

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS DEPARTAMENTO DE GEOLOGIA

TRABALHO DE CONCLUSÃO DE CURSO

CARACTERIZAÇÃO PETROLÓGICA E GEOCRONOLÓGICA DOS CLORITITOS METASSOMÁTICOS E ROCHAS ASSOCIADAS DO LESTE DO QUADRILÁTERO FERRÍFERO, MG

João Paulo Faria Batista

MONOGRAFIA nº 300

Ouro Preto, dezembro de 2018

CARACTERIZAÇÃO PETROLÓGICA E GEOCRONOLÓGICA DOS CLORITITOS METASSOMÁTICOS E ROCHAS ASSOCIADAS DO LESTE DO QUADRILÁTERO FERRÍFERO, MG

FUNDAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO

Reitora

Prof.ª Dr.ª Cláudia Aparecida Marliére de Lima

Vice-Reitor

Prof. Dr. Hermínio Arias Nalini Júnior

Pró-Reitora de Graduação

Prof.^a Dr.^a Tânia Rossi Garbin

ESCOLA DE MINAS

Diretor

Prof. Dr. Issamu Endo

Vice-Diretor

Prof. Dr. Hernane Mota Lima

DEPARTAMENTO DE GEOLOGIA

Chefe

Prof. Dr. Marco Antônio Fonseca

MONOGRAFIA

Nº 300

CARACTERIZAÇÃO PETROLÓGICA E GEOCRONOLÓGICA DOS CLORITITOS METASSOMÁTICOS E ROCHAS ASSOCIADAS DO LESTE DO QUEDRILÁTERO FERRÍFERO, MG

João Paulo Faria Batista

Orientadora

Prof.ª Dr.ª Gláucia Nascimento Queiroga

Co-Orientador

Prof. Dr. Léo Afraneo Hartmann (UFRGS)

Monografia do Trabalho de Conclusão de Curso apresentado ao Departamento de Geologia da Escola de Minas da Universidade Federal de Ouro Preto como requisito parcial para avaliação da disciplina Trabalho de Conclusão de Curso – TCC 402, ano 2018/2.

OURO PRETO

2018

Universidade Federal de Ouro Preto – http://www.ufop.br Escola de Minas - http://www.em.ufop.br Departamento de Geologia - http://www.degeo.ufop.br/ Campus Morro do Cruzeiro s/n - Bauxita 35.400-000 Ouro Preto, Minas Gerais Tel. (31) 3559-1600, Fax: (31) 3559-1606

Direitos de tradução e reprodução reservados.

Nenhuma parte desta publicação poderá ser gravada, armazenada em sistemas eletrônicos, fotocopiada ou reproduzida por meios mecânicos ou eletrônicos ou utilizada sem a observância das normas de direito autoral.

Revisão geral: João Paulo Faria Batista

Catalogação elaborada pela Biblioteca Prof. Luciano Jacques de Moraes do Sistema de Bibliotecas e Informação - SISBIN - Universidade Federal de Ouro Preto

B333c Batista, João Paulo Faria. Caracterização petrológica e geocronológica dos clorititos metassomáticos e rochas associadas do leste do Quadrilátero Ferrifero, MG [manuscrito] / João Paulo Faria Batista. - 2018.
101f.: il.: color; grafs; tabs; mapas.
Orientadora: Prof^a. Dr^a. Gláucia Nascimento Queiroga. Coorientador: Prof. Dr. Léo Afraneo Hartmann.
Monografia (Graduação). Universidade Federal de Ouro Preto. Escola de Minas. Departamento de Geologia.
1. Petrologia. 2. Geocronologia. 3. Rochas ultramáficas. I. Queiroga, Gláucia Nascimento. II. Hartmann, Léo Afraneo. III. Universidade Federal de Ouro Preto. IV. Titulo.

CDU: 552:550.93

Catalogação: ficha.sisbin@ufop.edu.br

Trabalho de Conclusão de Curso, n. 300, 104p. 2018.

