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Abstract
Vision impairments in children are harmful to their learning process, cognitive development,
social interaction, and scholar performance. In recent years, new technologies have been applied
for vision screening tests, sharpening traditional techniques and enabling the early diagnosis of
different kinds of debilitation on the visual system functionality. Eye-tracking is a widely used
technique applied for different purposes, and when it comes to vision assessment and training, it
is greatly suitable. This work aims to apply feature engineering and cluster analysis techniques
within eye-tracking data collected from children performing structured visual tasks. Feature
engineering creates meaningful attributes for the recordings in terms of performance and data
quality, and the exploratory analysis covers different configurations for the clustering methods
and their hyper-parameters. Cluster validation metrics evaluate the clustering results’ quality,
and domain expert acknowledgment is essencial for trustful inferences regarding the children’s
oculomotor system’s health. In order to streamline the exploratory analysis and facilitate the
experiments, we also propose a framework for Cluster Analysis of the eye-tracking data.

Keywords: eye tracking, machine learning, cluster analysis, feature engineering, vision impair-
ments, vision screening, vision care.



Resumo
Problemas de visão em crianças são uma ameaça ao processo de aprendizado, desenvolvimento
cognitivo, interação social e performance escolar. Nos últimos anos, novas tecnologias têm sido
aplicadas à exames de vista, aguçando as técnicas tradicionais e possibilitando o diagnóstico
precoce de possíveis debilitações na funcionalidade do sistema visual. O rastreamento ocular
(Eye-Tracking) é uma técnica amplamente utilizada para diferentes propósitos, e quando se trata de
testagem e treinamento de visão, é fortemente adequada. Este trabalho objetiva aplicar engenharia
de atributos e técnicas de agrupamento (Cluster Analysis) em dados de rastreamento ocular
coletados de crianças executando tarefas estruturadas. A engenharia de atributos caracteriza as
gravações em termos de performance e qualidade dos dados, e a análise exploratória possibilita
diferentes configurações para os métodos de agrupamento de dados e seus hiperparâmetros.
Métricas de validação avaliam a qualidade dos agrupamentos resultantes, e a análise dos resultados
por parte de especialistas em visão é essencial para se conseguir inferências confiáveis em relação
à saúde do sistema oculomotor das crianças. A fim de agilizar a análise exploratória e facilitar os
experimentos, também propomos um framework para agrupamento dos dados de rastreamento
ocular.

Palavras-chave: rastreamento ocular, aprendizado de máquina, agrupamento de dados, engenha-
ria de atributos, problemas de visão, exames de vista, saúde da visão.
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1 Introduction

Vision is the most fundamental sense for our daily activities, and it plays a massive role
in our learning process, cognitive development, environment perception, and social interaction
(ZABA; M.A; O.D, 2011; ATOWA; HANSRAJ; WAJUIHIAN, 2019). In children, vision im-
pairments can disturb scholar performance, leading to low cognitive skills and affecting their
self-development in different aspects (HOPKINS et al., 2019). According to the World Health
Organization, as published in their most recent world report on vision, at least 2.2 billion people
have a vision impairment, and at least 1 billion of these impairments could have been prevented
with early diagnosis and treatment (WHO, 2019).

Traditional visual tests such as optotype and stereoscopic acuity have been significantly
evolved in recent years with the help of computerized vision screening (CHAPLIN et al., 2015).
Also, many new tests have been devised, including assessing visual skills and acuity, color
and stereo vision, contrast sensitivity, and oculomotor behavior (ALI et al., 2021b). Given
that treatment and rehabilitation of oculomotor impairments are facilitated by early diagnosis,
children’s vision care must be a primary concern. Nevertheless, in many poverty-stricken countries,
vision screening is limited by lack of resources and other social factors, including the medical
system and the educational level of the population (ALI et al., 2020).

Vision rehabilitation or improvement by training methods has had its efficiency proven
by different studies (MATHERS; KEYES; WRIGHT, 2010; LEONG et al., 2014; GALLAWAY;
BOAS, 2019; WILHELMSEN; FELDER, 2021). When applied to infants, some difficulties
emerge from the fact that even the child is not aware of having a vision impairment, and they
usually do not give the proper importance to their vision assessment and care. The use of Serious
Games (SG) is a very suitable technique to employ and develop a more entertainer methodology
(HELDAL et al., 2021; BORTOLI; GAGGI, 2011). SG can lead children to be more collaborative
and assiduous on the training and reach better results by whetting their concentration. Also,
another well-suited technology for the training methods is Virtual Reality (VR) (ALI et al.,
2021a). In a virtual environment, there is also the possibility for tuning the games to include
peripheral vision training (YOUNIS et al., 2017; DAVID; BEITNER; Võ, 2021), which is usually
hampered by the screen size limitations.

Eye-tracking (ET) technologies are useful for different research fields, including visual
systems, UI/UX, sports and professional performance, psychology, psycholinguistics, computer
games, marketing, and consumer research, product design, software engineering, and others
(KLAIB et al., 2021). Using an eye-tracker to collect the user’s eye features along time (e.g., gaze
position, pupil diameter) allows us to analyze their oculomotor system’s behavior during a given
stimulus with quantitative measures. Moreover, this opens interesting research possibilities on
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health and education. Many diseases and disorders have been investigated using ET data, such
as autism (THAPALIYA; JAYARATHNA; JAIME, 2018; LIU et al., 2015), dyslexia (RELLO;
BALLESTEROS, 2015) and major depression (DING et al., 2019). Also, ET fits for assessing
scholar skills, such as reading comprehension, learning strategies and cognition development
(MEZIERE et al., 2021; CATRYSSE et al., 2018; HESSELS; HOOGE, 2019).

In our work, we analyze ET data collected from children while performing structured tasks
in the C&Look software (e.g., following a figure along with the screen in different trajectories).
C&Look is a product developed by researchers from Bergen, Norway, in the Western Norway
University of Applied Sciences (Høgskulen på Vestlandet - HVL) (EIDE et al., 2019), and the
database content was collected from children in cities of Tanzania. Since we do not have any
labels in the data or previous knowledge about the children’s oculomotor system’s health, we
apply Cluster Analysis within the ET data recordings to find patterns that could breach inferences
about children’s performances or about the database itself.

Cluster Analysis (CA) is a robust tool considered interdisciplinary because of its vast
applicability. The cluster techniques help us understand the structure of unknown data or find
characteristics in it that can be useful for solving a specific problem (TAN; STEINBACH;
KUMAR, 2005). CA is considered an unsupervised learning methodology (JAIN; DUBES, 1988),
and since we do not have any external information about the database objects (ET recordings), it
fits our intentions very well.

1.1 Goals

Our work aims to analyze ET data provided by C&Look using Cluster Analysis in order to
search for patterns in the recordings that could indicate (dis)similarities in children’s oculomotor
behavior. We will conduct the specific objectives to ensure the completion of our supreme
objective:

• Provide a good overview of the database, counting and filtering the content presented.

• Apply feature engineering in the time series for generating meaningful attributes for the
analysis.

• Propose a framework for applying CA within the featured eye-tracking data.

• Explore the best clustering results.

1.2 Document Organization

The document is organized as follows: Chapter 2 presents the main concepts used to build
the proposal, including human vision, eye movements, eye tracking technologies, and cluster
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analysis. In Chapter 3 we cite publications related to our work that make use of eye-tracking
data and machine learning methods. In Chapter 4 we present materials and methods used in this
research, and describe the pipeline used for exploring the data. Finally, in Chapter 6 we present
the conclusion regarding the current accomplishments, cite the study limitations and organize
some possible future works for this research.
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2 Background

2.1 Human Vision

For gathering visual information from a scene, we change the direction of our eyes so that
the light reflected from the point of interest reaches the retina. In the retina, there are two types
of photoreceptors: the cons, responsible for our most detailed and colored vision under good
light conditions, and the rods, for peripheral and night vision. The layers of the eye’s anatomy –
shown in Figure 2.1– refract the light to make it fall on the fovea, a small region at the center
of the visual field with the highest density of cons, which leads our spatial resolution to decay
in peripheral vision (STRASBURGER; RENTSCHLER; JÜTTNER, 2011 apud GOETTKER;
GEGENFURTNER, 2021). The ciliary muscle adjusts the shape of the lens according to the
distance from where the light reflects, enabling us to change the depth focus (PURVES et al.,
2018).

Figure 2.1 – Anatomy of the human eye. Source: Purves et al. (2018).

In short, from Remington (2012), once the light comes in and the visual pathway starts,
the photoreceptors convert light energy into neural signals, outputting them through synapses
to the bipolar and amacrine cells and then to the ganglion cells. The ganglion cells take the
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signals from both rods and cones to the optic chiasm through the optic nerve fibers. The signals
from each eye cross over so that the right cerebral hemisphere also processes the left visual field
information and vice-versa. After this intersection, the optic tract carries the signals to the lateral
geniculate nucleus in the thalamus, where every sensory information (except the olfactory) is
organized and distributed to the brain area responsible for processing it. In the case of visual
signals, they terminate in the occipital lobe, more precisely in the primary visual cortex (also
called V1), which is the first brain area to process and respond to visual stimuli. A visualization
of the structures in the visual pathway is presented in Figure 2.2.

