na geocronologia por U-Pb é o de decifrar a proporção inicial de Pb inicial na amostra. Minerais como apatita, titanita e columbita-tantalita tendem a concentrar em sua estrutura, uma quantidade suficiente de Pb inicial (por exemplo $\left[\begin{pmatrix} 208_{Pb} \\ 204_{Pb} \end{pmatrix}_{i} - \begin{pmatrix} 207_{Pb} \\ 204_{Pb} \end{pmatrix}_{i} - \begin{pmatrix} 206_{Pb} \\ 204_{Pb} \end{pmatrix}_{i} \right]$) que deve ser calculado antes de chegar ao cálculo das idades.

A correção de ²⁰⁴Pb leva em consideração a idade da diferenciação magmática e de resfriamento, solidificação da Terra e o cálculo idades toma como base a idade da Terra e a

idade a partir de fechamento do sistema cristalino e início do equilíbrio secular. Este cálculo pode ser baseado na equação (3.5) de Stacey & Kramers (1975) que pode ser aplicada analogamente para os outros geocronômetros.

$$\binom{2^{06}Pb}{2^{04}Pb}_{t} = \binom{2^{06}Pb}{2^{04}Pb}_{i} + \binom{2^{38}U}{2^{04}Pb} \left(e^{\lambda_{238}T} - e^{\lambda_{238}t} \right)$$
(3.5)

Onde

 $\left(\frac{2^{206}Pb}{2^{04}Pb}\right)_t$ = Razão isotópica de ²⁰⁴Pb para a idade t;

 $\left(\frac{2^{206}Pb}{2^{04}Pb}\right)_i$ = Razão isotópica de ²⁰⁴Pb na idade da Terra T anos atrás;

 $\frac{^{238}U}{^{204}Pb}$ = Razão isotópica destes elementos em uma região em particular com a presença de 204 Pb no tempo atual;

t = tempo decorrido desde a remoção de 204 Pb de sua fonte primordial;

T = idade da Terra;

3.2.3 DESEQUILÍBRIO NO SISTEMA U-Th-Pb

As razões obtidas para as massas ²⁰⁶Pb e ²⁰⁷Pb permitem a elaboração de um diagrama definido como concordia (Wetherill, 1956). O eixo Y corresponde à razão ²⁰⁶Pb/²³⁸U e o eixo X à razão ²⁰⁷Pb/²³⁵U. A relação entre as razões é não-linear e há uma série de fatores que interferem na mobilidade dos dados plotados em relação à concordia. Entre eles, encontramse a perda de Pb ou enriquecimento em U, as correções de Pb comum (²⁰⁴Pb), a presença de núcleos herdados e as variações nos valores de Th do reservatório no momento de cristalização do mineral (ex.: Faure, 1986, Harrison & Watson,1984; Harrison *et al.* 2002, Cherniak *et al.* 2001). O uso do diagrama concordia permite a fácil correção de alguns desses fatores (Figura 3.2).

O excesso de ²³⁰Th tende a deslocar o ponto no diagrama para cima, verticalmente, da mesma forma que o déficit de ²³⁰Th descola o ponto para baixo. A perda de U torna a idade da amostra mais antiga enquanto a perda de Pb torna o dado mais jovem. A presença de núcleos

herdados faz com que a idade do ponto seja mais antiga. Núcleos herdados mais jovens deslocam o ponto sobre a concordia, enquanto núcleos herdados mais antigos, além de deslocar o dado sobre o diagrama, superestimam os valores da razão ²⁰⁷Pb/²³⁵U. Sobre a presença de chumbo comum e suas correções, o *plot* do ponto estudado desloca-se horizontalmente.

Figura 3.2 - Diagrama concórdia e principais fatores que afetam o plot do dado no diagrama (Modificado de Harrison *et al.*, 2002).

Caso o equilíbrio secular seja interrompido durante a etapa de cristalização ou de fusão parcial, o sistema cristalográfico não mais será um sistema fechado. Portanto, as idades medidas podem se mostrar discordantes. As idades obtidas pela datação do sistema de decaimento U-Th-Pb podem ser anomalamente antigas ou jovens. Infelizmente, o sistema U-Th-Pb, raramente permanece fechado, especialmente em rochas silicatadas, ocorrendo assim uma remobilização de Pb no sistema, sendo de entrada de U no sistema, perda de Pb radiogênico ou mesmo a acreção de ²⁰⁴Pb ao sistema (Dickin, 2005).

Com o aumento da temperatura à qual o mineral possa vir a ser submetido, sendo suficiente alta, o Pb pode vir a migrar para fora do cristal por difusão, que em sólidos cristalinos tendem a causar a formação de defeitos pontuais.

A perda de Pb radiogênico em minerais ricos em urânio como o zircão, pode vir a causar a discordância nas idades ²⁰⁶Pb/²³⁸U e ²⁰⁷Pb/²³⁵U (Holmes, 1954). Ao se levar em consideração, que a perda de ²⁰⁴Pb ocorreu próximo ao tempo presente, a idade ²⁰⁷Pb/²⁰⁶Pb representa, normalmente, as idades mínimas, uma vez que bem definida a curva discórdia das idades através da origem do gráfico. Entretanto, se os dados exibirem discordância reversa, então a idade ²⁰⁷Pb/²⁰⁶Pb será a idade máxima (Wetherill, 1956).

Sendo assim, para se calcular as idades para as razões isotópicas ²⁰⁶Pb/²³⁸U e ²⁰⁷Pb/²³⁵U, após correção de massa para ²⁰⁴Pb, são utilizadas as equações (3.6) e (3.7). Devido ao fato de não haver como predizer com exatidão o instante onde ocorre o decaimento radioativo dos isótopos, é utilizada uma relação exponencial para a aproximação do momento (Dickin, 2005).

$$\frac{{}^{206}Pb^*}{{}^{238}U} = \left(e^{\lambda_{238}t} - 1\right) \tag{3.6}$$

$$\frac{{}^{207}Pb^*}{{}^{235}U} = \left(e^{\lambda_{235}t} - 1\right) \tag{3.7}$$

A perda de Pb do sistema U-Th-Pb, a inferência nas idades pode ser minimizada através da idade relacionada à razão ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ e a relação da diferença dos tempos de meiavidas de seus isótopos "pais". A idade $\left(\frac{{}^{207}Pb}{{}^{206}Pb}\right)^*$ é calculada pela equação (3.8), sendo tomadas como base as equações (3.6) e (3.7). Entretanto, a equação (3.8) não possui solução algébrica, sendo necessária a aplicação do método de Newton-Raphson de iteração linear com processo iterativo. Este método matemático de derivação contribui para a aproximação da idade calculada de acordo com o número de interações. Normalmente 10 iterações lineares deste método são suficientes para uma estimativa apropriada da idade desta razão isotópica (Dickin, 2005).

$$\left(\frac{{}^{207}Pb}{{}^{206}Pb}\right)^* = \frac{1}{137.88} x \left[\frac{(e^{\lambda_{235}t}-1)}{(e^{\lambda_{238}t}-1)}\right]$$
(3.8)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Onde

- $x_1 = Idade_{206/238}^*$
- $f(x_n) = \frac{(e^{(\lambda_{235} * x_0)} 1)}{(137.88 * (e^{(\lambda_{238} * x_0)}) 1)} \left(\frac{207 Pb}{206 Pb}\right)^*$
- $Idade\left(\frac{{}^{207}Pb}{{}^{206}Pb}\right)^* = x_{10}$

Como minerais capazes de conter uma grande concentração de Urânio e pouco Chumbo não radiogênico (²⁰⁴Pb), a Uraninita e Monazita foram os primeiros minerais utilizados na geocronologia U-Pb, porém, devido a sua baixa distribuição em suítes rochosas, seu uso se torna um tanto quanto restrito. Entretanto, o zircão é um mineral que possui concentrações de Urânio com uma ampla distribuição estando presente nas rochas intermediárias à ácidas, tornando-se assim o principal material utilizado para datação U-Th-Pb.

Após realizadas correções para as concentrações das frações de massa de ²⁰⁴Pb (chumbo inicial não radiogênico) e ao se utilizar das relações de razões de massas isotópicas ²⁰⁶Pb/²⁰⁴Pb e ²⁰⁷Pb/²⁰⁴Pb (Stacey & Kramers, 1975) é possível estimar as concentrações iniciais de ²⁰⁷Pb e ²⁰⁶Pb incorporado ao sistema cristalino do zircão, conforme equações (3.9) e (3.20).

$$\left(\frac{{}^{207}Pb}{{}^{204}Pb}\right) = \left[e^{\lambda_{235}*T} - e^{\lambda_{235}*(t_{75})}\right] * \left(\frac{{}^{235}U}{{}^{204}Pb}\right) + 15.628$$
(3.9)

$$\binom{^{206}Pb}{^{204}Pb} = \left[e^{\lambda_{238}*T} - e^{\lambda_{238}*(t_{68})} \right] * \binom{^{238}U}{^{204}Pb} + 18.700$$
(3.10)

Onde T é a idade da Terra utilizada, 3.7 G.a ou 4.57 G.a devido ao fato de se observar uma diferenciação das rochas constituintes de toda a crosta da Terra em dois pontos distintos do passado geológico do planeta (Stacey & Kramers 1975). Tem que t_{75} é a idade da razão 207 Pb/ 235 U e t_{68} é a idade da razão 206 Pb/ 238 U.

3.3 ZIRCÕES UTILIZADOS COMO MATERIAL DE REFERÊNCIA

Para que um mineral seja utilizado como material de referência em geocronologia, este deve ser homogêneo, possuir razões e idades U-Th-Pb concordantes, baixa quantidade de ²⁰⁴Pb e moderada concentração de U, possuir dimensões que propiciam a alocação de repetidos pontos de ablação e possuir uma quantidade suficiente para sua distribuição. Logo, estas propriedades o tornam apto para ser utilizado em um processo de medição analítica de forma precisa.

Na questão da utilização como material de referência, os minerais servem como base para a calibração de equipamentos, devido ao fato que os mesmos podem vir a apresentar variações nas leituras realizadas no decorrer de uma rodada de análises ou do dia. Além disso, são empregados na validação de valores medidos e calculados obtendo-se assim os valores para os fatores de correção empregados nas amostras, corrigindo assim a variação das leituras dos aparelhos. Os valores e fatores de correções, obtidos através de análises de materiais de referência, são empregados nas correções de fracionamento de massa (*mass bias*).