Ficha de Aprovação

TRABALHO DE CONCLUSÃO DE CURSO

TÍTULO: Caracterização petrológica e geocronológica dos clorititos metassomáticos e rochas associadas do leste do Quadrilátero Ferrífero, MG

AUTOR: JOÃO PAULO FARIA BATISTA

ORIENTADORA: Profa. Dra. Gláucia Nascimento Queiroga

Aprovada em: 11 de dezembro de 2018

BANCA EXAMINADORA:

Profa. Dra. Gláucia N. Queiroga

Glavaia N. dvinga

DEGEO/UFOP

DEGEO/UFOP

Prof. MSc. Edison Tazava

MSc. Lucas Pereira Leão

Vaza	va
0	
0	1

DEGEO/UFOP

Ouro Preto, 11/12/2018

Agradecimentos

Primeiro, agradeço à Deus por ter me concedido saúde e perseverança para alcançar este sonho, e maturidade para aprender com as dificuldades que se apresentaram até então. Sou grato aos meus pais, Vanusa e João Batista, e à minha avó, Maria Penha, pela dedicação incondicional e educação dada ao longo dos anos, o que foi essencial para minha formação pessoal. À minha mãe, reservo gratidão especial por ter tornado meus objetivos realidade, sempre me incentivando e validando sua confiança em minhas persistência e capacidade. E à minha namorada Graziela, pelo carinho e companheirismo absolutos, e compreensão plena de minha ausência pelo tempo dedicado aos estudos.

À professora Gláucia Queiroga pela dedicação, confiança e amizade, não apenas como orientadora, mas como pessoa e educadora. Aos professores que se comprometeram a mim, não somente por terem me ensinado, mas por terem me feito aprender o caráter e a afetividade necessários a um profissional, principalmente à professora Juldete Virgilia Belém, por enxergar em mim faculdades antes pouco evidentes. E ao professor Léo Hartamnn pela orientação e colaboração dedicadas a este trabalho.

Por fim, agradeço às poucas, mas sinceras amizades que construí durante a graduação pelo apoio e experiências insubstituíveis. À Universidade Federal de Ouro Preto (UFOP) e todos os seus colaboradores pelo esforço e trabalho que proporcionaram um ensino superior de qualidade; em especial ao Laboratório de Microscopia e Microanálises (LMIc) do DEGEO/UFOP, integrante da Rede de Microscopia de Minas Gerais (FAPEMIG-BRASIL), pela disponibilização das instalações. E ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela bolsa de iniciação científica que possibilitou o desenvolvimento deste trabalho.

SUMÁRIO

AGRADECIMENTOS SUMÁRIO LISTA DE FIGURAS LISTA DE TABELAS RESUMO	ixix xi xiii xvii xvii xvii xix
1.1 APRESENTAÇÃO	
1.2 LOCALIZAÇÃO E VIAS DE ACESSO	
1.3 OBJETIVOS	
1.4 NATUREZA DO PROBLEMA	
1.5 METODOLOGIA	
1.5.1 Revisão bibliográfica	5
1.5.2 Trabalhos de campo	5
1.5.3 Trabalhos de laboratório	5
1.6 ORGANIZAÇÃO DO VOLUME DE TCC	
2 GEOLOGIA REGIONAL	
2.1 INTRODUÇÃO	
2.2 QUADRILÁTERO FERRÍFERO	
2.2.1 Arcabouço estrutural	
2.2.2 Evolução do metamorfismo	
2.2.3 Unidades litoestratigráficas	
3 ESTADO DA ARTE - METASSOMATISMO	
3.1 INTRODUÇÃO	
3.2 FLUIDOS METAMÓRFICOS E METASSOMÁTICOS	
3.2.1 Fluidos metamórficos	
3.2.2 Fluidos metassomáticos	
3.3 METASSOMATISMO EM ROCHAS ULTRAMÁFICAS	
3.3.1 Rochas metassomáticas no Quadrilátero Ferrífero	
3.4 GEOCRONOLOGIA DE EVENTOS METASSOMÁTICOS	
4 CARACTERIZAÇÃO PETROGRÁFICA, GEOQUÍMICA E GEOCRO DOS CLORITITOS METASSOMÁTICOS	NOLÓGICA 27
4.1 INTRODUÇÃO	
4.2 DESCRIÇÃO MACRO E MICROSCÓPICA DAS AMOSTRAS	