Figure 2.2 – Visual pathway components. Source: Wikimedia (2020).

Six muscles are responsible for the movement of an eye. Each of these muscles is paired
with a correspondent one in the other eye to produce equivalent movements on both ocular globes.
These muscles respond, essentially, to five types of eye movements for the oculomotor system:
saccades, smooth pursuits and vergence movements for shifting the direction of the gaze; and
vestibulo-ocular and optokinetic movements for stabilizing it.

A saccade is every movement that abruptly changes the gaze from one fixation point
to another. These movements are ballistic because we are effectively blind during the saccade
trajectory and cannot interfere in its direction in the meantime. A smooth pursuit occurs when we
follow a moving target aiming to keep it reflecting on the fovea. Curiously, most people cannot
perform a smooth pursuit without having a target, ending up doing a sequence of small saccades.
The vergence movements are disjunctive (eyes move in different directions) and required when
we need to change the focus towards an object that is at a different distance or when we track a
target moving closer (eyes converge) or farthest away (eyes diverge).
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For stabilizing the gaze, the vestibulo-ocular and optokinetic eye movements operate
together, compensating the head movements. The vestibulo-ocular is an involuntary movement
and occurs when we fixate on a target and move the head horizontally or vertically. It is empirically
easy to note that while we move the head, the eyes go in the opposite direction, making the image
stable on the retina. As a complementary feature, the optokinetic movements are small drifts that
deal with the visual field changes, e.g., when the subject is rotating its head or body (PURVES et
al., 2018; YARBUS, 1967).

In general, when it comes to studies that analyze eye movements concerning a given health
condition, researchers focus on three basic events for different purposes: saccades, smooth pursuits,
and fixations - some other types of movements are also relevant in some cases - e.g., post-saccades
(glissades) (MARDANBEGI et al., 2018), and regressions (WOLFE, 2018). Vision is intimately
related to our environment perception and organization of behavior (ZEIL; BOEDDEKER;
HEMMI, 2008; RAYNER; POLLATSEK, 1989). This fact opens a wide range of possibilities for
the psychological study field, enabling researchers to relate visual performance to many diseases
and mental conditions, e.g., Dyslexia, Autism, Alzheimer and Major Depression - see section 3.
Also, once vision is fundamental for our cognition development (ASLIN, 2012 apud HESSELS;
HOOGE, 2019), many works focus on children’s learning process and academic performances.
Some examples are Catrysse et al. (2018), which compares students’ learning strategies; Meziere
et al. (2021) that predicts reading comprehension; and Hessels and Hooge (2019), which focus
on developmental cognitive neuroscience in general.

This work is related to the category of studies that aims to evolve the diagnosis of
functional impairments in the oculomotor system by using eye-tracking technologies and data
analysis. An impaired vision control can lead to a whole range of problems in social interaction,
cognition, academic performance, and low productivity (WILHELMSEN; FELDER, 2020;
ALVAREZ et al., 2020). Moreover, the natural motivation for focusing on children is that the
sooner an impairment is detected, the greater the possibilities of treatment and rehabilitation.
Vision training is proven to be effective for improving reading and comprehension capabilities,
recovering post-concussion vision disorders, and other problems related to the oculomotor system
(BONILLA; OD; ALLISON, 2005; MATHERS; KEYES; WRIGHT, 2010; LEONG et al., 2014;
FORTENBACHER et al., 2018; GALLAWAY; BOAS, 2019; WILHELMSEN; FELDER, 2021).
In due course, by detecting vision control impairments and correcting them with vision training,
the ultimate goal is to guarantee complete oculomotor control in children so that they have a total
capacity for using their vision in academic and daily tasks.

2.2 Eye-Tracking

The eye-tracking techniques detect the subject’s eye featuress over time, gathering infor-
mation for different purposes. Even though the eye-tracker devices have been widespread only in
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recent years, the studies of eye movements began a long time ago, back to the 19th century. The
researchers were interested in the reading process, and the first methods did not use any equipment.
A specialist observed the eye movements while a subject was reading. Despite the inaccuracy of
this method, some first conclusions have been made. In the late 1870s, a French ophthalmologist
concluded that reading is not a linear process. In other words, the eyes do not move continuously
along a line of text but make small saccades, and fixations (PLUZYCZKA, 2018). Since then,
many ET methodologies have been created, and today we can divide them into four categories:
The Scleral Search Coil (SSC), the Electro-Oculography (EOG), the Video-Oculography (VOG),
and Infrared Oculography (IOG). The figures below show examples of devices for each of these
techniques.

Figure 2.3 – Lens for Scleral Search
Coil. Source: Whitmire et
al. (2016).

Figure 2.4 – Electro-Oculography.
Source: Thankachan
(2018).

Figure 2.5 – Video-Oculography.
Source: Arar (2017).

Figure 2.6 – Infrared-Oculography.
Source: Johns et al.
(2007).

Some applications focus on eye movements without regard for the subject’s gaze. Those
calculate the eye movements in relation to the head. As in our case, other applications aim to
identify the subject’s gaze in a visual scene, requiring the position of the eye in space (point of
regard). For that purpose, techniques applied for tracking the head positions can be combined
with the eye positions to find the point of regard, thus finding the subject’s focus while scanning
a scene (YOUNG; SHEENA, 1975).
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The Scleral Search Coil (SSC) is an intriguing technique (ROBINSON, 1963) that uses
contact lenses attached to a wire coil moving in a magnetic field. The magnetic field’s voltage
induced in the coil produces a signal representing the eye position. The contact lenses have
mirrors that reflect the infrared waves, and the wavelength ranges are monitored and recorded
as their changes represent a movement of the eye. Although this technique has high accuracy,
it is not well accepted because of its invasiveness (e.g., reduces visual acuity and increases eye
pressure causing discomfort (IRVING et al., 2003)) and expensiveness.

Electro Oculography (EOG) is a simple and inexpensive technique very used in the second
half of the 20th century. The basis of this technique is the corneo-retinal electric potential, firstly
investigated by Du Bois Reymond in 1849 (HASLWANTER; CLARKE, 2010). The potential
range is from 0.4mV to 1.0mV (MALMIVUO; PLONSEY, 1995). When the eyes rotate, they
change the electric field causing fluctuations in the skin, which are used by electrodes attached
around the eyes to measure the eye movements. Horizontal and vertical movements are recorded
separately by different electrodes. Since the electrodes are attached to the head, the tracking is
linearly relative to the head position and orientation (KLAIB et al., 2021). EOG is not suitable for
daily use, not only because of the use of electrodes but also because the corneo-retinal potential
varies during the day and with different light conditions, altering the signal produced (YOUNG;
SHEENA, 1975). Nonetheless, it can be handy for medical fields given its simple arrangement
and relatively low invasiveness.

A widely studied technique is the Infrared Oculography (IOG) (TOROK; GUILLEMIN;
BARNOTHY, 1951), which, similarly to the SSC, uses infrared light to track the eye movements.
In this case, the light is pointed to the sclera and the iris. Since the white surface of the sclera has
a higher reflection coefficient than the iris, the amount of reflected light changes proportionally
with the eye movements. The algorithms for this technique rely on detecting the pupil and the light
reflected to yield the eye positions. A reference point in the cornea is used for head movements,
called glint (KLAIB et al., 2021). IOG has the advantage of efficiently handling eye blinking and
being less invasive, but glasses can be a problem because they will also reflect light.

Video Oculography (VOG) is a technique that uses one or more cameras for recording the
subject’s head and face. The systems typically use infrared light so they can also work in darkness.
The algorithms for this technique aim to detect the eye and pupil position using image processing.
The most significant advantage is that it is entirely non-invasive since cameras remotely make
the recording. However, although this technique has a simple arrangement, it is expensive and
requires more storage and computational power. There are already lots of algorithms for VOG;
some examples are (KONG et al., 2018; GONI et al., 2004; KLAIB et al., 2019)

For many ET techniques, machine learning (ML) methods can be applied for training
models that increase tracking accuracy. Algorithms including neural networks, regression, naive
Bayes classification, support vector machine, and template matching have already been imple-
mented and proven effective for this purpose. The most recently released eye-tracking devices
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have more sophisticated software programs and ML algorithms.

2.3 Cluster Analysis

In real applications, the data structure or the meaning of its content is often unknown
a priori. The elements (objects) do not have any label in these cases. We cannot even know if
they have a meaningful distribution or valuable information in their entrails and relationships.
Data scientists aim to cluster the objects into different classes composed of the most related ones,
based on their (dis) similarities, extracting meaningful information and possible links among the
objects in the data. This kind of analysis is called Cluster Analysis (CA), and its applicability is
pretty vast, being applied in many disciplines, like medicine, biology, psychology, marketing,
image processing, and archaeology (EVERITT et al., 2011). We can use CA to understand or
find utilities for the data. The first context is the study of techniques to find potential classes of
objects in the data. The second context is the study of techniques to find cluster prototypes (i.e.,
most representative element – natural or not – of a given cluster).