Os usos dos valores obtidos através de análises de materiais de referência auxiliam no cálculo de menores incertezas de medição. Como são efetuadas diversas medições, vários pontos em mais de uma amostra, trabalha-se com incertezas de múltiplas medidas e suas dispersões. Assim, cada medição realizada proporciona uma incerteza aleatória, ou seja, são estimados parâmetros da distribuição dos erros aleatórios, para tal faz-se uso de modelos matemáticos.

Nesse estudo, foram utilizados dados de análises realizadas em três conjuntos de grãos minerais de zircão, distintos entre si, utilizados como material de referência. Além dos grãos utilizados como material de referência, foram utilizados grãos minerais de zircão de amostras não identificadas. Todos os dados, assim como as análises, foram realizadas no Departamento de Geologia da Universidade Federal de Ouro Preto, segundo Lana *et al.*, (*In prep*).

3.3.1 ZIRCÃO GJ-1

Segundo Jackson *et al.*, (2004) GJ-1 é um zircão de qualidade gemológica, cuja coloração chega a variar de vermelho amarelado, marrom e vermelho a vermelho rosado, derivado do pegmatito Leste Africano (Jackson *et al.*, 2004, Elhlou *et al.*, 2006). O zircão GJ-1 foi fornecido pelo *G&J Gem Merchants* (Sydney, Austrália), grupo GEMOC. As análises

realizadas anteriormente neste zircão, em ID-TIMS, mostram uma idade, com alta precisão, de 608.5 ± 0.4 Ma para a razão 207 Pb/ 206 Pb e uma idade relativamente mais jovem de 599.8 ± 4.5 Ma para a razão 206 Pb/ 238 U Ma (Jackson *et al.*, 2004). A desvantagem deste material de referência está no fato de que ele não é concordante e, enquanto as idades TIMS das razões 206 Pb/ 238 U e 207 Pb/ 235 U para fragmentos de grãos individuais variam menos que 0.6%, existem pequenas variações, destas razões, entre os grãos (*ca.* 1%).

Grupos de diferentes cores deste material de referência mostram, entre si, uma pequena variação quanto a concentração de elementos traço. Segundo Elhlou *et al.*, (2006), a variação vermelha que foi estudada, é utilizada como material de referência para datação U-Pb, devido ao seu alto conteúdo de U (230 \pm 13 ppm) e maior concentração de Th (18 \pm 3 ppm) do que as outras variedades do zircão GJ-1.

Logo, com os estudos realizados por Jackson *et al.*, (2004) e Elhlou *et al.*, (2006), os zircões desta variedade são adequados para serem utilizados como materiais de referência, devido à sua semelhança química e isotópica.

3.3.2 ZIRCÃO PLEŠOVICE

Segundo Sláma *et al.*, (2008) o zircão Plešovice é coletado de uma rocha potássica de fácies granulito da porção sul do Maciço Boêmia (Plešovice, República Checa). Os cristais do zircão Plešovice são idiomorfos, prismáticos, de coloração rosada a marrom com aproximadamente 0.5cm (Santos *et al.*, 2017). Utilizando de diversas técnicas (ID-TIMS, SIMS e LA ICP-MS) e laboratórios, foram encontradas idades concordantes de U-Pb, ²⁰⁶Pb/²³⁸U, de 337.13±0.37 Ma. (Sláma *et al.*, 2008).

3.3.3 ZIRCÃO BLUE BERRY (BB)

Este zircão possui qualidade gemológica, sendo homogêneo, possuindo altas concentrações de U e Pb foi utilizado como material de referência para análises geocronológicas de U-Pb e geoquímica de Hf. O zircão BB foi coletado de rochas presentes em um depósito secundário do tipo placer no Complexo Highland no Sri Lanka (Kröner et al. 1994b). Segundo Santos et al. (2017), as análises em diversos laboratórios utilizando técnicas como Isotope Dilution-Thermal Ionization Mass Spectrometry (ID-TIMS) e LA-ICP-MS mostram que os resultados obtidos apontam que as amostras possuem uma idade U-Pb concordante, sendo a idade 206Pb/238U de 562.58 \pm 0.26 Ma. Para as análises realizadas por

Lana *et al.*, (*In* prep) foram selecionadas 5 amostras (BB38-BB39-BB40-BB41-BB42) (Figuras 3.3 e 3.4).

Figura 3.3 - Imagens de fragmentos castanho-claro translúcidos do zircão BB: (a) grãos de zircão BB utilizados; (b) imagem de catodo luminescência; (c) imagem de luz transmitida. Os pontos e linhas presentes nas imagens são referentes às análises realizadas por LA

Figura 3.4- Zircões BB e RP sob luz transmitida e catodo luminescência. (Modificado de Lana *et al., (in prep)*).

4.1 TRATAMENTO DOS DADOS

Os dados adquiridos através do Neptune LA-ICP-MS podem ser exportados na extensão XLS (Figura 4.1), a qual pode ser aberta tanto no Microsoft Excel quanto no *LibreOffice*. Neste *output* têm-se os valores em CPS (contagem por segundo) de cada elemento radioisótopo no decorrer do tempo da perfuração de cada ponto alocado no grão mineral de zircão. Para o presente trabalho, foram cedidos os dados de análises em grãos de zircão, material de referência e amostras, presentes em Lana *et al.*, (*in prep*).

ສາ	File Edit	View	Insert Form	nat Tools	Data Wi	ndow Heli	n											Type a	question for he	do 🔹	_ 6
	The Fan	Tren			Dara III		- 41 5	1 do- 17	1000	(7)								Type a	question for the	da Se	
					Q 83 +	Ca + S	2 • 2 • 2		100%	• 🖾 •											
												I	E & y	9 医弹 医胆	180 20 H	r -					
Cali	bri		- 11 -	BIU	1 日本日	B B 9	% , %	3 :08 (第	第 日 • •	<u>a - A</u> -											
	A1	-	∱ std011																		
	А	В	С	D	E	F	G	н	1	J	K	L	M	N	0	P	Q	R	S	Т	U
22																					
23	Cycle	Time	223.2	L 232Th	238U	207Pb	206Pb	202Hg	204Pb	208Pb	207Pb/206	206Pb/238	208Pb/232	Delta 207	Delta 206	Delta 208P	b/232Th (3)	1			
24	1		0 -2.99E-0	5 1.58E-04	-7.66E-05	3.82E+01	1.53E+01	2.90E+03	7.99E+02	3.71E+01	X2.494036	-3.20E-03	3.75E-03	0.00E+00	0.00E+00	0.00E+00					
25	2	0.13	4 -6.45E-0	5 -1.68E-04	-7.41E-05	0.00E+00	3.83E+01	2.95E+03	5.83E+02	2.20E+01	0.00E+00	-8.27E-03	-2.10E-03	0.00E+00	0.00E+00	0.00E+00					
26	3	0.26	9 7.40E-03	5 7.69E-05	3.81E-05	3.82E+01	4.60E+01	3.18E+03	6.12E+02	1.45E+01	8.31E-01	1.93E-02	3.01E-03	0.00E+00	0.00E+00	0.00E+00					
27	4	0.40	3 2.81E-0	5 1.20E-04	2.90E-05	3.06E+01	6.90E+01	3.17E+03	7.17E+02	5.98E+01	4.43E-01	3.80E-02	7.98E-03	0.00E+00	0.00E+00	0.00E+00					
28	5	0.53	7 -1.56E-04	1.29E-05	3.68E-05	6.88E+01	7.67E+01	3.23E+03	6.20E+02	5.22E+01	8.98E-01	3.33E-02	6.46E-02	0.00E+00	0.00E+00	0.00E+00			-		
29	6	0.67	1 -5.80E-0	-6.66E-05	1.60E-05	1.53E+01	1.53E+01	3.16E+03	8.07E+02	7.49E+01	9.98E-01	1.54E-02	-1.80E-02	0.00E+00	0.00E+00	0.00E+00					
30		0.80	15 -2.27E-04	1 -1.30E-04	3.79E-05	5.35E+01	9.97E+01	3.10E+03	6.50E+02	5.98E+01	5.37E-01	4.21E-02	-7.38E-03	0.00E+00	0.00E+00	0.00E+00					
31	8	0.93	9 3.84E-0	-9.68E-05	2.86E-05	7.65E+00	3.83E+01	3.23E+03	7.40E+02	2.96E+01	2.00E-01	2.15E-02	-4.89E-03	0.00E+00	0.00E+00	0.00E+00					
32	5	1.07	3 -4.11E-0	-1.74E-04	3.48E-05	3.06E+01	7.67E+01	3.23E+03	8.74E+02	2.96E+01	3.99E-01	3.52E-02	-2.73E-03	0.00E+00	0.00E+00	0.00E+00					
33	10	1.20	-3.74E-0	-8.30E-05	7.48E-05	3.82E+01	3.07E+01	3.39E+03	7.25E+02	4.4/E+01	X1.24/018	0.50E-03	-8.61E-03	0.00E+00	0.00E+00	0.00E+00					
34	11	1.34	1 1.54E-04	4.49E-05	-8.31E-05	3.062+01	5.3/E+01	3.35E+03	7.102+02	5.22E+01	5.70E-01	-1.03E-02	1.86E-02	0.00E+00	0.00E+00	0.00E+00					
35	12	1.4/	3 3.15E-0	E 12E-04	1.72E-03	2.305+01	3.835401	3.232+03	6 505 102	3.715+01	0.000 01	3.37E-02	1 165 00	0.000000	0.000000	0.000000					
27	1:	1.00	2 1 525 0	5.13E-03	4.02E-03	2.2501	2.50E+01	2 125402	7 9/15102	5.095+01	3.30E-01	-9.13E-03	1.102-02	0.000000	0.000000	0.000000					
28	19	1.74	7 .7 295-0	-1 10E-04	-4.00E-00	3.06E+01	3.83E+01	3.29E+03	6.80E+02	6 90E+00	7 98F-01	-1.00L-02	-9 99E-04	0.00E+00	0.00E+00	0.0000000					
39	16	2.01	1 1.54E-04	-5.65E-05	3.57E-05	4.59E+01	5.37E+01	3.27E+03	7.02E+02	1.45E+01	8.55E-01	2.41F-02	-4.09E-03	0.00E+00	0.00E+00	0.00E+00					
10	17	2.14	5 2.18E-04	-9.01E-06	-4.26E-05	6.12E+01	6.13F+01	2,99E+03	6.72E+02	2.20E+01	9.98F-01	-2.30E-02	-3.91E-02	0.00F+00	0.00F+00	0.00E+00					
\$1	18	2.27	9 1.17E-04	6.87E-05	5.29E-05	2.29E+01	3.07E+01	3.06E+03	8.44E+02	2.20E+01	7.48E-01	9.28E-03	5.13E-03	0.00E+00	0.00E+00	0.00E+00					
42	19	2.41	3 -5.14E-0	1.96E-04	1.67E-06	4.59E+01	6.90E+01	3.31E+03	5.68E+02	2.20E+01	6.65E-01	6.60E-01	1.80E-03	0.00E+00	0.00E+00	0.00E+00					
13	20	2.54	7 -2.21E-04	3.31E-04	-2.28E-05	4.59E+01	4.60E+01	2.81E+03	7.25E+02	5.22E+01	9.98E-01	-3.23E-02	2.52E-03	0.00E+00	0.00E+00	0.00E+00					
44	21	2.68	2 -7.48E-0	5 1.20E-05	1.73E-05	3.06E+01	3.83E+01	3.23E+03	7.25E+02	4.47E+01	7.98E-01	3.55E-02	5.95E-02	0.00E+00	0.00E+00	0.00E+00					
15	22	2.81	6 1.19E-04	6.96E-05	4.78E-05	1.53E+01	2.30E+01	3.03E+03	7.62E+02	1.45E+01	6.65E-01	7.69E-03	3.32E-03	0.00E+00	0.00E+00	0.00E+00					
16	23	2.5	5 1.41E-0	6.96E-05	-7.48E-06	1.53E+01	3.83E+01	3.43E+03	6.12E+02	1.45E+01	3.99E-01	-8.20E-02	3.32E-03	0.00E+00	0.00E+00	0.00E+00					
17	24	3.08	4 6.27E-0	5 -5.11E-05	-2.13E-05	4.59E+01	3.83E+01	3.47E+03	7.02E+02	1.45E+01	1.20E+00	-2.88E-02	-4.53E-03	0.00E+00	0.00E+00	0.00E+00					
	N N) ct	d011											- 141							1	F