4.3 QUÍMICA MINERAL	
4.3.1 Clorita – Chl	
4.3.2 Flogopita – Phl	
4.3.3 Clinoanfibólio – Hbl	
4.3.4 Talco – Tlc	
4.3.5 Plagioclásio – Pl	
4.3.6 Biotita – Bt	
4.4 ANÁLISE ISOTÓPICA U-Pb E D ZIRCÃO	ETERMINAÇÃO DOS ELEMENTOS TRAÇOS EM 75
4.4.1 Datação U-Pb em zircão	
4.4.2 Análises isotópicas Lu-Hf em	zircão
4.4.3 Química de elementos traços	em zircão81
5 DISCUSSÃO E CONCLUSÃO REFERÊNCIAS BIBLIOGRÁFICAS	
APÊNDICE A	
APÊNDICE B	

INDÍCE DE FIGURAS

Figura 1.1: Localização da Pedreira Barroca - Mariana (MG)
Figura 2.1: Mapa geológico simplificado do Quadrilátero Ferrífero modificado de Farina et al.
(2016), Alkmin & Marshak (1998) e Dorr II (1969) 10
Figura 2.2: Coluna estratigráfica do Quadrilátero Ferrífero modificado de Farina et al. (2016),
Alkmim & Marshak (1998) e Dorr II (1969) 15
Figura 2.3: Diagrama da evolução magmática do embasamento cristalino do QF baseada em Martin et
al. (2014) e Turner et al. (2014)
Figura 2.4: Evolução geodinâmica Neoarqueana do Quadrilátero Ferrífero, modificado de Dopico et
<i>al.</i> (2017)
Figura 3.1: Relação de alteração de <i>blackwall</i> descrita por Roeser (1987)
Figura 4.1: Alteração de blackwall que ocorre no contato entre a intrusão ultramáfica e o xenólito
félsico
Figura 4.2: Relação de alteração de <i>blackwall</i> descrita em campo (Pedreira Barroca)
Figura 4.3: Litotipos identificados na área de estudo: biotita gnaisse e talco granofels
Figura 4.4: Fotomicrografias selecionadas do cloritito (amostra AM-01)
Figura 4.5: Fotomicrografias selecionadas do hornblenda granofels (amostra AM-02)
Figura 4.6: Fotomicrografias selecionadas do talco granofels (amostra AM-04)
Figura 4.7: Fotomicrografias selecionadas do meta-tonalino (amostra AM-05)
Figura 4.8: Fotomicrografias selecionadas do gnaisse (amostra AM-03) 40
Figura 4.9: Representação dos campos analisados em cada lâmina
Figura 4.10: Imagens de elétrons retroespalhados referentes aos campos Sit_7 (imagens A e B), Sit_8
(imagem C), Sit_10 (imagem D) e Sit_X (imagem E) da lâmina AM-01 – cloritito 44
Figura 4.11: Imagens de elétrons retroespalhados referentes aos campos Sit_4 (imagens A e B), Sit_5
(imagem C) e Sit_6 (imagem D) da lâmina AM-02 – hornblenda granofels
Figura 4.13: Imagens de elétrons retroespalhados referentes aos campos Sit_1 (imagem A), Sit_2
(imagem B) e Sit_3 (imagem C) da lâmina AM-05 – meta-tonalito
Figura 4.14: Classificação de Ca-anfibólios segundo Leake et al. (1997)
Figura 4.15: (A) Evolução dos resultados analíticos quanto aos end menbers anortita (An), albita (Ab)
e ortoclásio (Or) para o plagioclásio (Pl) do campo Sit_8 do cloritito (AM-01); e (B) diagrama ternário
para as mesmas análises
Figura 4.16: (A) Evolução dos resultados analíticos quanto aos end menbers anortita (An), albita (Ab)
e ortoclásio (Or) para o plagioclásio (Pl) do campo Sit_6 do hornblenda granofels (AM-02); e (B)
diagrama ternário para as mesmas análises