Since the learning process is not helped by previous external information, CA is generally
referred to as an unsupervised classification (TAN; STEINBACH; KUMAR, 2005). Figure 2.7
shows a tree that represents the division of traditional clustering algorithms. The first division of
the tree (tree’s root node) organizes clustering into hierarchical and partitional algorithms, which
have different and straightforward ideas that we discuss in the following sections.

Figure 2.7 – Tree of traditional clustering techniques. Source: (GERTRUDES, 2019).

Cluster Analysis is a powerful tool for human knowledge acquirement and organization.
Its resulting clusterings can be the final goal of the desired solution or only an initial step in the
process of solving a problem. The clusters can also be used for a future classification problem.
The labeled objects can be used for training a neural network that will learn to classify new
unknown objects. In our case, since the C&Look recordings are not labeled with any external
information, CA fits perfectly for us to find patterns in the data, identifying the performances’
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characteristics that may reflect an oculomotor impairment or a relationship between subjects,
groups or tasks. The recordings’ data contain the sequential eye-tracking information extracted at
each timestamp along with the task execution, which characterizes it as time series data (MILLS,
2019). The two main branches of CA methods are explained in Sections 2.3.1 and 2.3.2.

2.3.1 Hierarchical Algorithms

This idea describes the relationships between data objects in terms of nested groups that
form a hierarchy. This hierarchy is represented as a dendrogram; see Figure 2.8. The n leaf nodes
of the dendrogram represent the objects (or singleton clusters), and each node represents a cluster
(JAIN; DUBES, 1988). The root node represents a cluster that owns all n objects. In the basic
idea, each level is a solution that has one lesser cluster than the solution of the level right below it.

Consequently, the full dendrogram is a collection of solutions with all possible numbers
of clusters for a given clustering configuration. Therefore, by cutting this dendrogram horizontally,
we define the number of non-overlapping clusters and their objects (red line in Figure 2.8). A
horizontal cut is the simplest way to get a flat partition from the dendrogram, but there are also
some more sophisticated methods for the cluster extraction, such as FOSC, that will be presented
in Section 2.3.3).

For building the hierarchies, algorithms can use either the agglomerative or divisive
approaches. The first one starts with every object being a singleton cluster, and at each step, two
clusters are merged until there is no cluster to nest and a cluster containing all objects in the
data is reached. It is more intuitive than the divisive approach, which starts with all objects in
the same cluster and splits the most dissimilar object at each step, creating new clusters until
reaching the solution with only singleton clusters. For its simplicity, agglomerative algorithms
are better known and used. An optional parameter for hierarchical clustering is the minimum
cluster size (MCS). If a cluster is smaller than MCS, the algorithm considers that it does not
belong to any cluster at that level of the dendrogram, producing a simplified hierarchy.

The most commonly used methods are Single-Linkage (SL), Complete-Linkage (CL),
Average-Linkage (AL), Centroid-Linkage (CTL), and Ward’s Method (WM), illustrated in Figure
2.9. SL uses the minimum distance between objects in different clusters to define if the clusters
should be merged, what can be disturbed by noise between the clusters. CL uses the maximum
distance instead, and outliers can distort the greatest distance of two clusters. AL calculates
the average of the distances between all possible pairs of elements from different groups. CTL
uses the centroid of each cluster (not necessarily a natural object) to calculate its distance. WM
firstly pretends to merge the clusters and get the centroid of this new hypothetical cluster. Then it
calculates the sum of the squared deviation of every point to this centroid. If this sum in the new
cluster is smaller than in the two clusters individually, then the clusters are merged. All linkage
methods have their pros and cons, and it is difficult to predict their performance. Therefore, a
good practice is to test different methods and analyze their clustering result, trying to find the
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Figure 2.8 – Example of a dendrogram with 9 objects (PEREIRA; MELLO, 2013). The red line
in the fourth level cuts the dendrogram extracting four clusters: C1=5, 4, 6; C2=7, 8,
9; C3=3; C4=1, 2.

fittest method for the given data.

2.3.2 Partitional Algorithms

In this approach, the clusters do not overlap. A cluster is a simple division of the data set
with its objects, and there are no nested clusters. We can consider the Hierarchical Algorithms
(HA) as a sequence of partitional clusterings (TAN; STEINBACH; KUMAR, 2005), as we can
take a flat (partitional) solution from a clustering hierarchy by cutting the dendrogram in a given
level.

The most famous and widely used partitional algorithm is K-Means (MACQUEEN, 1967).
It bases its clustering process on prototypes (centroids) that better represent portions of the data
as if each prototype was the center of mass of a group. The first step is to initialize the centroids
in the space of data randomly. To reach the solution, at each iteration the algorithm assigns every
object to one of the K centroids based on their similarity, which is calculated by the Euclidian
distance. Once these assignments are done, each centroid is recalculated as the multivariative
mean of the objects assigned to it. In the following iteration, objects are reallocated to their new
nearest centroids, and those are updated again. The algorithm stops when the assignments do not
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Figure 2.9 – Traditional cluster linkage methods. Available in livebook.

change from the last iteration or when another stop criterion is reached.

By assigning the objects to their nearest centroid, K-Means guarantees to decrease the
Sum of Squared Errors (SSE) at each iteration, converging to a solution with a minimum SSE.
Note that this solution may not be a global minimum because the results are strongly dependent
on the data distribution and the centroids’ initialization. A global solution tends to be found by
running the algorithm many times with different starting points for the centroids, see (ARTHUR;
VASSILVITSKII, 2007). Another critical issue regarding K-Means is the definition of K, the
number of clusters to be extracted. Many times in real applications, this number is unknown, so
there are also some strategies to find the best number (e.g., Elbow Method (THORNDIKE, 1953)
and Average Silhouette Method (KAUFMAN; ROUSSEEUW, 1990), see section 2.3.4).

Other partitional algorithms use the density-based notion of clusters, which is subjectively
related to the human intuition for grouping elements by eye. We identify clusters in a bidimensional
dataset by simply locating near objects that together form dense regions separated by sparse or
empty regions, see Figure 2.10. 2D spaces are used for the purpose of visualization. We cannot
do this by ourselves for high dimensional data spaces, but the notion extends to these cases thus
can also be applied (KRIEGEL et al., 2011).

DBSCAN is the most famous of these algorithms and stands for "density-based spatial
clustering of applications with noise" (ESTER et al., 1996). The essential parameters for this type
of algorithm are ε and MinPts. The ε-neighborhood of a point are the objects within a radius of
size ε from that point. A particular point is considered to be a core-point if the number of points
in its ε-neighborhood is greater than MinPts, a predefined minimum number. If the point is

https://livebook.manning.com/book/machine-learning-for-mortals-mere-and-otherwise/chapter-17/29
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Figure 2.10 – Bidimensional datasets with regions of varying density. Source: Ester et al. (1996).

not a core-point but has a core-point in its neighborhood, than it is considered a border-point.
Otherwise, it is considered as noise.

An object p is directly density-reachable from another object q if p belongs to the ε-
neighborhood of q, and q is a core point. And an object is density-reachable from another object
if there is a chain of directly density-reachable objects interconnecting them. The clusters are the
sets of density-reachable objects distributed along with the data universe. Note that DBSCAN
will find a number of clusters that is not previously defined, such as in K-means. Despite this
advantage, the technique is very susceptible to its hyper-parameters and may need a large amount
of objects to reach consistent results.

2.3.3 FOSC

Hierarchical algorithms provide a lot more information than partitional ones as they
produce sequences of partitional solutions (GERTRUDES, 2019). A tricky challenge is finding
how to better interpret this whole amount of information in regards to a given research goal.
Executing a horizontal cut in a dendrogram’s level will give us an optimal solution that is not
guaranteed to be globally the best (JAIN; DUBES, 1988). A more sophisticated approach would
be to apply local cuts in varying levels of the dendrogram, aiming to extract the best of each flat
partition distributed along with the levels. This is what FOSC - which stands for Framework for
Optimal Selection of Clusters - does.

Proposed by Campello et al. (2013), FOSC is applied in unsupervised or semi-supervised
environments. For the unsupervised context, it uses local measures to quantify the individual
quality of each cluster in the dendrogram. These measures can vary depending on the nature of
the problem. Once this is done, the goal is to find a flat partition that maximizes the objective
function based on a predefined form of aggregation of these individual clusters’ qualities. The
big difference here is that the clusters can be extracted from different levels of the hierarchy in
order to form the globally optimal solution.