Figura 4.1 - Dados exportados no formato XLS, onde encontram-se selecionados os dados de interesse a serem trabalhados.

Por padrão, as leituras da câmara de ablação que contém as amostras, são realizadas do início ao fim do processo, sendo portanto uma leitura constante e ininterrupta. Estas leituras são realizadas no decorrer do tempo, que vai do Ciclo 0 ao Ciclo 403. A partir do início das leituras, Ciclo 0, até por volta do Ciclo 172, aproximadamente, marca a leitura do *background*, o momento em que até então se efetua a leitura do gás carreador. Após este

intervalo de tempo observa-se um pico nos valores de CPS (Contagem por Segundo) da massa de cada elemento e em seguida seguem uma normalização em um sinal aperiódico. O sinal propriamente dito a ser analisado é então separado do *background* (Figura 2), a escolha do tipo do sinal pode ser realizada para uma análise mais acurada do comportamento da leitura das massas dos elementos como o sinal de ²³⁸U (Figura 4.2), das razões ²⁰⁶Pb/²³⁸U (Figura 4.3) e ²⁰⁷Pb/²⁰⁶Pb (Figura 4.4).

Figura 4.2 – Background e Sinal (início e fim) a ser analisado de ²³⁸U. Onde o intervalo de ambas as partes do sinal pode ser alterado na interface gráfica do algoritmo.

Figura 4.3 - *Background* e Sinal (início e fim) a ser analisado de 206 Pb / 238 U. Onde o intervalo de ambas as partes do sinal pode ser alterado na interface gráfica do algoritmo.

Para o tratamento dos dados, os mesmos são trabalhados de maneira matemática e estatística com base nos parâmetros utilizados para tal (início e fim de *backgound* e sinal).

Seguido do tratamento apropriado, tanto nas conversões de valores lidos de μ EV para CPS relações fundamentais quanto para as correções que devem ser realizadas para 204Pb.

Antes de ser iniciado o tratamento dos dados, são selecionados os arquivos com os valores de cada furo da amostra em questão e os materiais de referência analisados no decorrer da análise para o banco de dados a ser utilizado. Após o banco de dados estar carregado, são selecionados aqueles arquivos dentre os quais são materiais de referência que foram analisados durante o procedimento e os arquivos da amostra a serem trabalhados. O valor da idade da terra (T) é estipulado em 3.7 G.a (bilhões de anos) (Stacey & Kramers, 1975); o valor de integração para os conjuntos dos dados, podendo variar de 1 a 7, influenciando diretamente no cálculo das incertezas e das idades calculadas; o valor certificado (VC) assim como o valor de mass-bias ²⁰⁷Pb/²⁰⁶Pb (MB 207/206) do material de referência datado e a o Valor de correção aplicado nas idades das amostras (em %) são inseridos manualmente.

O primeiro passo a ser tomado, tanto para os materiais de referência selecionados quanto para as amostras, é a correção dos valores lidos para ²³²Th e ²³⁸U, uma vez que os valores para estes dois radioisótopos são obtidos em μEV os mesmo devem ser convertidos para CPS. Após a correção destes dois valores é realizado o cálculo das médias (M) (equação (4.1)) e desvio padrão (SD) (equação (4.2)) de cada um dos elementos, tanto do background (gás) quanto para o sinal a ser trabalhado de cada um dos elementos (²³²Th, ²³⁸U, ²⁰⁷Pb, ²⁰⁶Pb, ²⁰²Hg, ²⁰⁴Pb, ²⁰⁸Pb) e para as razões brutas (ou seja, sem correções para ²⁰⁴Pb) ²⁰⁷Pb/^{206Pb} e ²⁰⁶Pb/²³⁸U.

$$\bar{X} = \frac{\sum_{i=1}^{N} x_i}{N} \tag{4.1}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N}} \tag{4.2}$$

Onde \bar{X} representa a média de N valores e σ o desvio padrão. O segundo passo se trata do cálculo médio das razões brutas dos materiais de referência analisados e do Fator de Correção (FC), conforme equação (3.5), sendo aplicado na correção na média bruta ²⁰⁶Pb/²³⁸U, sendo este último a razão entre o Valor Certificado (VC) e o cálculo médio das razões brutas de ²⁰⁶Pb/²³⁸U e ²⁰⁷Pb/²³⁵U dos materiais de referência. Porém, os valores para ²³⁵U são obtidos através da relação fundamental com ²³⁸U, pela taxa de decaimento e seu isótopo filho (²⁰⁷Pb), logo a razão bruta de ²⁰⁷Pb/²³⁵U é obtida pela equação (3.6) e o valor de

FC é aplicado conforme equação (3.5). Assim, a razão ²⁰⁷Pb/²⁰⁶Pb recebe a correção pelo valor de MB equação (3.4), onde a razão ²³⁸U /²³⁵U é uma constante, em 137.88 (Andersen, 2002).

Dando continuidade no algoritmo, passa-se a calcular os parâmetros e valores a serem utilizados na determinação das idades. Calculando-se as idades ${}^{206}Pb/{}^{238}U$ e ${}^{207}Pb/{}^{235}U$ sem as correções de chumbo comum (${}^{204}Pb$) para ${}^{207}Pb$ e ${}^{206}Pb$ (Dickin, 2005), onde λ_{235} e λ_{238} são as constantes de decaimento de ${}^{235}U$ (equação (3.7)) e ${}^{238}U$ (equação (3.6)) respectivamente.

A partir do modelo de dois estágios (Stacey & Kramers, 1975), adotando a idade da Terra (T) como 3.7Ga, são calculadas as razões isotópicas ²⁰⁶Pb/²⁰⁴Pb (equação (3.10)) e ²⁰⁷Pb/²⁰⁴Pb (equação (3.9)).

4.2 CORREÇÃO DE CHUMBO COMUM

Devido à interferência isobárica de ²⁰⁴Hg durante a leitura do *background* das amostras torna-se fundamental a correção do total de massa de ²⁰⁴Hg da massa de ²⁰⁴Pb e consequentemente dos demais isótopos de chumbo presentes (Storey *et al.* 2005), traçando-se assim o histórico de perda de ²⁰⁴Pb na fase mineral analisada. Não sendo necessária a preparação química de amostras anterior à ablação laser aumentando a precisão das idades calculadas e colaborando para a redução na propagação das incertezas.

Durante as análises realizadas podem ocorrer variações dos dados obtidos, resultante de variáveis relacionadas com a calibragem do aparelho utilizado. A fim de se corrigir essas flutuações nas leituras é empregado o uso de amostras minerais certificadas e com idades já datadas e reconhecidas. São utilizados materiais de referência primários e secundários após uma série de análises efetuadas, logo são conferidos os valores lidos e comparados com aqueles já descritos anteriormente, utilizando assim o Valor Certificado (VC) e o *mass-bias* (MB), variação do fracionamento de massas, daquele material de referência para o *Neptune* LA-MC-ICP-MS. Para a normalização dos valores então, são utilizados esses parâmetros nas amostras analisadas.

Primeiramente, efetua-se a correção para ²⁰⁷Pb utilizando-se da equação (4.7). Em seguida a correção para ²⁰⁶Pb, para a qual são necessários os valores previamente calculados

pela interação do modelo de dois estágios (Stacey & Kramers, 1975) fazendo uso da equação (3.5). Obtendo-se assim as razões isotópicas corrigidas para chumbo comum conforme nas equações (3.9), (3.10) e (3.11).

Assim, as idades são calculadas, com as devidas correções para chumbo comum (Dickin, 2005), inserindo nas equações (3.6) e (3.7) os valores corrigidos para ²⁰⁴Pb das razões isotópicas.