Figura 4.17: Mapa químico quantitativo que aponta o zoneamento composicional do plagioclásio (Pl)
do campo Sit_8 do cloritito (AM-01)55
Figura 4.18: Imagem por catodoluminescência (CL) dos grãos de zircão do cloritito (AM-01)76
Figura 4.19: Imagem por catodoluminescência (CL) dos grãos de zircão do hornblenda granofels
(AM-02)
Figura 4.20: Imagem por elétrons retroespalhados (BSE) de grãos de zircão coletados no cloritito
(AM-01)
Figura 4.21: Imagem por elétrons retroespalhados (BSE) de grãos de zircão coletados no hornblenda
granofels (AM-02)
Figura 4.22: Diagrama discórdia para a amostra AM-01 resultante das análises via SHRIMP. Nele o
intercepto superior é 2812,7 \pm 6 Ma e o inferior 513 \pm 29 Ma
Figura 4.23: Diagrama discórdia para a amostra AM-01 resultante das análises via LA-ICP-MS. Nele
os interceptos superiores são 2994,4 \pm 5,3 Ma e 2841,6 \pm 4,8 Ma e os inferiores 468 \pm 13 Ma e 534 \pm
15 Ma
Figura 4.24: Diagrama discórdia para a amostra AM-02 resultante das análises via SHRIMP. Nele
intercepto superior é 2805 \pm 9 Ma e inferior 474 \pm 45 Ma
Figura 4.25: Diagrama discórdia para a amostra AM-02 resultante das análises via LA-ICP-MS. Nele
o intercepto superior é 2748,6 \pm 2,4 Ma e o inferior 612 \pm 2.3 Ma
Figura 4.26: Diagrama Idade U-Pb vs. EHf (t) acusando a proveniência crustal dos grãos de zircão,
com alguma influência mantélica para AM-01
Figura 4.27: Diagrama Yb vs. U, segundo Albert <i>et al.</i> (2016) e Grimes <i>et al.</i> (2017)
Figura 5.1: Evolução geológica da área de estudo, esclarecendo quanto às fases de intrusão da rocha
metaultramáfica e a formação do <i>blackwall</i> no xenólito tonalítico