See the dendrogram in Figure 2.11. Each node has a value that represents the quality of
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the corresponding cluster in terms of stability. The measure used by Campello in his study is
based on the classic definition of cluster lifetime, which is the scale of the hierarchical levels in
the dendrogram in which the cluster exists. He made an adjustment: for calculating a cluster’s
quality, the lifetime of the objects it owns are summed up - the lifetime of an object is the scale
until the level where the object is considered as noise. The cluster’s quality is related to the
concept of Cluster Validation, discussed in 2.3.4.

For the aggregation step, the algorithm uses a bottom-up approach and walks along the
hierarchy keeping the best-so-far selection of clusters. For instance, the algorithm would choose
the cluster C5 instead of its composing clusters C8 and C9, since 21 > 1.6 + 1.3. Same thing
for choosing C3 instead of C6 and C7 (36.9 > 1.3 + 1.1). On the other hand, the cluster C2 is
not selected because 32.7 < 16.4 + 21.1.

Figure 2.11 – Cluster quality values in terms of stability for a FOSC application example present
in Campello et al. (2013)

Two important properties of the cluster stability concept used by FOSC is that it is local,
since it is calculated for a cluster independently to any other cluster in the dendrogram, and
additive because it considers all composing objects to calculate the cluster’s stability. Due to
the additive property, the problem FOSC solves is to choose a collection of mutually exclusive
clusters that together maximize the sum of their qualities. In the end, it reaches the globally best
extraction of clusters from a dendrogram provided by a hierarchical clustering algorithm.

2.3.4 Cluster Validation

Given the usual unsupervised context of CA, a core issue is to evaluate the resulting
clusters quantitatively. Since we do not have the labels to tell us whether our classification is right
or wrong, statistical methods can provide a solid baseline for inferring if a resulting clustering is
a trustful representation of the data. The application of these statistical methods is called Cluster
Validation (CV).

Since the definition of a cluster varies depending on the problem, the evaluating methods
should also be different for each type of cluster - e.g., SSE can evaluate K-means clusters but
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would not work well for density-based clusters with non-globular shapes (TAN; STEINBACH;
KUMAR, 2005).

It is reasonable to highlight that clustering algorithms will find clusters in the data even
when there are no natural clusters, which shows how essential CV is for any CA. Therefore,
one of the most important issues for CV is to distinguish non-random structures in the data - in
other words, to analyze the cluster tendency. Some other issues in the unsupervised context are
determining the ideal number of clusters, evaluating the fitness of the results within the data, and
deciding between two clusters choosing the best one based on the defined measure.

The two main concepts for unsupervised CV of partitional sets of clusters are: cohesion
and separation. The first concept is related to how similar are the objects in the same clusters.
The second one addresses the distinction between the clusters. These measures are called internal
indices since they do not make use of any external information. The CV can be applied individually
to each cluster in the solution or to the solution itself, considering all the composing clusters. The
overall validity of a set of clusters can be expressed by the weighted sum of each cluster validity
value. This weight also varies according to the measure used (e.g., the size of the cluster or the
square root of the cohesion).

2.3.4.1 Silhouette Coefficient

A popular method that combines both concepts described above is the Silhouette Coeffi-
cient (ROUSSEEUW, 1987). Its process for computing the coefficient for a given point consists
of three steps:

1. For the ith object, calculate the average distance to all objects in the same cluster and call
it ai;

2. For the ith and any cluster that it does not belong to, calculate the average distance to all
objects in that cluster. Take the minimum value found a call it bi;

3. Finally, for the ith object, the silhouette coefficient is defined as si = (bi−ai)/max(ai, bi);

Figure 2.12 shows an example of Silhouette Coefficient index calculation for the point
P. The values vary between -1 and 1. We want ai to be as close to 0 as possible and si to be
positive. Actually, the greater the value of si, the better the validation for that given point. By
doing that, we analyze how the object within a cluster collaborates to the overall cohesion or
separation of the cluster. For validating an entire cluster in terms of silhouette coefficient, we take
the average of the silhouette coefficients of each of its composing objects. And for validating the
whole clustering solution, we take the average of every cluster’s silhouette coefficient index.
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Figure 2.12 – How to calculate Silhouette Coefficient for an specific point P.

2.3.4.2 AUCC

The AUCC (Area Under Curve for Clustering) (JASKOWIAK; COSTA; CAMPELLO,
2020) is an adaptation of the AUC - abbreviation for Area Under the Receiver Operating Char-
acteristics (ROC) Curve - typically used in supervised contexts to analyze performances of
classifiers. To understand the AUCC, we must start with the concept of ROC and AUC.

Figure 2.13 – Logistic Regression over 15 data points.

The ROC curve is a way to summarize the predictions’ quality of a classifier for every



Chapter 2. Background 17

Figure 2.14 – Two probabilty thresholds (0.8 and 0.2), and their respective confusion matrix,
with values of FPR and TPR.

possible threshold value based on the actual labels. Consider the problem of classifying if a
person is obese based on their weight. Figure 2.13 shows an example of a Logistic Regression
that would tell, for each data point, its probability of corresponding to an obese person. Since we
want to tell whether the person is obese or not obese, we need to set a threshold to discretize the
classifier’s output.

Figure 2.15 – Ilustrative ROC curve and AUC of 0.9.
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Each prediction can be labeled as True Positive (TP), False Positive (FP), True Negative
(TN), or False Negative (FN), based on the actual classes. A Confusion Matrix presents the
number of predictions for each case (Figure 2.14 shows the Confusion Matrices for two threshold
examples). By plotting the value of FPR (FPR = FP / (FP+TN)) against the value of TPR (TPR
= TP / (TP+FN)), we can draw a single point on the ROC graph that represent the relation of
the FPR and TPR, indicating the quality of the prediction for the current threshold. Figure 2.15
shows an example of a ROC curve for nine different thresholds and the Area Under the ROC,
which would have the value of 0.9. The diagonal line represents the solutions where FPR = TPR.
Therefore, we want the points to be on the left side, meaning that TPR > FPR, thus increasing
the AUC. A more excellent AUC value indicates a more robust classifier, and the best threshold
for a given problem depends on how many False Positives the problem can accept.

As an adaptation for the unsupervised context, if we want to compare clustering methods
using the partitions produced, we need to follow these steps:

1. Compute the similarity matrix of all the objects in the clustering population;

2. Obtain an array that indicates the pairwise similarity for each pair of objects;

3. Obtain an array that indicates the pairwise clustering for each pair of objects: 1 if the pair
is in the same cluster, 0 if not;

4. Use the two arrays as input to the ROC Analysis. The analogy is: pairwise similarity values
correspond to the possible thresholds, whereas the pairwise clustering array corresponds
to the true labels;

The output will give the AUC of the clustering partition, which is named AUCC in the
unsupervised context. Therefore, when comparing two partitions, the one with the bigger AUCC
value can be considered the most robust solution.
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3 Related Work

ET data have been used with different approaches. As mentioned, ML algorithms can
help with the tracking process, but they are also effectively used to analyze the data collected. In
some cases where researchers analyze health conditions related to the eyes, the data is labeled
concerning the condition studied. In these cases, supervised classification methods can be used
for training diagnostician models, and some examples are shown in the following paragraphs.

In Chen et al. (2018a), they used six different Convolution Neural Network models trained
on the public dataset ImageNet for feature extraction of the so-called GaDe (Gaze Deviation)
images. These images are generated from gaze data recorded by the Tobii X2-60 eye-tracker while
the subjects perform fixations at 9 points on the screen. The CNN outputs a feature vector used
by an SVM to detect Strabismus. The SVM is trained with 42 ET records (17 from subjects with
Strabismus diagnosed by vision specialists). When compared to other studies, a peculiarity is
that the authors do not preprocess the ET data for detecting events (e. g., saccades, fixations). As
mentioned by them, these events are not relevant for Strabismus recognition, so the GaDe images
are enough for a good classification performance. They have reached the highest performance
with 95.2% of accuracy.

Previous psychology research has shown that the lack of eye movements control is a
reflection - not a cause - of the difficulty that people with dyslexia have while reading (HYÖNÄ
et al., 1995; PIROZZOLO; RAYNER, 1979; RAYNER, 1985). From that, once this lack of eye
control is detected, it can be inferred that a subject has a probability of having some level of
dyslexia. In (RELLO; BALLESTEROS, 2015) they have used a dataset built with 1135 ET data
from participants with and without dyslexia while they were reading Spanish texts. An SVM
classifier was used to diagnose. In this case, they detect the eye movement events first to calculate
some of the features used by the SVM (e.g., nº of fixations, duration mean of fixations). They
have reached an accuracy of 76.38% while not considering the age of the participants (which
makes much difference since an old dyslexic subject may have improved their reading capabilities
through their years of life).