Posteriormente, calcula-se a idade ²⁰⁷Pb^{*}/²⁰⁶Pb^{*} através do método de Newton-Raphson de iteração linear com processo iterativo. No estudo proposto, utilizou-se 10 iterações lineares deste método com o objetivo de estimar-se de maneira mais apropriada a idade desta razão isotópica, conforme descrito na equação (3.8).

$$FC = \frac{VC}{\left(\frac{^{206}Pb}{^{238}U}\right)_p} \tag{4.3}$$

$$\binom{2^{07}Pb}{2^{06}Pb} = \binom{2^{07}Pb}{2^{06}Pb} * MB$$
(4.4)

Onde o valor do Fator de Correção (FC) é empregado nas correções das leituras.

$$\left(\frac{^{206}Pb}{^{238}U}\right) = \left(\frac{^{206}Pb}{^{238}U}\right) * FC$$
(4.5)

A razão isotópica 207 Pb/ 235 U é encontrada a partir da relação fundamental entre os isótopos de 235 U e 238 U (Andersen, 2002) conforme a equação:

$$\begin{pmatrix} \frac{207_{Pb}}{235_U} \end{pmatrix} = \frac{\begin{pmatrix} \frac{207_{Pb}}{206_{Pb}} \end{pmatrix}}{\begin{pmatrix} \frac{1}{\begin{pmatrix} \frac{206_{Pb}}{238_U} \end{pmatrix}}{137.88} \end{pmatrix}}$$
(4.6)

Após as correções, com os valores dos materiais de referência analisados, é realizada a correção de massa de ²⁰⁷Pb e ²⁰⁶Pb para ²⁰⁴Pb, conforme equações:

$${}^{207}Pb^* = \left(\frac{{}^{207}Pb}{{}^{206}Pb}\right) * {}^{206}Pb \tag{4.7}$$

$${}^{206}Pb^* = \left({}^{206}Pb - {}^{207}Pb^*\right) * \frac{\left({}^{207}Pb}{2^{04}Pb}\right)}{\left({}^{206}Pb}{2^{04}Pb}\right)}$$
(4.8)

Onde ${}^{207}Pb^*$ é a massa de 207 Pb após corrigida para chumbo comum e ${}^{206}Pb^*$ é a massa de 206 Pb corrigida para chumbo comum. Logo, com as massas dos isótopos radiogênico de Pb corrigidas para chumbo comum, as correções para as razões isotópicas, corrigidas, podem ser obtidas

$$\left(\frac{{}^{207}Pb}{{}^{206}Pb}\right)^* = \left(\frac{{}^{207}Pb^*}{{}^{206}Pb^*}\right) * MB \tag{4.9}$$

$$\left(\frac{{}^{206}Pb}{{}^{238}U}\right)^* = \left(\frac{{}^{206}Pb^*}{{}^{238}U}\right) * FC \tag{4.10}$$

$$\left(\frac{{}^{207}Pb}{{}^{235}U}\right)^* = \frac{\left(\frac{{}^{207}Pb}{{}^{206}Pb}\right)^*}{\frac{1}{\left(\left(\frac{{}^{206}Pb}{{}^{238}U}\right)^*}{{}^{137.88}}\right)}$$
(4.11)

4.3 CÁLCULO E PROPAGAÇÃO DE INCERTEZAS

O cálculo das incertezas auxilia na compreensão entre os valores verdadeiros e os medidos das razões e idades calculadas no decorrer do tratamento dos dados obtidos. Levando-se em consideração os vários fatores que contribuem para a ocorrência e propagação dos erros, dentro dos processos instrumentais de medição, tais como a calibração do instrumento (a qual pode apresentar variações no decorrer das medições realizadas com as amostras em mãos), interação objeto-instrumento e variáveis que não se pode (ou não se deseja) controlar. Mesmo não sendo possível neutralizar todas as fontes de erros durante o processo de medição, deve-se almejar controlá-los uma vez que sendo inevitáveis pode-se atingir grandezas de ordem toleráveis.

Independente da série de medições realizadas, a propagação das incertezas deve ser considerada e calculada de maneira cuidadosa. Assim, mesmo com a inevitabilidade da ocorrência dos erros, tem-se a garantia de medições e tratamento de dados sem desleixos.

Para tanto, com o intuito de se conseguir calcular a incerteza com o qual se está trabalhando, no ato das medições utiliza-se a análise de materiais de referência cujas idades e incertezas são conhecidos previamente. Desta maneira, é possível controlar as medições com base na calibração dos equipamentos e sua variação no decorrer daquele dia.

Assim sendo, são calculados os erros para as razões e idades obtidas durante o tratamento e redução de dados.

$$\varepsilon_{\left(\frac{206_{Pb}}{238_{U}}\right)} = \sqrt{A^{2} + B^{2} + C^{2} + D^{2}}$$
(4.12)

Onde

$$A = \frac{\overline{X} \sigma da razão bruta \frac{206}{238} \text{dos materiais de referência analisados}}{\overline{X} da razão bruta \frac{206}{238} \text{ dos materiais de referência analisados}} * 100$$
$$B = \frac{\sigma da razão bruta \frac{206}{238} \text{dos materiais de referência analisados}}{\overline{X} da razão bruta \frac{206}{238} \text{dos materiais de referência analisados}}$$
$$Intervalo do Sinal Analisado$$
$$C = 0.05 * \left(\frac{\binom{207}{204} \frac{20}{204} \frac{20}{204} \frac{1}{206}}{\binom{206}{204} \frac{1}{206} \frac{1}{206} \frac{1}{206} \frac{1}{206} \frac{1}{206} \frac{1}{206} \frac{1}{206} \frac{1}{206} \frac{1}{204} \frac{1}{206} \frac$$

Onde se adiciona aos cálculos 0.05 e 0.01, sendo o parâmetro de correção para o *Neptune* LA-MC-ICP-MS.

D = 0.01 * Valor Certificado dos Materiais de referência

 $\varepsilon_{\left(\frac{206_{Pb}}{238_{U}}\right)}$ = Erro da Razão Bruta dos materiais de referência analisados

$$\varepsilon_{\left(\frac{207_{Pb}}{206_{Pb}}\right)} = \sqrt{A^2 + E^2 + C^2 + D^2}$$
(4.13)

Onde

$$E = \frac{\left(\frac{\sigma_{207}}{\sigma_{206}}\right)}{Intervalo \ do \ Sinal \ analisado}$$

$$\varepsilon_{\left(\frac{207}{206}pb\right)} = \text{Erro da razão} \left(\frac{207}{206}pb\right)^* \text{ calculada}$$

Logo, têm-se que

$$\varepsilon_{\left(\frac{207_{Pb}}{235_{U}}\right)} = \sqrt{\left(\varepsilon_{\left(\frac{206_{Pb}}{238_{U}}\right)}\right)^{2} + \left(\varepsilon_{\left(\frac{207_{Pb}}{206_{Pb}}\right)}\right)^{2}}$$
(4.14)

Onde

$$\varepsilon_{\left(\frac{207_{Pb}}{235_{U}}\right)} = \text{Erro da razão} \left(\frac{207_{Pb}}{235_{U}}\right)^{*} \text{ calculada}$$

$$\varepsilon_{t_{68}^{*}} = Idade_{206/238}^{*} - \frac{1}{\lambda_{238}} * \log\left(\frac{206_{Pb}}{238_{U}} * FC - \left(\frac{206_{Pb}}{238_{U}} * \frac{FC}{100} * \varepsilon_{\left(\frac{206_{Pb}}{238_{U}}\right)}\right)\right)$$

Onde

 $\varepsilon_{t_{68}^*}=$ Erro da $Idade\,\frac{^{206}Pb^*}{^{238}U}$ calculada

$$\varepsilon_{t_{75}^*} = t_{75}^* - \frac{1}{\lambda_{235}} * \log\left(\left(\frac{2^{07}Pb}{2^{35}U}\right)^* - \left(\frac{\left(\frac{2^{07}Pb}{2^{35}U}\right)}{\left(\frac{100 * \varepsilon}{2^{35}U}\right)}\right)\right)\right)$$
(4.15)

Onde

 $\varepsilon_{t_{75}^*}$ = Erro da *Idade* $\frac{207_{Pb^*}}{235_U}$ calculada;

$$\varepsilon_{t_{76}^*} = \sqrt{\left(\varepsilon_{t_{68}^*}\right)^2 + \left(\varepsilon_{t_{75}^*}\right)^2} \tag{4.16}$$

Onde

 $\varepsilon_{t_{76}^*} = \text{Erro da } Idade \, \frac{\frac{207 Pb^*}{206 U}}{206 U}$ calculada

$$Concord\hat{a}ncia = 100 + \left(\frac{(t_{68}^* - t_{76}^*)}{(t_{68}^* + 100)}\right)$$
(4.17)

Onde, com o uso das idades t_{68}^* e t_{76}^* e suas equações, é criado um diagrama binário, denominado Diagrama Concórdia (Figura 4.5), no qual as idades calculadas podem ser concordantes ou coincidentes. Para a construção deste diagrama é necessário a interpolação de numerosos pontos que correspondem às idades das amostras. Estas podem ser obtidas através de determinados valores das razões ²⁰⁷Pb /²⁰⁶Pb e ²⁰⁷Pb /²⁰⁶Pb aplicadas nas equações de idades (equações (3.6) e (3.7)). A determinação de uma idade concordantes ou coincidente ocorre devido ao grau de fracionamento de U-Pb no sistema. Entretanto, os minerais (ou suas frações) analisados podem não vir a ter suas idades plotadas exatamente em cima da linha do Diagrama Concórdia, esse fato se deve a uma série de fatores, sobretudo o fato de que o sistema isotópico U-Pb não ter sido totalmente fechado (Wetherill, 1956).

Figura 4.5 - Diagrama Concordia gerado, sem as idades das amostras calculadas.

CAPÍTULO 5 DISCUSSÃO

O algoritmo desenvolvido e utilizado no presente trabalho é capaz de calcular as funções e aplicar simultaneamente as correções cabíveis. O tempo de processamento levado pelo mesmo é reduzido e chega a aproximadamente 0.8 segundos, após o banco de dados estar totalmente carregado (Figura 5.1), o qual pode levar até 2 minutos para estar completamente pronto de acordo com a quantidade de arquivos a serem carregados. Nos testes realizados foram utilizados 40 arquivos de amostras para zircão, analisadas, tratadas e reduzidas incluindo materiais de referência previamente conhecidos.

Com a proposta da criação de um novo método capaz de reduzir dados obtidos através do método LA-ICP-MS, realizar correções de massa dos isótopos-filho radiogênicos (²⁰⁸Pb, ²⁰⁷Pb, ²⁰⁶Pb) e não radiogênico (²⁰⁴Pb) o presente trabalho foi desenvolvido (Figura 5.2).