ÍNDICE DE TABELAS

Tabela 1.1: Cronograma de atividades necessárias à produção do Trabalho de Conclusão de Curso 4
Tabela 1.2: Compilação das amostras estudadas e análises associadas. 6
Tabela 2.1: Compilação de dados geocronológicos do Quadrilátero Ferrífero (MG) 14
Tabela 4.1: Relação de lâminas, campos, minerais e pontos analisados
Tabela 4.2: Resultados analíticos para a clorita (Chl) do campo Sit_10 do cloritito (AM-01)
Tabela 4.3: Resultados analíticos para a clorita (Chl) do campo Sit_X do cloritito (AM-01)
Tabela 4.4: Resultados analíticos para a clorita (Chl) do campo Sit_4 do hornblenda granofels (AM-
02)
Tabela 4.5: Resultados analíticos para a clorita (Chl) do campo Sit_5 do hornblenda granofels (AM-
02)
Tabela 4.6: Resultados analíticos para a clorita (Chl) do campo Sit_1 do talco granofels (AM-04) 60
Tabela 4.7: Resultados analíticos para a clorita (Chl) do campo Sit_2 do talco granofels (AM-04) 61
Tabela 4.8: Resultados analíticos para a flogopita (Phl) do campo Sit_10 do cloritito (AM-01)
Tabela 4.9: Resultados analíticos para a flogopita (Phl) do campo Sit_X do cloritito (AM-01). 64
Tabela 4.10: Resultados analíticos para a hornblenda (Hbl) do campo Sit_4 do hornblenda granofels
(AM-02)
Tabela 4.11: Resultados analíticos para a hornblenda (Hbl) do campo Sit_5 do hornblenda granofels
(AM-02)
Tabela 4.12: Resultados analíticos para a hornblenda (Hbl) do campo Sit_3 do meta-tonalito (AM-
03)
Tabela 4.13: Resultados analíticos para o talco (Tlc) do campo Sit_1 do talco granofels (AM-04) 69
Tabela 4.14: Resultados analíticos para o talco (Tlc) do campo Sit_2 do talco granofels (AM-04) 69
Tabela 4.15: Resultados analíticos para a plagioclásio (Pl) do campo Sit_7 do cloritito (AM-01) 70
Tabela 4.16: Resultados analíticos para a plagioclásio (Pl) do campo Sit_8 do cloritito (AM-01). Com
base nestes resultados, foi gerado mapa químico quantitativo (Figura 4.17)
Tabela 4.17: Resultados analíticos para a plagioclásio (Pl) do campo Sit_6 do hornblenda granofels
(AM-02)
Tabela 4.18: Resultados analíticos para a plagioclásio (Pl) do campo Sit_1 do meta-tonalito (AM-05).
Tabela 4.19: Resultados analíticos para a plagioclásio (Pl) do campo Sit_2 do meta-tonalito (AM-05).
Tabela 4.20: Resultados analíticos para a biotita (Bt) do campo Sit_3 do meta-tonalito (AM-05) 75
Tabela 4.21: Resultados analíticos dos elementos maiores e traços de zircões do cloritito (AM-01). 83

Tabela 4.22:	Resultados	analíticos o	dos element	os maiores	e traços de	e zircões do	hornblenda	granofels
(AM-02)								

Resumo

Alteração de blackwall é o resultado de reações metamórficas de desequilíbrio por ação de fluidos metassomáticos, que promovem a mudança generalizada da composição química da rocha, ou de parte dela, no estado sólido. No leste do Quadrilátero Ferrífero, *blackwall* se forma na zona de contato entre rochas de composição contrastante, e é predominantemente constituído por clorita, flogopita e hornblenda magnesiana. O cloritito de blackwall da Pedreira Barroca, distrito de Mariana, ocorre no contato entre o granofels ultramáfico da base do Supergrupo Rio das Velhas com um xenólito tonalítico do Complexo Santa Bárbara. Análises químicas em microssonda eletrônica JEOL – JXA 8230 (UFOP) e descrições petrográficas de duas amostras (AM-01 e AM-02) indicam fácies anfibolito inferior e metassomatismo por difusão e infiltração assistidos por fluidos. A amostra AM-01 foi coletada próxima ao xenólito e a amostra AM-02 mais afastada. AM-01 mostra microestrutura decussada, assembleia mineral enriquecida em Al composta por Mg-clorita + flogopita \pm talco \pm plagioclásio. Os porfiroclastos de plagioclásio apresentam zoneamento normal, ricos em Ca no núcleo, e são remanescentes do xenólito félsico. AM-02, também de microestrutura decussada, mostra paragênese mineral enriquecida em Mg e Ca e composta por Mg-hornblenda + Mg-clorita + flogopita \pm talco \pm plagioclásio. Zircão é acessório comum em ambas as amostras. Análises petrográficas também foram realizadas em amostras do gnaisse Santa Bárbara (AM-03), do granofels ultramáfico (AM-04) e do xenólito tonalítico (AM-05). Exames geocronológicos U-Pb via LA-ICP-MS e SHRIMP foram respectivamente realizados nos laboratórios do DEGEO/UFOP e da University Western Australia. Grãos subédricos e metassomatizados conduziram as análises a dois alvos: (i) áreas hidrotermalizadas e (ii) não hidrotermalizadas. Os clusters de idades SHRIMP obtidos para AM-01 e AM-02, nesta ordem, mostram interceptos inferior e superior bem definidos: 513 ± 29 Ma e 2812,7 \pm 6 Ma (n = 9, MSWD = 4,0), e 474 ± 45 Ma e 2805 ± 9 Ma (n = 9, MSWD = 20). Análises Lu-Hf mostram \mathcal{E}_{Hf} entre -5,08 e +1,15 para AM-01 e -6,48 a -4,35 para AM-02, típicos de crosta continental. O conjunto de dados evidencia que o blackwall se originou a partir do xenólito félsico com contribuição química gradativa da rocha ultramáfica. As idades U-Pb evidenciadas no diagrama discórdia apontam para uma origem dos protólitos do tonalito e do granofels ultramáfico no Arqueano e para um evento metamórfico no Cambriano-Ordoviciano associado a pulsos hidrotermais responsável pelo metassomatismo.