Besides ET data, other types of signals - e.g. electroencephalogram (EEG) - are also used
to detect symptoms of psychological disorders. Different signals can be a good tool for reaching
a satisfying diagnosis accuracy. For detecting Autism Spectrum Disorder (ASD), Thapaliya,
Jayarathna and Jaime (2018) compares classification performances using many combinations of
features, algorithms and data. They compare the performances using EEG data, ET data, and both
combined. The results have shown that ET data ended up being more relevant for the algorithms
to have better classifications. The dataset used for training contains EEG and ET records of 52
participants (24 with ASD) while watching video clips. They used the Tobii X50 for tracking
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eye movements, and the fixations were calculated using the Clearview algorithm (from Tobii).
Despite using the fixations as features, they also used the score of each individual in a social
cognition test. Some of the accuracy performances were pretty good, but as mentioned in the
paper, the number of participants was too short to confirm the consistency of the results. Some
other studies that have aimed to investigate ASD using ET and ML are Liu et al. (2015), Alie et
al. (2011), Jiang and Zhao (2017).

In Ding et al. (2019) they use EEG, ET, and Galvanic Skin Response (GSR) while the
348 participants watch affective and neutral stimuli in 8 short videos. The goal is to diagnose
Major Depression Disorder (MDD). Their ET data was recorded using Tobii 4C at 90Hz, and
the fixations were defined when the gaze was stable for more than 100ms within a 1º of visual
angle. The features used from ET were: percent time attending to each image category, number of
fixations per category, mean glance duration, and location of the first fixation. They used Random
Forest, Linear Regression, and Support Vector Machine to build the classification model. They
have reached the highest f1 score by using EEG data. However, in general, they have found better
results when combining the three different measurements.

In Franceschiello et al. (2020) the participants performed 176 trials of a demanding visual
search, complicated by distractors on the screen. Since spatial neglected subjects have more
difficulty on targets at the left side of the screen, their performance is analyzed considering only
the x coordinates. Relevant trajectories’ features were extracted by passing these vectors through
a CNN. They also made a so-called "crucial" interplay between the ET data-based classification,
anatomical markers detected through MRI (Magnetic Resonance Imaging) and DTI (diffusion
tensor imaging). The average accuracy on the classification obtained was 74.5%.

On the other hand, in the case of C&Look we do not have labels to tell us whether a
subject carries or not an oculomotor dysfunction. Therefore, the ML methods for unsupervised
classification are suitable for us. To the best of our knowledge, not much work has been done on
clustering ET data with similar goals, but some related examples are highlighted in the following
paragraphs.

Murray et al. (2019) aims to examine the reliability of oculomotor metrics to determine
normative values through cluster analysis and compare these metrics by age groups. A large
sample with 2993 participants performing the RightEye tests was recorded using the SMI 12"
120Hz eye tracker, and the participants were selected only if they were healthy individuals.
5 Right Eye tests were applied, and the normative values were calculated for each one. For
data analysis, they used Cronbach’s Alpha to evaluate the reliability of RE tests. They also
built a clustering model based on Bayesian Information Criterion. Lastly, they examined group
differences considering age clusters and gender with MANOVA test, one for each of the 5 tests.
The clustering revealed 5 age groups, and the correlations between individuals in each group
have shown that age ranges must be considered in an oculomotor test battery.

Göbel and Martin (2018) study the behavior of map readers and how they spent their



Chapter 3. Related Work 21

visual attention. The work evaluates the suitability of unsupervised ML methods for clustering
the ET data collected from subjects while they perform everyday comparison tasks on maps.
Three different maps with different legend types were used. Similar to our approach, they applied
feature extraction on the time series, creating 37 new features. They proposed a framework for
clustering the ET data with three different methods: K-means, Spectral Clustering, and DBSCAN.
The user can also specify the hyperparameters that the clustering methods will use. Once the CA
is done, the resulting clusters are validated with the t-SNE visualization in order to discover their
qualities. They tested 29700 combinations of hyperparameters. Although they demonstrated the
t-SNE suitability for cluster evaluation, they enhanced the need for domain knowledge to create
more elaborated features and detect meaningful results.

Naqshbandi, Gedeon and Abdulla (2016) used K-Means and OPTICS (a density-based
cluster technique) within ET data for separating regions of interest in pictures when participants
were asked subjective questions to answer verbally; some examples are: "Do you think people in
this image are related to one another?", "Why are some people carrying rifles?", "What is this
image about?". The fixations were collected from the gaze points in order to detect which parts of
the picture call the participants’ attention while they gather information to answer the questions.
For each task of each subject, the clusters found by K-Means and OPTICS were used in training
and decoding tasks with Hidden Markov Models.

Aside from diagnosing various health problems, ET and ML can be used for different
aims. The general path of the ET data processing and how it is fed into a classification model can
be very similar between studies with different objectives, and that is why any study regarding the
use of ET and ML can be useful for this present project. Another exciting application with the
fusion of these two technologies is biometric identification. Jäger et al. (2019) developed a deep
convolutional neural network for biometric identification focusing on eye micro-movements. The
main point of their method is dividing the model into two subnets, one for fast movements and
the other for slow movements. They do that because the global normalization would squash the
velocities of drift and tremor to near-zero. So what they do is to enhance macro-movements for
one subnet and micro-movements for the other one. They have used a database containing 12
reading records from 75 participants. The fast subnet (for microsaccades and saccades) reached
an accuracy of 77% after one second. The slow subnet (for tremor and drift) reached an accuracy
of 88% after one second. And the full subnet reached 91.4% after one second, 99.77% after 10
seconds, and 99.86% after 40 seconds. As related by the authors, their method overcame all the
biometric identification methods known so far.
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4 Material and Methods

This Chapter firstly describes in Section 4.1 the database characteristics and the issues
to be taken into account. Then, Section 4.2 presents the Event Detection methods considered
for identifying the types of eye movements. In Section 4.3, we describe the features used for
characterizing the recordings. Finally, Section 4.4 presents the suggested pipeline for applying
all the concepts involved.

4.1 Database

The database was collected by the HVL’s research group SecEd, which is connected to
the project Securing Education for Children in Tanzania. The database is composed of recordings
of children performing the C&Look tasks. This software communicates with an eye-tracker
collecting the user eyes’ information for vision screening (EIDE et al., 2019). Tobii Eye Tracker
4C collected most samples, but the models TX300 and EyeX were also used. The tasks are simple
and structured (i.e., the child is not freely observing the screen, it is supposed to be following a
figure or reading a text). Once the task is finished, C&Look stores the eye-tracker data with the
associated user information in the database for further analysis.

SecEd visited schools in 4 different cities of Tanzania: Moivaro, Tysnes, Austevoll, and
Arusha - using C&Look to collect children’s performances under specific circumstances. In
Moivaro, the experiments were divided into two groups of users, one being composed only of
intellectually impaired (I. I.) children. In Arusha, the group realized many visits in order to
collect the children’s performances before and after vision training sessions - which is also a
focus of HVL researchers (ALI et al., 2021a). The valid recordings (i.e., only those collected
from children) were divided into nine groups in the database, as shown in Figure 4.1.

Figure 4.1 – Number of recordings and children per group
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4.1.1 Issues for CA within C&L database

Some relevant issues about the C&L database and its nature must be considered before
applying CA within the recordings. The first issue is the number of valid recordings available for
composing a given clustering population. Mainly for unsupervised classification, a proper amount
of objects is required so that the models have enough information for training and reaching
significant results. The database is composed of 5998 recordings from children. However, they
were recorded under different conditions and have different characteristics, leading to the necessity
of verifying which recordings can be together in a CA configuration, depending on the research
goals. The following subsections will explain the factors considered for filtering the recordings.

4.1.1.1 Device

The performances were recorded with three different eye-trackers from Tobii (4C, EyeX,
and TX300). The devices are placed under the screen, tracking the eyes remotely, which is very
good when dealing with children. Using recordings of different eye-trackers would unbalance
the feature engineering because each eye-tracker has its specific characteristics (e.g., frequency,
accuracy). Therefore, we chose to work only with Tobii 4C (see Figure 4.2), because there is
a more significant number of recordings available in the database. Also, it is the most recently
released of the three ones.

Figure 4.2 – The Tobii Eye-Tracker 4C, released in 2016. Source: https://www.amazon.com/Tobii-
Eye-Tracker-Game-changing-Peripheral/dp/B01MAWPMXQ

4.1.1.2 Task

C&Look includes tasks with different stimuli, some in which children have to read a
text or sets of syllables, and others in which children have to follow a moving figure along the
screen. For the second case, which is our focus, there are tasks in which the figure has different
trajectories, thus exploring different functionalities of the oculomotor system (e.g., fixations,
vertical/horizontal/diagonal pursuit, big/small saccades).

Since we want to compare children’s oculomotor system’s behavior, we have to do it
using only the very same stimulus. In practical words, the figure has to have the same trajectory
and speed (we did not consider the size of the figure or the figure itself). Therefore, we chose
to focus on one specific task, in which the figure applies ten fixations over three lines of the
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screen, moving from the left to the right, starting on the top. Figure 4.3 shows an example of
good performance over the chosen task.