Durante a ablação laser das amostras analisadas, foram inseridos materiais de referência, cujas idades são conhecidas (Tabela 5.1), a fim de estimar a calibragem do equipamento além de possíveis desvios e erros que possam ter corrido na leitura dos dados na câmara isobárica.

e da Terra 3.7 🗸	VC (206/238) do Padrão	0.091	Fator de	4 20224	- F	11/		-						
			Correção ((FC)	8	Salvar Tabelas	Conce	ordia L Co	orreção 0	.03 10				
r de integração 1	MB 207/206	0.987	Razão b 206/2	ruta 0.07033 38	⁵¹	Calcular 1	Sin	a 12						
anco de Dados 1	D Padrões	/			[Pausar 16	Usar	sinal selecionado	13					
02.xis ^	-	7*/235	20	(207*/206*)	20	AgePb6U38*	20	AgePb7U35*	20	Age76	20	Concordância Inío	io F	im
J3.xis	std002.xls	0.7337	0.1280	0.0587	0.0905	559.0215	0.4847	558.2082	0.5496	570.3998	0.7328	100.1455 172	380	
05 xis	std003.xls	0.7324	0.1208	0.0584	0.0854	561.2442	0.4591	557.4241	0.5181	557.3942	0.6923	100.6807 172	380	
06.xis	std004.xls	0.7328	0.1313	0.0585	0.0929	560.7983	0.4988	557.6944	0.5635	560.5777	0.7525	100.5535 172	380	
31.xls	std005.xls	0.7388	0.4602	0.0587	0.3254	563.3238	1.7553	561.1778	1.9845	568.0013	2.6494	100.3810 172	380	
32 xis														
34.xis														
35.xis														
36.vie														_
2		<												>
3	Amostras	17*/235	20	207*/206*	20	AgePb6U8 *	20	AgePb7U5*	20	Age76	20	Concordância Ini	cio	Fim
ine vie	std031.xls	0.8099	0.1260	0.0583	0.0891	599.8881	0.5255	597.3023	0.5818	602,7834	0.7840	100.4311 172	380	
31.xis	std032.xls	0.8063	0.1199	0.0581	0.0848	599.6484	0.4998	595.3241	0.5522	594.3982	0.7448	100.7211 172	380	
32 xis	std033.xls	0.3870	0.2088	0.0524	0.1477	326.4342	0.4842	330.3892	0.6043	372.7595	0.7743	98.7884 172	380	
33.XIS	std034.xls	0.3793	0.1388	0.0513	0.0982	326.6838	0.3222	324.7880	0.3960	327.0495	0.5105	100.5803 172	380	
35 xis	std035.xls	0.3785	0.1283	0.0510	0.0907	327.5676	0.2986	324.1662	0.3654	316.0010	0.4719	101.0384 172	380	
36.xis	std036.xls	2.8725	0.1203	0.0883	0.0851	1.3244e+03	1.0470	1.3546e+03	0.9127	1.4150e+03	1.3890	97.7212 172	380	
37 yis	std037.xls	2.0214	0.1786	0.0748	0.1263	1.1185e+03	1.3334	1.1082e+03	1.2246	1.1031e+03	1.8104	100.9187 172	380	
10000		and the second se												
38.xis	std038.xls	1.3536	0.1553	0.0710	0.1098	809.6156	0.8597	859.6403	0.9179	1.0011e+03	1.2576	93.8212 172	380	

Figura 5.2 - Tela inicial da interface gráfica de interação com o algoritmo têm-se que:(1) selecionase os arquivos a serem tratados, assim como os materiais de referência; (2) a lista dos arquivos selecionados, dentre os quais serão selecionados os materiais de referência; (3) a lista dos arquivos selecionados, dentre s quais serão selecionados as amostras; (4) a idade da Terra; (5) valor de integração a ser utilizado do tratamento dos dados; (6) Valor Certificado do Material de Referência (VC); (7) valor de Mass-Biass (MB) dos materiais de referência; (8) exibição do Fator de Correção dos materiais de referência (FC); (9) Razão Bruta dos Materiais de referência (RB) calculada. (10) A correção em porcentagem para as idades das amostras; (11) Abre uma nova janela da interface gráfica com a concordia das idades; (12) Abre uma nova janela da interface gráfica para seleção do sinal; (13) Controlador para uso da faixa de sinal modificado; (14) Exporta os resultados da tabela de amostras e resultados em planilha; (15) Executa, de maneira cíclica os cálculos; (16) Condicional para pausa do processamento.

Tabela 5.1 - Zircões utilizados como materiais de referência conhecidos e suas respectivas idades.

Materiais de referência Utilizados	Idades (M.A)
PLEŠOVICE	
(Sláma et al. 2008)	337.13±0.37 Ma
BLUE BERRY –BB	
(Santos <i>et al.</i> 2016)	$562.58\pm0.26~\text{Ma}$
GJ-1	
(Horstwood et al. 2016)	$599.8\pm4.5~\mathrm{Ma}$

Durante a redução, os dados foram utilizados com o sinal aberto, o que significa que não houveram alterações quanto a faixa do sinal analisado, ficando assim restrito o "início" do

sinal em 172 ciclos e o "fim" do sinal em 380 ciclos, tanto para os materiais de referência (Apêndice 1) quanto para as amostras (Apêndice - 2).

Sendo assim a idade média ²⁰⁶Pb/²³⁸U, do material de referência BB 561,09 Ma ($2\sigma = 0.799469$); material de referência GJ-1, situado em meio as amostras analisadas, como material de referência secundário, GJ-1 601,54 Ma ($2\sigma = 0.612408$; BB 561.4364 Ma ($2\sigma = 0.730274$), Plešovice 335.7909 Ma ($2\sigma = 0.583093$). Estando como parâmetros utilizados nos cálculos e equações, Idade da Terra = 3.7G.a; Valor de Integração =1; Valor Certificado do material de referência certificado = 0.091; Mass Bias = 0.9868; FC = 1.29381; Razão 206/238 = 0.070335 e correção percentual das idades das amostras igual a 3%. Na Figura 5.3 estão plotadas as idades calculadas para o zircão BB, material de referência, da rodada e na Figura 5.4 estão plotadas as idades das amostras e dos materiais de referência utilizados em meio a rodada (BB, GJ-1, Plešovice).

Figura 5.3 - Concórdia das idades calculadas para o material de referência BB utilizado na redução com sinal aberto.

Silva, J.P.A., 2017, U-PbMAT - UMA NOVA FERRAMENTA DE CORREÇÃO DE DADOS PARA LA-ICP-MS

Figura 5.4 - Concórdia das idades calculadas para as amostras e para os materiais de referência utilizados durante a rodada (BB, GJ-1, Plešovice) com o sinal aberto.

Contudo, como fica evidente na Figura 5.5, utilizando o sinal aberto para todas as amostras, algumas idades não se mostraram com um grau de concordância satisfatória (Tabela 4), sendo assim, uma nova redução foi realizada, porém desta vez com a seleção de faixas dos sinais das amostras (sinal cortado), onde o "início" e o "fim" do sinal analisado são alterados conforme a faixa mais favorável do sinal para os materiais de referência (Apêndice - 3) e para as amostras e demais materiais de referência (Apêndice - 4). Assim, a idade média do zircão BB, usado como material de referência foi de 561,12 Ma ($2\sigma = 0.799513605$); Plešovice 335,48 Ma ($2\sigma = 0.590753$); GJ-1 602,64Ma ($2\sigma = 0.614822$). Sendo os parâmetros empregados anteriormente para o sinal aberto, os mesmo para o sinal cortado. As idades do material de referência para esta redução ficaram próximas, assim o Diagrama concórdia resultante o mesmo daquele mostrado na Figura 5.4. Para as idades das amostras e materiais de referência analisados, o Diagrama Concórdia exibe idades coincidentes e concordantes e maior quantidade do que aqueles plotados anteriormente (Figura 5.5).

Na primeira situação, sinal aberto, o tempo de execução dos comandos de inserção dos parâmetros, *input* do Banco de Dados e cálculos somaram em aproximadamente 4 minutos. No segundo caso, sinal cortado, os passos descritos juntamente com a seleção das seções dos sinais somaram aproximadamente 20 minutos.

Figura 5.5 - Concórdia das idades calculadas para as amostras e para os materiais de referência utilizados durante a rodada (BB, GJ-1, Plešovice) com o sinal cortado.

Após o tratamento e a redução dos dados com o U-PbMAT, tanto em condição de sinal aberto quanto de sinal cortado, pode-se observar a acurácia do método no tratamento matemático e estatístico dos dados (Tabela 5.2). Na situação do sinal cortado onde foram selecionadas apenas partes dos sinais, considerada com menos flutuações de leituras de massas e picos, as idades das amostras datadas mostram concordância entre 96.1% e 101.9%. Nesse caso, os materiais de referência utilizados tiveram a concordância de suas idades calculadas pelo software entre 99.9% e 100.5%.

Material de referência utilizado	Idades(Ma) – Idade certificada	Idades (Ma) – Método atualmente utilizado (Lana et al. In prep)	Idades (Ma) – U-PbMAT
PLEŠOVICE (Sláma <i>et al.</i> , 2008)	337 ± 1 Ma	339 ± 2 Ma	335.79 ± 2 Ma
BLUE BERRY –BB (Santos <i>et al.</i> , 2016)	560 ± 1 Ma	560 ± 3 Ma	561.44 ± 3 Ma
GJ-1 (Horstwood <i>et al.</i> 2016)	602 ± 1 Ma	604 ± 3 Ma	602.64 ± 3 Ma

Tabela 5.2 - Tabela comparativa dos resultados obtidos com o método desenvolvido e outros já utilizados.

Dessa maneira o tempo de interface software-usuário, no que diz respeito ao tratamento dos dados, é consideravelmente menor em relação aos métodos atualmente disponíveis. As idades encontradas no presente trabalho foram comparadas às análises realizadas previamente com outros softwares. O resultado final se mostrou semelhante quando

comprado aqueles obtidos pelos métodos utilizados atualmente (Figura 5.6) (Tabela 5.2), com desvio de até 2% das idades dando credibilidade à metodologia proposta.

Figura 5.6 – Gráficos das idades ${}^{206}\text{Pb}/{}^{238}\text{U}$ dos materiais de referências utilizadas para controle. Pontos individuais são as idades com as correções de ${}^{206}\text{Pb}/{}^{238}\text{U}$. Modificado de Lana *et al., (in prep)*.

A partir da revisão bibliográfica e a identificação das limitações presentes nos métodos utilizados, buscou-se a implementação de uma solução que atendesse as necessidades mostradas. A escolha da linguagem de programação MATLAB deve-se às ferramentas e recursos desta linguagem que permitem com que se manipule de maneira ágil uma grande quantidade de dados numéricos e operações, as quais podem ter seus resultados exibidos com grande precisão em notação científica. O software U-PbMAT mostrou-se capaz de fornecer resultados precisos com baixo tempo de interface software-usuário sem que o mesmo interfira diretamente nos resultados obtidos.

Logo, com seus resultados e as possibilidades de melhorias em sua infraestrutura, talvez até mesmo explorando as fronteiras e integrações com outras linguagens de programação e métodos a serem usados em conjunto com os atuais, possa vir a se construir uma ferramenta que auxilie nas análises quantitativas e qualitativas com rigor estatístico em todos os aspectos da geocronologia, desde as correções das razões isotópicas até as propagações de erros.