Palavras-chave: blackwall, cloritito, metassomatismo, Quadrilátero Ferrífero.

Abstract

Blackwall alteration is the result of metamorphic reactions by metasomatic fluids which promote chemical changes in solid rocks. In the eastern part of the Quadrilátero Ferrífero, blackwall forms at the contact zones between rocks of contrasting compositions, and are predominantly constituted by chlorite, phlogopite and Mg-hornblende. The blackwall chloritite of the Barroca Quarry, Mariana district, occurs at the contact of an ultramafic granofels of the Rio das Velhas Supergroup and a tonalite xenolith of the Santa Bárbara Complex. Electron microprobe chemical analyses and petrographic descriptions of two samples (AM-01 and AM-02) indicate low amphibolite facies and diffusion metassomatism with fluid-assisted mass infiltration. Sample AM-01 was collected close to the felsic xenolith and AM-02 more distant towards the metaultramafic rock. AM-01 shows decussate microstructure and Al-enriched mineral assemblage composed of Mg-chlorite + phlogopite \pm talc \pm plagioclase. The plagioclase porphyroclasts show normal zoning, with Na content increasing toward the rims, remnants of the felsic xenolith. AM-02, also of decussate microstructure, shows mineral assemblage enriched in Mg and Ca composed of Mg-hornblende + Mg-chlorite + phlogopite \pm talc \pm plagioclase. Zircon is a common accessory in both samples. Samples of the Santa Bárbara gneiss (AM-03), ultramafic granofels (AM-04) and tonalite xenolith (AM-05) were also described. U-Pb geochronological data by LA-ICP-MS and SHRIMP were respectively carried out in the laboratories of DEGEO/UFOP and University Western Australia. Subhedral and metassomatized grains led to analyses of two targets: (i) hydrothermal and (ii) non-hydrothermal areas. The clusters of SHRIMP ages obtained for AM-01 and AM-02 samples, in this order, show well-defined lower and upper intercepts at 513 \pm 29 Ma and 2812.7 \pm 6 Ma (n = 9, MSWD = 4.0), and 474 \pm 45 Ma and 2805 \pm 9 Ma (n = 9, MSWD = 20). Lu-Hf analyses show \mathcal{E}_{Hf} between -5.08 and +1.15 for AM-01 and -6.48 to -4.35 for AM-02, typical of continental crust. The dataset evidences the origin of the blackwall from the Archean tonalite xenolith with the metasomatic contribution of chemical elements from the metaultramafic rock. The U-Pb data point to Archean origin of the tonalite and ultramafic protholits and for a Cambrian-Ordovician metamorphic event related to hydrothermal pulses responsible for the metasomatic overprinting.

Keywords: chloritite, blackwall, metasomatism, Quadrilátero Ferrífero.