Figure 4.3 – Example of a good performance for the chosen task. Horizontal and Vertical gazes
are presented separately. Source: C&Look.

Not every feature extracted from the time series (see Section 4.3) depends on the task
presented. However, even so, we decided to realize the experiments only with one task to limit
our scope and focus on specific characteristics of the chosen stimulus.

4.1.1.3 Calibration Step

For every eye-tracking application, the calibration step is essential for guaranteeing a good
tracking of the eyes. People have very different eye characteristics, which leads to the necessity of
calibrating the eye-tracker for each subject. During this procedure, the eye-tracker captures many
images of the subject’s eye to build an eye model that will provide a more accurate gaze detection.
This model has information about the shape, light refraction, and reflection properties of each
part of the eye (e.g., cornea, placement of the fovea) (TOBII, 2022). With this information, the
device tests different methods (e.g., dark or bright pupil detection) for tracking the eyes in order to
choose the most suitable one for the given light conditions. After this procedure, the calibration’s
quality is illustrated by showing the offset of the gaze points for each calibration dot. Figure 4.4
shows an example of a relatively good calibration.

After the calibration, there is the validation step, which is useful for testing the quality of
the new eye model that was built. The validation step uses more targets to evaluate the eye-tracker’s
performance. Figure 4.5 shows the validation for the calibration on Figure 4.4.

4.1.1.4 Tracking Quality During Performance

Even when the calibration and validation steps seem promising, the tracking quality
during the child’s performance can occasionally be poor. It probably happens when the child
changes its distance or position in relation to the screen right after the calibration process or
when there is an abrupt change in light conditions. Figure 4.6 shows an example of a relatively
good validation but a poor tracking during the child’s performance. Since we want to focus on
qualifying performances, the recordings must have consistent tracking of the eyes for not to
influence the feature engineering negatively.
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Figure 4.4 – Example of a good calibration step. Source: C&Look.

Figure 4.5 – Validation for the calibration in Figure 4.4. Source: C&Look.

The performance is presented with the Horizontal and Vertical plots of the gaze positions,
which is a common approach to visualize eye-tracking data. The blue line corresponds to the
left eye’s gaze, and the red line to the right eye’s gaze. The green lines represents the figure’s
positions.

As in the example of Figure 4.6, there are timestamps when the signals from the eyes
are lost. In these moments, the normalized positions of the eyes are set to (0, 0) in the database.
Clearly, we must not use these values for building the features because they would reflect false
characteristics of the performance. In order to support this issue, recordings with good calibrations
but poor tracking during the performance were also filtered.
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Figure 4.6 – Example of good validation succeeded by a poor tracking during performance.
Source: C&Look.

The eye-tracker stores the tracking status for each timestamp. The values go from 0 to 3,
indicating whether both eyes are tracked or which one is lost:

• 0 - both eyes tracked;

• 1 - both eyes lost;

• 2 - right eye lost;

• 3 - left eye lost;

This values were taken into account during the feature engineering, that will be explored
in Section 4.3.
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4.2 Event Detection

Identifying eye movements (i.e., fixations and saccades) is a fundamental step in the
feature engineering process when working with ET data. The results of this step drastically impact
the higher-level analysis. The approaches to use and the events to detect depend on the research
goals (WIBIRAMA et al., 2020). Also, equipment variabilities are relevant issues to consider
(e.g., quality of the eye-tracker and sample frequency).

There are three classic strands of algorithms for event detection: I-VT, I-DT, and I-AOI
(SALVUCCI; GOLDBERG, 2000). I-VT algorithms separate fixations and saccades based on
the point-to-point velocities. If the velocity is below a defined threshold, the point belongs to a
fixation group of points. Otherwise, it is a saccade point. I-VT is a straightforward and robust
strategy, easy to understand and implement. I-DT is based on the dispersion of consecutive points
and incorporates a minimum duration threshold of 100-200ms for fixations. It uses a moving
window (which width is determined by the duration threshold and sampling frequency) that
checks the dispersion of the points inside, D = [max(x) - min(x)] + [max(y) - min(y)]. If the
dispersion is below a determined threshold, that sample interval belongs to a fixation. Finally,
I-AOI is used in more specific cases when a stimulus is presented (e.g., targets, images, or videos
displayed on a screen). This type of algorithm focuses on predefined areas of interest, identifying
fixations close to specific parts of the visual field.

A major drawback of these algorithms is manually setting the parameters (i.e., thresholds).
A slightly different configuration can end up leading to very different outputs. Another limitation
is that they only detect a single event, normally fixations, and cannot classify smooth pursuit,
PSO, etc. Given these circumstances, in the last decade, machine learning algorithms for event
detection have provided a whole range of new descriptions of eye-tracking data (ZEMBLYS;
NIEHORSTER; HOLMQVIST, 2018). However, using these algorithms requires a training
dataset with hand-segmented ET samples. For instance, in Hoppe and Bulling (2016) they use a
simple CNN to identify eye movements. The model was trained in a dataset introduced by the
authors, with 1626 fixations, 2647 saccades, and 1089 pursuit movements. The results outperform
existing approaches, classifying smooth pursuits instead of only fixations and saccades.

In our case, event detection is the root of the characterization of the samples, represented
as featured objects. Therefore, accurate identification of eye movements is essential for trustful and
meaningful clustering performances. There are not many good Python implementations for the
described algorithms that would work well for our data, and the moderated sampling rate of Tobii
4c (90Hz) is a limitation for the quality of event detection. We haves used the implementations
available in the following public GitHub repository: <https://github.com/ema2159/ET_Project>,
choosing the parameters empirically. Even though the event detection algorithms can give different
outputs for the same time series, we used only the I-VT implementation, with the same parameters
for every sample. Therefore, we must highlight that the event detection was quite a bottleneck for
our feature engineering process (see Section 4.3) since we only detect fixations and saccades, not

https://github.com/ema2159/ET_Project
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considering blinks, regressions, PSO, or any other event.

4.3 Feature Engineering

Raw data can be numerically represented by features derived from the type of data
available. In our case, these features tend to characterize the time series in terms of performances
for the chosen task. The number of features to use is a delicate choice to make, because if this
number is too small, the model will not have enough information to succeed. And if it is too big,
it will be more difficult and costly to train (ZHENG; CASARI, 2018). Therefore, the features
used must be meaningful for the ongoing analysis.

Creating features and choosing what to base them on is a tricky job; thus help from
specialists in the problem domain is essential. Saiz-Manzanares et al. (2021) used more than 30
features to characterize the eye-tracking data collected for statistical analysis, including counting
fixations, saccades, and blinks, such as their frequency, duration, and dispersion. The eye tracker
used had a sampling rate of 60Hz. Their work analyzes subjects solving a crossword puzzle task,
so not all the features in their study would be relevant for our case.

In our work, we built 15 features to represent the time series of each recording. Their
descriptions are in the table in Figure 4.7. After extracting these features, we stored the featured
objects in a new database table, so we could use them for the exploratory analysis with different
configurations. Although we have to keep straight to our goals, it is relevant to cite that a higher
sampling rate (700Hz-1200Hz) would gather more information about the head and eye movements
(STEIN et al., 2021), thus opening the way to build more features to represent the time-series.

Figure 4.7 – Features extracted from the time-series. The ones in yellow do not depend on the
event detection step.

Most features were based on literature (MURRAY et al., 2019; BARGARY et al., 2017;



Chapter 4. Material and Methods 29

SAIZ-MANZANARES et al., 2021), and others were based on the distance between the gaze and
the task’s figure position. This second type tries to reflect the child’s performance in terms of the
task goals (i.e., follow the figure).

Since we know that the task’s figure itself applies 30 fixations with regular intervals (0.8s),
to count how many fixations the subject applies (FC) and the duration of each fixation (AFD) fits
our scenario. The eye gaze data of perfect performance would have exactly 30 fixations (as equal
as possible to the figure’s fixations); thus, discrepant values may indicate a problem in the child’s
performance. The SPL feature follows the same idea. The dispersion of the fixations (AFDisp) is
more related to the event detection itself, since it is a important parameter for the algorithms,
also studied with horizontal/vertical dispersion (AFDispH/AFDispV ) separated (SALVUCCI;
GOLDBERG, 2000).

Since we are detecting only fixations and saccades, counting the number of saccades
would not be relevant for the CA because it would always be one less than the FC. Nonetheless,
information from saccades regarding their duration and amplitude (ASD, ASA, SAMax) can be
useful (SAIZ-MANZANARES et al., 2021). ADT takes the average distance from the gaze to the
figure, and ADTL/ADTR do it separately, which seems to be an interesting approach since the
oculomotor system can have problems with different parts of the visual field (GERSTENBLITH;
RABINOWITZ, 2021). Since saccades are ballistic movements - as mentioned in Section 2 - we
also built the ADTF to collect the distance from gaze to figure only when the subject has control
of its eyes. In other words, during fixations (i.e., humans are effectively blind during saccades).
ADFF was built to focus on assessing how well the child handles the beginning of the task and
the line jumps, measuring the average distance for the first fixations of each line. The only feature
that involves both gaze data is ADB, which takes the average distance of both eye gazes during the
recording. This feature can reflect a calibration problem and may also carry valuable information
regarding strabismic conditions (CHEN et al., 2018b).