Pretende-se, assim que a exportação do conjunto de funções e código esteja completa, disponibilizar o programa em versão de teste e incentivar o seu uso nas análises laboratoriais. Promover a análise e comparação de resultados com demais métodos utilizados por outros, a fim de dar continuidade na evolução dessa ferramenta e métodos que a mesma envolve. Montando-se assim uma estratégia para a evolução e desenvolvimento desta ferramenta e daquelas que por ventura advirem dela. Silva, J.P.A., 2017, U-PbMAT - UMA NOVA FERRAMENTA DE CORREÇÃO DE DADOS PARA LA-ICP-MS

- Andersen, T., 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192 (2002) 59–79.
- Compston, W., Williams, I.S., Meyer, C.E., 1984. U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J. Geophys. Res. 89 (Suppl. (B)), 525–534.
- Chang, Z. Jeffrey D. Vervoort, William C. McClelland, Charles Knaack. 2006. U-Pb Dating of Xircon by LA-ICP-MS. G³ (Geochemistry Geophiysis, Geosystems).
- Cherniak, D.J. & Watson E.B. 2001. Pb diffusion in zircon. Chem. Geol., 172: 5-24.
- Costa, A. O. S.; 2003, MATLAB Dicas Iniciais de Utilização. M.Sc. Programa de Engenharia Química-COPPE - UFRJ - Janeiro e 2003. (http://www2.peq.coppe.ufrj.br/Pessoal/Professores/Arge/COQ897 /Matlab/Apostila_Matlab_Andrea.pdf)
- Déruelle, B, Harmon, R.S., and Moorbath., 1983. Combined Sr-O isotope relationships and petrogenesis of Andean volcanics of South America. Nature, v.302, 814-816.
- Dickin, A. P., 2005. Rdiogenic Isotope Geology. Cambridge, School of Geography and Earth Sciences McMaster University, Hamilton, Ontario, 508p.
- Dirk, Frei, Axel Gerdes. 2009. Precise and Accurate in situ U-Pb Dating of Zircon With High Sample Throughput by automated LA-SF-ICP-MS. Chemical Geology.
- Elhlou, S., Belousova E., Griffin W.L., Pearson N.J., O'reilly S.Y. 2006. Trace element and isotopic composition of GJ red zircon standard by laser ablation. Geochim. Cosmochim. Acta, 70: A158.
- Faure, G. 1986. Principles of isotope geology. John Wiley & Sons, 2, New York, 589p.
- Feng, R., Machado, N., Ludden, J., 1993. Lead geochronology of zircon by laserprobeinductively coupled plasma mass spectrometry (LP-ICPMS). Geochim. Cosmochim.Acta57,3479–3486
- Fryer, B.J., Jackson, S.E., Longerich, H.P., 1993. The application of laser Ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)–Pb geochronology. Chem. Geol. 109, 1–8.
- Geraldes M. C.. Introdução à Geocronologia. 1. ed. São Paulo: Sociedade Brasileira de Geologia, 2010. v. 1100. 146p.
- Gerdes, A. Armin Zeh. 2006. Combined U-Pb and Hf Isotope LA-(MC)-ICP-MS Analyses of Detrital Zircons: Comparison With SHRIMP and New constrains for the provenance and Age of an Armoricanm metasediment in Central Germany. ELSEVIER. Earth and Planetary Science Letters 249 (2006) 47-61.
- Gehrels, G. E. Victor A. Valencia, Joaquim Ruiz. 2008. Enchanced Precision, Accuracy, Efficiency and Spatial Resolution of U-Pb Ages by Laser Ablation – multiCollector – Inductively Couped Plasma-Mass Spectrometry. G³ (Geochemistry Geophiysis, Geosystems)
- Gonçalves, G.O., 2015. Desenvolvimento de Padrão para Geocronologia U-Pb e Traçador Isotópico Sm-Nd em Monazita por LA-ICP-MS, Orógeno Araçuaí, Leste do Brasil. Contribuições às Ciências da Terra Série M74, vol. 327, 139p
- Griffin, W.L., Powell, W.J., Pearson, N.J., and O'Reilly, S.Y., 2008, GLITTER: data reduction software for laser ablation ICP-MS, in Sylvester, P., ed, p. 204-207 Appendix 2. Mineralogical Association of Canada Short Course Series Volume 40, Vancouver, BC.
- Günther, D. & Hattendorf B. 2005. Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. Trends Anal. Chem., 24: 255-265.
- Harrison, T.M., & Watson, E.B., 1984. The behaviour of apatite during crystal anatexis: Equilibrium and kinects considerations. Geochimica and Cosmochimica Acta, 48, 1467-1477.
- Hirata, T. and Nesbitt, R. W. (1995) U-Pb isotope geochronology of zircons: Evaluation of the laser probe inductively coupled plasma-mass spectrometry technique. Geochim. Cosmochim. Acta 59, 2491–2500.
- Holmes, A. & Lawson R.W. 1927. Factors inolves in the calculation of the ages of radioactive minerals. Am. J.Sci., 13: 327–344.

- Holmes, A. 1911. The association of lead with uranium in rock-minerals and its application to the measurement of geological time. Proc. Roy. Soc. Lond., 85: 248-256.
- Holmes, A. 1946. An estimate of the age of the Earth. Nature, 157: 680-684.
- Holmes, A. 1954. The oldest dated minerals of the Rhodesian Shield Nature 173, 612-17.
- Hosrtwood, M. S. A., Gavin L. Foster, Randal R. Parrish Stephen R. Noble and Geoff M. Nowell. 2003. Common-Pb corrected in situ U-Pb accessory mineral geochronology by LA-MC-ICP-MS. JAAS (http://www.rsc.org/jaas)
- Horstwood M. S. S., Kosler. J., Gehrels. G., Jackson. S. E., Mclean. N. M., Paton. C., Pearson. N. J., Sircombe. K. Sylvester. P., Vermeesch. P., Bowring. J. F., Condon. D. J., Schoene. B, 2016. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research. Vol. 40 – N°3. P.311-332.
- Ireland, T.R., 1995. Ion microprobe mass spectrometry: techniques and applications in cosmochemistry, geochemistry, and geochronology. In: Hyman, M., Rowe, M. (Eds.), Advances in Analytical Geochemistry, vol. 2, pp. 1–118.
- Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol., 211: 47–69.
- Jaffey A.H., Flynn K.F., Glendenin L.E., Bentley W.C., Essling A.M. 1971. Precision measurement of halflives and specific activities of 235U and 228U. Phys. Ver. Sec., C 4: 1889–1906.
- Krane K.S. 1987. Introductory Nuclear Physics. John Wiley & Sons, 2, New York, 835 p.
- Krogh TE (1982) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta 46: 637-649
- Kröner A., Kehelpannala K.V.W., Kriegsman L.M. 1994b. Origin of compositional layering and mechanism of crustal thickening in the high-grade gneiss terrain of Sri Lanka. Precamb. Res., 66: 21-37.
- Lana, C., Farina, F., Schaltegger, U., Alkmim, A., Gonçalves, G., Buick, I., Gerdes, A., Jardim, A.C., 2017 (in prep) Characterization of zircon reference materials via high precision U-Pb LA-MC-ICP-MS. Journal of Analitics Spectroscopy
- McDowell, Fred W. William C. McIntosh, Kenneth A. Farley. 2005. A precise 40Ar– 39Ar reference age for the Durango apatite (U–Th) /He and fission-track dating standard. Chemical Geology 214 (2005) 249–263.
- Santos, A.C.O. 2014. Caracterização de Padrão de Monazita para Geocronologia por U-Pb em LA-ICP-MS. Departamento de Geologia, Universidade Federal de Ouro Preto, Trabalho Final de Graduação, XXXp.
- Santos, M.M. 2015. Desenvolvimento de Materiais de referência de zircão para geocronologia U-Pb e Análises Isotópicas de Hf por Laser Ablation ICP-MS. Departamento de Geologia, Universidade Federal de Ouro Preto, Tese de Mestrado, Contribuições às Ciências da Terra, Série M, vol. 74, 115p.
- Schaltegger, U., Schmitt, A. K., Horstwood, M. S. A., 2015. U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser Ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geology 402 (2015) 89–110.
- Sláma J., Košler, J., Condon D. J., Crowley J.L., Gerdes, A., Hanchar J. M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoenej, B., Tubrett, M.N., Whitehouse, M.K., 2008. Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249 (2008) 1–35.
- Stacey J.S. & Kramers J.D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett, 26: 207-221.
- Storey, C, D.. Teresa E. Jeffries, Martin Smith. 2005. Comom Lead-Correct Laser Ablation ICP-MS U-Pb Systematics and Geochronology of Titanite. Chemical Geology.
- Takenaka, L. B., 2013. Otimização da Metodologia de Datação U-Pb por Espectrometria de Massa com Ablação à Laser (LA-Q-ICP-MS). Departamento de Geologia, Universidade Federal de Ouro Preto, Trabalho Final de Graduação, XXXp.

- Tilton. G. R., Patterson C, Brown H, Inghram M, Hayden R, Hess D, Larsen E (1955) Isotopic composition and distribution of lead, uranium, and thorium in a Precambrian granite. Geological Society of America Bulletin 66: 1131-1148
- Thomson, Stuart N. George E. Gehrels, and Joaquin Ruiz. 2012. Routine low-damage apatite U-Pb dating using laser ablation–multicollector–ICPMS. G³ (Geochemistry Geophiysis, Geosystems).Q0AA21, doi:10.1029/2011GC003928 ISSN: 1525-2027.
- Wetherill, G. W. 1956. Discordant Uranium-Lead Ages, I. Eos Transactions American Geophysical Union. Vol. 37, No 3.

Silva, J.P.A., 2017, U-PbMAT - UMA NOVA FERRAMENTA DE CORREÇÃO DE DADOS PARA LA-ICP-MS

APÊNDICES

Apêndice 1 - Material de referência Blue Berry (BB) utilizado na rodada de redução com sinal aberto.