The practical relevance of each feature is complex for us to define since that should be
done by a domain expert (i.e.., vision specialist). Nonetheless, we used many subsets of features
for each round of Cluster Analysis to try to make the performances be reflected in different ways.
Section 4.4 describes how the experiments were conducted.

4.4 Exploratory Analysis

"The path from data to answers is full of false starts and dead ends. What starts out as a
promising approach may not pan out. What was originally just a hunch may end up leading to
the best solution." - (ZHENG; CASARI, 2018)

The exploratory analysis can cover a wide range of possible clustering configurations.
Given the recordings’ peculiarities and how subjects and tasks are divided, there are many
combinations for us to select the clustering population, the method and hyper-parameters to use,
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and the features that will characterize the time series. It is impossible to know a priori which
settings will produce the best results and overcome our expectations. In order to facilitate the
experiments and analysis of the clustering results, we propose a framework for CA based on the
pipeline presented in Figure 4.8:

Figure 4.8 – Pipeline for clustering C&Look data

This pipeline is similar to other approaches for knowledge extraction, as KDD, SEMMA,
or CRISP-DM (AZEVEDO; SANTOS, 2008). Also, Göbel and Martin (2018) proposed an
analogous idea for working with ET data. Nonetheless, the peculiarities of working on C&Look
data and building different features may demand a customized pipeline for dealing with our
issues.

Each step of the pipeline has the following roles:

• Recordings Selection: select the subset of recordings to be turned into featured objects
for further cluster analysis. This selection can be based on groups, tasks, or other criteria
depending on the objective of the current analysis. In the case of our experiments, we
selected the recordings from the task described in Section 4.1.1.2 that were recorded using
Tobii Eye-Tracker 4C;

• Event Detection: in this step, the detection of eye movements (i.e., fixations and saccades)
occurs. These events are used for building the features in the next step. As mentioned,
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we have used the I-VT implementation of this freely available Python package: <https:
//github.com/ema2159/ET_Project>;

• Feature Engineering: here, the features are extracted from the events detected in the
previous step or from the time series itself. There are 14 features for each eye and 1 feature
that involves both of them (ADB - Average Distance Between Eyes, details in Section 4.3);

• Feature Selection: in this step, we select the eye data to analyze and the subset of features
that will be used in the next round of CA and CV. We can create many different subsets to
see which features are more relevant to the cluster separation (again, inferences about the
relevance of the features must be supported by a vision specialist).

To create the subsets, we calculated the Correlation Matrix between all the features to find
which features should be used together for clustering the data of each eye (and for both
eyes combined). For each feature, we took the 4 least correlated features and built subsets
of 2, 3, 4, and 5 features, exploring every combination. Figure 4.9, 4.10 and 4.11 show the
correlation matrix for left, right, and both eyes data, respectively, considering all the 464
featured objects.

• Cluster Analysis: in this step, we use the clustering methods described in Section 2.3
(K-Means, DBSCAN, and FOSC) within the featured objects. The methods run with varied
parameters since we can never know which is the best configuration for that clustering
population. Figure 4.12 shows the variations of parameters values for each clustering
method;

• Cluster Validation: here, we use the Silhouette Coefficient index (described in Section
2.3.4) to assess the quality of the clustering results - AUCC was also calculated;

• Save Best Clustering: after the cluster validation, we save the best clusterings based on a
minimum threshold for the Silhouette Coefficient index;

• Change Features?: here, we check if there are more subsets of features to try. If so, we
select the new features and start the cluster analysis again;

• Analyze Best Clusterings: we use different visualization tools to analyze the best partitions
and the clustering process. We used PCA (Principal Component Analysis (HOTELLING,
1933)) to scatter the data in two dimensions and visualize the partitions created by the best
clusterings. Also, we used Decision Trees (BELSON, 1959) that show which features were
discriminant during each clustering process. These Decision Trees can be very insightful
for vision specialists when analyzing the clusters. The visualizations will be shown in
Section 5;

• Filter Outliers?: after analyzing the best clusterings with the visualization tools, we can
check if the outliers correspond to recordings with poor tracking during the subject’s

https://github.com/ema2159/ET_Project
https://github.com/ema2159/ET_Project
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performance. If so, we remove them from the clustering population, because, as mentioned
in Sections 4.1.1.3 and 4.1.1.4, they would not reflect a lousy child’s performance, but a
problem with the tracking itself (which is not the focus of our research);

• Describe Inferences: if the outliers do not correspond to bad recordings, there are no more
CA configurations to try, and the focus can be on finding inferences about the children’s
oculomotor system. As mentioned before, these inferences must be confirmed by a vision
specialist. Finally, the clusters should not be used to define if a child has or not an oculomotor
dysfunction but to indicate which of them should visit a doctor or perform the task again;

The exploratory analysis was conducted based on the presented pipeline, and the results
of our experiments will be explored in Section 5.
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Figure 4.9 – Correlation Matrix between all the features of the left eye data (considering all 464
recordings).

Figure 4.10 – Correlation Matrix between all the features of the right eye data (considering all
464 recordings).
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Figure 4.11 – Correlation Matrix between all the features of the both eyes data (considering all
464 recordings).
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Figure 4.12 – Parameters for each method and the values used.
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5 Results

The pipeline presented in Section 4.4 was the base for our experiments. After detecting
the eye movements (see Section 4.2) for all the recordings and saving the featured objects in the
database (see Section 4.3), we executed 3 rounds of the pipeline loop filtering outliers in order to
refine the search for probably bad children’s performances. For visualizing the clustering results,
we used two visualization tools: PCA (HOTELLING, 1933) for scattering the n-dimensional data
in two dimensions in order to see the distribution of the objects for the current subset of features
(with size n), and Decision Trees (BELSON, 1959) to see which features were responsible for
separating the clustering as presented by the current partition.

The database has 468 recordings from children for the chosen task, but 4 of them were
promptly dropped as invalid after having not even a single fixation detected in the event detection
step. The replays of these 4 recordings show some really messy time series, leading to a failed
event detection, hindering the feature engineering for these recordings. Therefore, the first round
included 464 recordings, and the results helped to find the recordings with very bad calibrations
or poor tracking during the performance (see Section 4.1.1.3 and 4.1.1.4). In this round, the
clusterings reached very good validations for Silhouette Coefficient Index (SCI). Figure 5.1 shows
a clustering example with SCI of 0.7966. The objects labeled in orange are recordings with very
bad calibrations or clearly poor tracking during the task. Figure 5.2 shows the horizontal and
vertical gaze plots of 5 examples of objects belonging to the orange group in 5.1. By analyzing
these plots and the replays, we can note that they are really inconsistent recordings regarding the
eye-tracking itself.

Figure 5.3 shows another interesting example, with noisy elements. The recordings
labeled as noise can be seen in Figure 5.4, and we can note that they all present problems with
the eye-tracking, having too many samples with eye gazes not tracked. In the green cluster, we
can find recordings that also had problems with the eye-tracker but generated similar time series
that are different from the noisy ones, as shown in Figure 5.5. Finally, Figure 5.6 shows examples
of the orange cluster aggregating recordings with relatively better performances. We can note
that the groups have similar recordings, enabling us to see some of the power of the clustering
process.

After analyzing different clustering results with good CV indexes, we filtered those
recordings generally labeled as noise or belonging to a smaller and more dispersed cluster. That
would indicate that they are different from most of the recordings, and we checked it using the
replays on C&Look, confirming the hypothesis. Then, we ended up filtering 89 recordings in the
"Filter Outliers?" step of the pipeline.

For the second round, we had 375 featured objects, which were mostly better recordings
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Figure 5.1 – Example of clustering for 464 recordings using data from the right eye. The CA
method was K-Means with k=2, and the features used were: ADB (Average Distance
Between Eyes), FC (Fixation Count), and SAMax (Maximum Saccade Amplitude).
The Silhouette Coefficient was 0.7966

in terms of eye-tracking than the recordings dropped in the first round. The feature subsets were
generated again based on the correlation between the features of the 375 featured objects. The
clustering results did not reach as good indexes as in the first round, but some good partitions
also clustered the data in interesting ways. Figure 5.7 shows an example using two features: ADB
(Average Distance Between Eyes) and SAMax (Maximum Saccade Amplitude). The green cluster
calls attention to some featured objects in terms of ADB, Figure 5.8 shows that these objects
really have time series with higher distances between the eyes. The Decision Tree shows that
ADB was the most relevant feature for this clustering process, separating most of the objects.

However, some of these recordings also had problems during the calibration step (see
Figure 5.9), so the ADB could actually be a problem with the eye-tracker. Therefore, 52 objects
were dropped out from the next round, leaving 323 valid recordings.

Now in the third round, there are no recordings with drastically bad eye-tracking, and
the best resulting clusters start to show divergences in terms of performance instead of tracking
quality. Figure 5.10 shows an example of one of the best clusterings (SCI=0.5082 for FOSC
with MinClSize=20 and Weighted Linkage Method), that used the left eye data with the features
ADTF (Average Distance to Target During Fixations), ADTR (Average Distance to Target on the
Right Side of the Screen), and AFD (Average Fixation Duration). In Figure 5.11 we can see the
Horizontal and Vertical gaze graphs for recordings belonging to the blue cluster in Figure 5.10.
We can note that the recordings have time series with similar segments that may indicate common
characteristics in the children’s oculomotor behavior. Once confirmed by a vision specialist, these
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Figure 5.2 – Horizontal and Vertical gaze plots for 5 examples of objects labeled in orange in
Figure 5.1.

characteristics could reflect the child’s difficulty following the object, fatigue, or loss of focus
and attention during the task.

To toughen the calibration quality of the recordings involved, the fourth and last round
of our experiments have used only recordings with no apparent problem during calibration,
validation, nor tracking during performance. This more rigid filtering left 265 valid recordings.
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Figure 5.3 – Example of clustering for 464 recordings using data from the left eye. The CA
method was DBSCAN with Eps=0.1 and MinClSize=5. The features used were:
AFDisp (Average Fixation Dispersion) and FC (Fixation Count). The Silhouette
Coefficient was 0.7793

Figure 5.12 shows an example of one of the best clustering results for 262 recordings. The
features use were ADB and ADT, and we can note by Figure 5.13 that the recordings clustered
together in this round also have similar time series.

Our experiments based on the pipeline illustrated the use of Event Detection, Feature
Engineering and all the concepts described in Sections 2 and 4 within the data collected with
C&Look. Despite the limitations originated mainly from the low sampling rate of the eye tracker,
we could find interesting results that divided the data in seemingly meaningful clusters. The
application and improvement of this tool must be supported by a vision specialist in order define
the best features to collect, and describe inferences from the resulting clusterings using all the
visualization tools: Scattered Data with PCA, Decision Trees, and the C&Look graphs and replays
of the recordings.

The Python code and all the best clustering results are available in the GitHub repository
<https://github.com/LuccaMartins/CnLook_Clustering>.

https://github.com/LuccaMartins/CnLook_Clustering
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Figure 5.4 – Horizontal and Vertical gaze plots for 3 examples of noisy elements in Figure 5.3.

Figure 5.5 – Horizontal and Vertical gaze plots for 3 examples of elements belonging to the green
cluster in Figure 5.3.
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Figure 5.6 – Horizontal and Vertical gaze plots for 3 examples of elements belonging to the
orange cluster in Figure 5.3.

Figure 5.7 – Example of clustering for 375 recordings using data from the right eye. The CA
method was FOSC with MinClSize=20 using the Ward’s linkage method. The
features used were: ADB (Average Distances Between Eyes) and SAMax (Maximum
Saccade Amplitde). The Silhouette Coefficient was 0.6980.
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Figure 5.8 – Horizontal and Vertical gaze plots for 5 examples of elements belonging to the blue
cluster in Figure 5.7
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Figure 5.9 – 3 examples of C&Look validation for recordings belonging to the blue cluster in
Figure 5.7
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Figure 5.10 – Example of clustering for 323 recordings using data from the left eye. The CA
method was FOSC with MinClSize=20 using the Weighted linkage method. The
features used were: ADTF (Average Distance to Target During Fixations) and
ADTR (Average Distance to Target on the Right Side of the Screen), and AFD
(Average Fixation Duration). The Silhouette Coefficient was 0.5082.
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Figure 5.11 – Horizontal and Vertical gaze plots for 4 examples of elements belonging to the
blue cluster in Figure 5.10
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Figure 5.12 – Example of clustering for 265 recordings using data from left eye. The CA method
was FOSC with MinClSize=20 and Complete Linkage Method. The features used
were: ADB and ADT. The Silhouette Coefficient was 0.5061.
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Figure 5.13 – Horizontal and Vertical gaze plots for 5 examples of elements belonging to the
blue cluster in Figure 5.12
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6 Conclusion

The eyes carry valuable information about a subject’s health condition. Assessing the
oculomotor behavior can open the way to analysis of psychological aspects, such as cognitive
skills, learning process, and brain activity (SAMADANI, 2015; HESSELS; HOOGE, 2019).
In children, impaired vision can limit scholar performance and become a hindrance to self-
development (HOPKINS et al., 2019). Early diagnosis facilitates rehabilitation and improvement
of oculomotor functions (GALLAWAY; BOAS, 2019; WILHELMSEN; FELDER, 2021), so
children’s vision care must be a primary concern (ZABA; M.A; O.D, 2011). Different stimuli
can be used to test a subject’s oculomotor system’s response, depending on the research goals.
When focusing on oculomotor skills in controlling eye movements (i.e. fixations, saccades, and
regressions), structured tasks can be a good choice. In our study, the task is to follow a moving
figure along with the screen. Therefore, the children’s performance are measured with features
that aim to reflect their ability to keep the gaze as close as possible to the target.

In order to find patterns in children’s performances, we applied Clustering Methods
within featured objects that represented the recordings. The resulting clusterings show that Event
Detection, Feature Engineering, and Cluster Analysis can be a handy way to separate the data and
highlight recordings of doubtful performances. The pipeline presented has enabled the exploratory
analysis of the data, providing many different configurations to search for meaningful partitions.
Even though we did not always have very good clustering validations, some promising results
could be achieved even for the lowest amount of 265 recordings.

Once more, expert domain support is essential for reliable inferences regarding the results.
Direct diagnosis of visual impairments is not the goal of this research. The most significant
contribution of this work is to indicate eye-tracking recordings that could reflect an impaired
oculomotor behavior. A vision specialist’s opinion must always be expected to confirm any
hypothesis inferred from the results. With the clustering framework presented and the insights
that emerged during the study, we hope to have contributed to this branch of the whole eye-tracking
research field.

6.1 Limitations and Future Works

Despite the usefulness of the clustering framework provided, it is important to elucidate
the limitations of this work.

• Eye-tracker: the bottleneck for the quality of the clustering results starts with the device
used. The Tobii Eye-Tracker 4C has a sampling rate of 90Hz, which is relatively low
compared to the most recently released eye trackers. A low sampling rate limits the accuracy
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and the details collected by the event detection algorithms, thus undermining feature
engineering. Of course, the educational bias of this study requires cheaper materials to
enable a vaster use of the C&Look tool. Nonetheless, a better eye-tracker would be a
relevant improvement for better detailing the recordings and reaching better clustering
results;

• Event Detection: the event detection algorithm used (see Section 4.2) also has its limitations.
The I-VT method identifies only fixations and saccades, losing much important information
that could be gathered if other movements were included (e.g. PSO, Smooth Pursuits).
In our case, blinks were also not detected, and they are considered to store valuable
information about the subject’s oculomotor behavior (COSTELA et al., 2014; YAMADA;
KOBAYASHI, 2018). With a more detailed event detection, other features could be created,
improving the characterization of the data;

• Number of Recordings: This work’s limitations also rely on the number of available
recordings. A more significant number of recordings for the chosen task would aggregate
more information for the clustering methods, thus probably increasing its validation metrics.

Given the limitations of our work and the possible new objectives of this research field,
some future works can be done to pursue new achievements. Some of them are cited below:

• Create a GUI for the clustering framework that could be used by non-Python specialists
(i.e. vision experts, school teachers). That would be a primary step to popularizing this
clustering tool, making it more accessible and easy to use;

• Apply different approaches for feature engineering and cluster analysis. An example would
be the use of auto-encoders (BANK; KOENIGSTEIN; GIRYES, 2020) for characterizing
the data with features that do not have a physical meaning and can show hidden patterns in
the data.

• The event detection is another issue to improve. As stated, the detection quality depends on
the quality of the eye-tracker, but different algorithms output different movement detection
for the same eye-tracking data (ZEMBLYS, 2016). Therefore, a good improvement would
be to apply feature engineering over different event detection approaches and analyze its
relevance in the clustering results. Also, designing a specific event detection algorithm for
the eye tracker used (considering its sampling rate and accuracy) could also be a worthy
contribution;

• Define new features for characterizing the data and use more sophisticated methods for the
feature selection, such as Genetic Algorithms (VAFAIE; JONG, 1997). A vision specialist
and reliable literature must sustain the choice for new features;
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• Improve the Cluster Validation for each algorithm used. As mentioned in Section 2.3.4, val-
idation metrics must be applied over compatible clustering algorithms. Therefore, another
good improvement would be to validate the clusterings taking into account the algorithm
used (i.e. use DBCV (MOULAVI et al., 2014) for DBSCAN results);
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