					Mater	rial de ref	erência -	BLUE BE	RRY (BB)						
Ponto	206*/2 38	2σ	207*/2 35	2σ	(207*/2 06*)	2σ	AgePb6 U38*	2σ	AgePb7 U35*	2σ	Age76	2σ	Conco rdânci a	Iníci 0	Fi m
std00 2.xls	0.09039 4785	0.09051 2583	0.73356 462	0.12800 4122	0.05885 6404	0.09051 2583	557.871 5162	0.48372 0976	558.133 1605	0.54955 9003	574.695 3373	0.732 12094 7	99.953 09956	172	380
std00 3.xls	0.09077 0049	0.08541 7463	0.73222 5251	0.12079 8535	0.05850 606	0.08541 7463	560.089 6954	0.45822 8355	557.349 0787	0.51807 2649	561.699 7862	0.691 64477 6	100.48 93175	172	380
std00 4.xls	0.09069 4746	0.09285 8402	0.73268 6889	0.13132 1612	0.05859 1554	0.09285 8402	559.644 6386	0.49776 7688	557.619 3951	0.56341 4536	564.880 865	0.751 80357 2	100.36 18803	172	380
std00 5.xls	0.09112 1313	0.32539 5814	0.73864 602	0.46017 9174	0.05879 1578	0.32539 5814	562.165 318	1.75188 9071	561.102 3698	1.98425 6064	572.298 6886	2.646 95814 9	100.18 90811	172	380

Apêndice 2 - Amostras reduzidas com sinal aberto tendo como material de referência o zircão Blue Berry (BB).

							Amostra	as							
Ponto	206*/23	26	207*/23	26	207*/2	26	AgePb	26	AgePb	20	Δ σρ76	20	Concor	Iníci	Fi
1 0110	8	20	5	20	06*	20	6U8 *	20	7U5*	20	Age /0	20	dância	0	m
std00	0.09811	0.18884	0.81385	0.26706	0.05835	0.18884	602.511	1.11831	599.503	1.2364	603.47	1.6671	100.499	170	200
7.xls	5671	6376	7958	9106	5353	6376	4622	9209	4138	52785	98269	6926	2516	172	300

std00	0.09790	0.08464	0.81516	0.11971	0.05857	0.08464	601.285	0.50029	600.223	0.5546	611.29	0.7469	100.176	170	280
8.xls	6243	9832	3331	2941	3977	9832	2989	9413	228	2616	88269	33518	6334	172	380
std00	0.05488	0.09145	0.40362	0.12933	0.05173	0.09145	344.156	0.31571	342.350	0.3855	345.85	0.4983	100.524	172	380
9.xls	3846	375	0187	5134	6709	375	8947	4795	1563	64651	90074	33153	9752	172	380
std01	0.05480	0.10064	0.40072	0.14233	0.05143	0.10064	343.703	0.34699	340.275	0.4221	333.05	0.5464	100.997	170	280
0.xls	9512	4294	7007	2526	5521	4294	3473	7219	379	63028	71797	69297	3625	172	380
std01	0.05486	0.50012	0.40155	0.70727	0.05148	0.50012	344.052	1.72609	340.871	2.1017	335.31	2.7197	100.924	170	200
1.xls	6697	1186	8011	8164	8464	1186	2626	2103	7622	56998	51064	01533	4236	172	380
std01	0.23064	0.08369	2.68877	0.11836	0.08201	0.08369	1333.88	1.03650	1306.37	0.8826	1277.2	1.3613	102.062	170	280
2.xls	4892	6083	129	4136	2581	6083	228	1801	4829	05046	20156	6977	2098	172	380
std01	0.16996	0.08376	1.67218	0.11845	0.06921	0.08376	1009.57	0.80507	986.054	0.7606	950.32	1.1075	102.330	170	280
3.xls	2663	0821	4577	5688	5147	0821	9861	3604	5937	61795	33	87411	2037	172	380
std01	0.19409	0.08702	2.05042	0.12307	0.07431	0.08702	1140.56	0.93542	1117.70	0.8477	1089.4	1.2624	102.003	170	280
4.xls	298	645	2922	3986	9723	645	0131	1585	7722	46294	10224	13292	6128	172	380
std01	0.17326	0.64607	1.79608	0.91369	0.07292	0.64607	1027.69	6.31367	1031.14	6.0275	1052.6	8.7288	99.6635	170	280
5.xls	9316	6962	4192	0801	4841	6962	1545	0411	8995	20653	66566	8534	712	172	380
std01	0.28012	0.08383	3.79865	0.11856	0.09539	0.08383	1586.41	1.21109	1567.07	0.9583	1556.0	1.5443	101.219	170	280
6.xls	7145	7352	1195	392	9189	7352	9566	2079	7883	45676	09209	99708	2035	172	380
std01	0.26164	0.08429	3.53937	0.11920	0.09516	0.08429	1493.27	1.15436	1512.06	0.9493	1551.6	1.4946	98.7417	170	280
7.xls	3987	0611	8566	4925	7074	0611	8242	3044	6958	78379	01149	14781	8061	172	380
std01	0.19362	0.08436	2.08793	0.11930	0.07586	0.08436	1138.04	0.90495	1129.85	0.8265	1129.0	1.2256	100.719	170	280
8.xls	4598	1941	4717	5801	2447	1941	3672	6382	3408	55352	22648	18131	6792	172	380
std01	0.17034	0.08765	1.76046	0.12396	0.07270	0.08765	1011.70	0.84415	1018.39	0.8109	1046.7	1.1705	99.3386	172	380
9.xls	9845	7155	1435	5937	3486	7155	3303	739	4047	85043	51816	97471	6547	172	380
std02	0.25432	0.08688	3.46341	0.12287	0.09580	0.08688	1456.03	1.16352	1495.35	0.9739	1563.6	1.5173	97.2996	172	380
0.xls	9414	3832	9032	2294	2956	3832	1653	3279	0115	97128	45438	84865	1493	172	380
std02	0.19763	2.86016	2.18312	4.04488	0.07770	2.86016	1159.58	31.2464	1160.01	28.611	1175.1	42.366	99.9623	172	380
1.xls	9622	5714	7179	5143	9745	5714	2249	5513	857	16286	1064	72749	7259	172	380
std02	0.17116	0.09487	1.87059	0.13416	0.07688	0.09487	1016.18	0.91737	1057.30	0.8965	1154.6	1.2826	95.9538	170	280
2.xls	7944	2167	3345	9505	2485	2167	768	1713	4588	06198	47692	90229	0768	172	380
std02	0.20269	0.08577	2.23994	0.12130	0.07774	0.08577	1186.60	0.95575	1177.59	0.8588	1175.9	1.2849	100.760	170	280
3.xls	7485	2512	0088	065	25	2512	9959	108	0805	70597	15104	58688	0774	1/2	360
std02	0.18873	0.08548	1.98822	0.12089	0.07410	0.08548	1111.73	0.89767	1097.23	0.8244	1083.9	1.2188	101.304	172	380
4.xls	9112	8912	8524	9579	9665	8912	505	5464	3914	81318	34369	48097	3698	1/2	300

std02	0.18074	0.08495	1.90154	0.12013	0.07401	0.08495	1068.45	0.86017	1067.96	0.8072	1081.4	1.1796	100.045	172	380
5.xls	6287	0297	8104	7862	3065	0297	3105	6149	9755	1779	09414	20095	2383	172	500
std02	0.17563	0.19221	1.86360	0.27183	0.07464	0.19221	1040.63	1.89983	1054.88	1.8144	1097.8	2.6271	98.6309	172	380
6.xls	8014	8355	4701	7805	5862	8355	3553	6218	0638	78324	72572	10436	2204	172	380
std02	0.09130	0.08493	0.73701	0.12011	0.05678	0.08493	562.510	0.47106	556.172	0.5261	546.20	0.7062	101.126	172	380
7.xls	4682	7547	16	9832	7367	7547	5242	2816	8056	894	72319	4037	6844	1/4	380
std02	0.09074	0.13323	0.73246	0.18841	0.05678	0.13323	559.205	0.73476	553.549	0.8225	546.15	1.1029	101.011	172	
8.xls	3927	3022	6702	9947	5934	3022	7803	6716	3641	40672	39108	30317	5089	1/2	380
std02	0.09073	0.17784	0.73427	0.25150	0.05693	0.17784	559.149	0.98070	554.592	1.0995	551.57	1.4733	100.814	172	380
9.xls	432	3939	2209	9311	1937	3939	1482	5837	3904	7052	77337	76825	945	172	380
std03	0.09773	0.08684	0.79802	0.12282	0.05744	0.08684	600.305	0.51250	590.729	0.5624	570.32	0.7609	101.595	172	380
0.xls	8954	9798	3146	4162	0506	9798	6772	5166	5209	76992	30087	48035	2134	172	380
std03	0.09766	0.08911	0.80954	0.12602	0.05831	0.08911	599.882	0.52549	597.120	0.5816	601.95	0.7838	100.460	172	380
1.xls	6651	0735	3992	161	2897	0735	2324	3925	8357	6404	68048	85783	3231	172	380
std03	0.09762	0.08478	0.80597	0.11991	0.05807	0.08478	599.642	0.49982	595.143	0.5521	593.57	0.7447	100.750	172	380
2.xls	5721	9497	1008	0456	9869	9497	5137	0318	1214	19272	03418	52335	3458	172	380
std03	0.05198	0.14765	0.38686	0.20881	0.05235	0.14765	326.431	0.48417	330.275	0.6040	371.89	0.7741	98.8223	172	380
3.xls	269	7784	78	964	6944	7784	2592	0045	4427	79719	63339	65964	6049	172	380
std03	0.05202	0.09817	0.37916	0.13884	0.05127	0.09817	326.680	0.32215	324.675	0.3958	326.17	0.5103	100.613	172	380
4.xls	3493	591	8464	1703	4704	591	9082	6723	8587	78161	86572	96388	7639	172	380
std03	0.05216	0.09074	0.37831	0.12833	0.05101	0.09074	327.564	0.29856	324.054	0.3653	315.12	0.4718	101.071	172	380
5.xls	7949	837	6463	7576	7825	837	6664	8215	2518	33544	83388	17314	6707	172	380
std03	0.22882	0.08508	2.87131	0.12032	0.08827	0.08508	1324.38	1.04696	1354.28	0.9126	1414.3	1.3888	97.7423	172	380
6.xls	2528	4794	6411	807	805	4794	4104	3824	4657	38549	17486	99697	0507	172	300
std03	0.18998	0.12627	2.02057	0.17858	0.07482	0.12627	1118.46	1.33333	1107.93	1.2244	1102.3	1.8102	100.941	172	380
7.xls	7336	8016	8615	4083	0664	8016	7345	6651	6404	11861	88497	406	551	1/2	500

Material de referência - BLUE BERRY (BB)															
Ponto	206*/ 238	2σ	207*/23 5	2σ	(207*/2 06*)	2σ	AgePb6 U38*	2σ	AgePb7 U35*	2σ	Age7 6	2σ	Conco rdânci a	Iníci 0	Fi m
std00 2.xls	0.090 5939	0.09051 2825	0.73518 0402	0.12800 4464	0.05885 6404	0.09051 2825	559.048 5314	0.48469 9249	559.078 2509	0.55025 8182	574.6 953	0.733 29218 5	99.994 68391	172	380
std00 3.xls	0.090 97	0.08541 7839	0.73383 8082	0.12079 9066	0.05850 6061	0.08541 7839	561.271 1893	0.45915 5541	558.293 1734	0.51873 3165	561.6 998	0.692 75385 7	100.53 05841	172	380
std00 4.xls	0.090 8945	0.09285 8648	0.73430 0737	0.13132 196	0.05859 1554	0.09285 8648	560.825 2344	0.49877 4081	558.563 8332	0.56413 1696	564.8 809	0.753 00740 7	100.40 32274	172	380
std00 5.xls	0.091 322	0.32539 5881	0.74027 2994	0.46017 9268	0.05879 1578	0.32539 5881	563.351 0024	1.75542 555	562.051 2239	1.98676 9149	572.2 987	2.651 18285 2	100.23 07227	172	380

Apêndice 3 - - Material de referência Blue Berry (BB) utilizado na rodada de redução com sinal aberto, porém os sinais das amostras foram cortados.

Apêndice 4 - Amostras reduzidas com sinal cortado tendo como material de referência o zircão Blue Berry (BB).

							AMOSTH	RAS							
Ponto	206*/ 238	2σ	207*/23 5	2σ	207*/20 6*	2σ	AgePb6 U8 *	2σ	AgePb7 U5*	2σ	Age7 6	2σ	Concor dância	Iníci 0	Fim
std00	0.098	0.08685	0.81494	0.12282	0.05848	0.08685	601.988	0.51388	600.103	0.56897	608.1	0.76669	100.313	172	380
6.xls	0263	218	6593	753	6702	218	0628	7581	7497	5741	823	0185	015		580
std00	0.098	0.18884	0.81565	0.26706	0.05835	0.18884	603.776	1.12055	600.491	1.23793	603.4	1.66977	100.544	170	380
7.xls	3318	6741	0597	9623	5353	6741	5165	8006	7832	5074	798	0491	0313	172	
std00	0.098	0.08465	0.81695	0.11971	0.05857	0.08465	602.547	0.50130	601.212	0.55529	611.2	0.74809	100.221	172	380
8.xls	1219	0101	8845	3321	3977	0101	9031	1773	4584	115	988	8743	6329	1/2	380
std00	0.055	0.09145	0.40450	0.12933	0.05173	0.09145	344.894	0.31637	342.986	0.38616	345.8	0.49921	100.553	172	380

9.xls	0047	3982	9219	5462	6709	3982	4221	3694	827	5016	59	5118	0954		
std01	0.054	0.10059	0.39978	0.14226	0.05153	0.10059	342.270	0.34543	339.595	0.42126	337.2	0.54478	100.781	162	270
0.xls	5748	8456	0735	7701	4765	8456	9582	2903	8314	5044	871	2642	5816	103	312
std01	0.054	0.50012	0.40244	0.70727	0.05148	0.50012	344.789	1.72969	341.506	2.10503	335.3	2.72451	100.952	170	280
1.xls	9875	1328	25	8365	8464	1328	5706	0827	1331	1225	151	5887	3019	172	380
std01	0.218	0.08399	2.51590	0.11879	0.08097	0.08399	1270.78	0.99587	1258.74	0.86994	1253.	1.32233	100.947	166	264
2.xls	591	8567	899	1913	167	8567	776	9304	9587	5563	156	9166	3001	100	204
std01	0.159	0.08391	1.52970	0.11867	0.06762	0.08391	949.973	0.76245	931.508	0.73685	904.0	1.06032	101.943	150	336
3.xls	1477	4082	8983	2432	06	4082	2694	7094	5162	3727	99	7418	7129	132	
std01	0.189	0.08898	1.99351	0.12584	0.07415	0.08898	1113.76	0.93594	1098.99	0.85894	1085.	1.27034	101.326	155	331
4.xls	116	4508	9812	3098	8802	4508	8639	3805	243	8773	217	7905	6857	155	551
std01	0.175	0.81302	1.82301	1.14978	0.07299	0.81302	1040.89	8.03950	1040.68	7.62752	1054.	11.0820	100.020	106	361
5.xls	6866	2809	3214	7883	979	2809	8787	2204	2545	8859	664	9331	7746	190	501
std01	0.275	0.08402	3.71988	0.11882	0.09512	0.08402	1561.25	1.19681	1550.68	0.95633	1550.	1.53197	100.676	167	312
6.xls	1054	2259	3878	5419	6342	2259	0457	1252	8328	9757	826	3532	5172	107	512
std01	0.286	0.08407	3.98420	0.11889	0.09788	0.08407	1617.39	1.23524	1604.64	0.97021	1602.	1.57071	100.788	210	380
7.xls	3353	1012	5056	4366	9765	1012	5225	922	1189	0626	486	6172	5541	210	500
std01	0.194	0.08436	2.09253	0.11930	0.07586	0.08436	1140.33	0.90662	1131.33	0.82713	1129.	1.22723	100.789	172	380
8.xls	0511	2332	3692	6354	2447	2332	5075	1647	2215	5947	023	9457	4925		
std01	0.174	0.09605	1.80865	0.13583	0.07274	0.09605	1036.65	0.94599	1035.61	0.89717	1047.	1.30377	100.100	243	357
9.xls	9095	3288	6357	9863	6662	3288	609	4603	1355	6079	907	5558	7794	243	557
std02	0.271	0.08582	3.72048	0.12137	0.09623	0.08582	1545.54	1.21163	1550.81	0.97688	1571.	1.55639	99.6590	204	380
0.xls	9818	407	2433	3564	4304	407	3875	6372	3908	5381	759	5754	1761	204	500
std02	0.198	2.86016	2.18793	4.04488	0.07770	2.86016	1161.91	31.3036	1161.51	28.6306	1175.	42.4221	100.033	172	380
1.xls	075	5727	5829	5162	9745	5727	3117	7853	8102	5766	111	0329	9969	172	500
std02	0.172	0.09533	1.87992	0.13482	0.07688	0.09533	1020.77	0.92567	1060.53	0.90240	1154.	1.29275	96.1053	177	380
2.xls	0054	461	2626	3499	9714	461	5069	4729	1089	6657	828	3449	1043	177	500
std02	0.203	0.08577	2.24487	0.12130	0.07774	0.08577	1188.99	0.95751	1179.10	0.85945	1175.	1.28666	100.831	172	380
3.xls	144	4196	3876	3032	2501	4196	0143	0578	212	8394	915	0498	6321	172	500
std02	0.189	0.08548	1.99260	0.12090	0.07410	0.08548	1113.97	0.89933	1098.68	0.82508	1083.	1.22047	101.372	172	380
4.xls	1548	9482	7882	0385	9666	9482	8062	6123	9582	1542	934	7371	422	112	500
std02	0.181	0.08495	1.90573	0.12013	0.07401	0.08495	1070.61	0.86177	1069.40	0.80782	1081.	1.18120	100.113	172	380
5.xls	1444	0826	6536	8611	3066	0826	6063	8087	4001	2677	409	2332	2116	1/4	200
std02	0.175	0.27788	1.86548	0.39299	0.07477	0.27788	1040.00	2.74512	1055.53	2.62460	1101.	3.79793	98.5064	176	312

6.xls	5222	8013	9551	2997	0648	8013	1578	9699	497	3281	098	0943	0695		
std02	0.091	0.08630	0.74234	0.12205	0.05690	0.08630	565.312	0.48092	559.243	0.53685	550.4	0.72076	101.073	105	247
7.xls	7804	5088	6845	3826	1974	5088	801	5705	5598	5242	662	5624	6076	195	547
std02	0.090	0.15893	0.72847	0.22476	0.05676	0.15893	556.494	0.87242	551.240	0.97817	545.3	1.31070	100.944	176	220
8.xls	2841	0104	7049	1109	4286	0104	392	4756	6466	2068	481	4219	0788	170	339
std02	0.090	0.17784	0.73588	0.25150	0.05693	0.17784	560.327	0.98268	555.525	1.10094	551.5	1.47572	100.856	172	380
9.xls	9342	4065	9548	9489	1937	4065	1824	1604	7763	8846	777	0671	8933	1/2	380
std03	0.099	0.08837	0.80963	0.12497	0.05750	0.08837	608.022	0.52786	597.169	0.57686	572.5	0.78193	101.784	204	375
0.xls	0574	0694	2481	5034	0462	0694	3209	3184	766	7158	18	0469	8942		575
std03	0.097	0.08911	0.80987	0.12602	0.05833	0.08911	599.888	0.52549	597.302	0.58179	602.7	0.78398	100.431	172	380
1.xls	6677	0735	2174	161	5933	0735	1466	8861	2918	2567	834	4467	0562		380
std03	0.097	0.08478	0.80629	0.11991	0.05810	0.08478	599.648	0.49982	595.324	0.55224	594.3	0.74484	100.721	172	380
2.xls	6267	9497	7742	0456	2815	9497	4022	4995	1401	1515	982	6102	1329		
std03	0.052	0.16222	0.38755	0.22942	0.05241	0.16222	326.651	0.53229	330.776	0.66453	374.2	0.85143	98.7372	104	376
3.xls	0186	6554	822	2992	4134	6554	2171	1208	0191	7914	755	6768	4578	194	570
std03	0.052	0.09817	0.37932	0.13884	0.05129	0.09817	326.683	0.32215	324.787	0.39599	327.0	0.51048	100.580	172	380
4.xls	024	591	2176	1703	5024	591	8006	9501	9627	3542	495	7639	3281	172	380
std03	0.052	0.09074	0.37846	0.12833	0.05103	0.09074	327.567	0.29857	324.166	0.36544	316.0	0.47190	101.038	172	380
5.xls	1684	837	983	7576	8045	837	5542	0779	1746	0089	01	144	375	172	380
std03	0.229	0.08656	2.88468	0.12242	0.08836	0.08656	1328.76	1.06839	1357.70	0.92965	1416.	1.41623	97.8220	160	315
6.xls	6626	9228	6291	7377	4711	9228	4111	2498	3646	2845	127	3364	7131	109	515
std03	0.189	0.12627	2.02139	0.17858	0.07484	0.12627	1118.48	1.33335	1108.20	1.22457	1103.	1.81036	100.918	172	380
7.xls	9899	8016	7741	4083	9998	8016	0991	1509	5893	2863	145	0445	6654	172	300