CAPITULO 1

1.1 APRESENTAÇÃO

O destaque reservado ao estudo de rochas de filiação ultramáfica se deve às suas implicações de cunho acadêmico no tocante à evolução tectônica da Terra e ao conhecimento de seu interior, visto que, em sua maioria, são manto derivadas (Bucher & Frey 2013, Winter 2014). No Quadrilátero Ferrífero, rochas metaultramáficas compõem a base do *greenstone belt* Rio das Velhas (Dorr II 1969, Ladeira 1980, Ladeira & Roeser 1983) e são em geral descritas como esteatitos, serpentinitos e talco-xistos, cuja rara preservação de textura *spinifex* em estrutura *pillow* corrobora a assertiva por protólitos ígneos ultramáficos, e atesta, em parte, sua composição komatiítica extrusiva.

Segundo Farndon (2006) e Pellant (2002), rochas ultramáficas são rochas ígneas e meta-ígneas de cor escura e ricas em minerais contendo altos teores de MgO (>18%) e FeO (minerais máficos – 90%) e têm conteúdo relativamente baixo de SiO₂ (<45%). A maioria dessas rochas ocorrem expostas em cinturões orogenéticos e complexos ofiolíticos, onde são observadas rochas derivadas do manto profundo.

Via de regra, rochas ultramáficas têm mineralogia essencialmente anidra e sensível a metamorfismo, e composição química contrastante às das rochas com que estão em contato. Tais aspectos viabilizam a alta reatividade dessas rochas quando submetidas às condições físicas diferentes daquelas vigentes à época de sua formação (Strieder 1992). Assim, o contraste químico, quando em metamorfismo, permite que a rocha, ou parte dela, tenha sua composição alterada de maneira generalizada, pela introdução e/ou remoção de elementos, caracterizando o metassomatismo (Zharikov *et al.* 2007).

Isto posto, o presente trabalho expõe a caracterização petrológica e estudos geocronológicos de ocorrência metassomática em rochas metaultramáficas no leste do Quadrilátero Ferrífero a partir de estudo local realizado no distrito Barroca (Mariana, MG), a fim de contribuir para o entendimento da evolução geológica regional e para o avanço do conhecimento neste ramo das geociências.

Este Trabalho de Conclusão de Curso, orientado pela Prof^a. Dr^a. Gláucia Nascimento Queiroga (UFOP) e co-orientado pelo Prof. Dr Léo Afraneo Hartmann (UFRGS) no segmento de Petrologia Metamórfica, expõe dados e resultados obtidos em paralelo ao projeto de Iniciação Científica fruto da cooperação institucional entre os grupos de pesquisa da Universidade Federal de Ouro Preto (UFOP) e da Universidade Federal do Rio Grande do Sul (UFRGS), nesta ordem liderados pela orientadora e

pelo coorientador desse trabalho. Tal cooperação, por sua vez, elabora o artigo "Archean tonalite magmatism and Cambrian blackwall metassomatism in evolution of Barroca chloritites, *Quadrilátero Ferrífero*", por Queiroga *et al.*, que será submetido ao periódico internacional *Precambrian Research* (Qualis A1), no qual o discente é um dos co-autores. Ressalta-se que este TCC representa a continuidade de uma bolsa PIBIC-CNPq-UFOP de iniciação científica e, que de posse de todos os dados obtidos durante 2017-2018, foi publicado o resumo para o 49° Congresso Brasileiro de Geologia, realizado no Rio de Janeiro em agosto de 2018, do qual o bolsista é o segundo autor (Anexo A).

1.2 LOCALIZAÇÃO E VIAS DE ACESSO

A área de estudo localiza-se no distrito de Barroca (Mariana, MG). De coordenada 684.066/7.744.932 (Datum WGS84), pertence à Viamar Mineração LTDA (processo DNPM 823.101/2006), sendo uma pedreira de esteatito para rocha ornamental.

O acesso à Pedreira Barroca se dá, partindo de Ouro Preto em direção a Mariana, pela BR-356 (Rod. Dos Inconfidentes) e, em seguida, pela MG-262 (Rod. Luís Martins Soares) por aproximadamente 38 km, até a entrada à direita para o Distrito Barroca em via não pavimentada. A partir daí são 2 km até a portaria da Viamar Mineração LTDA (Figura 1.1).

Figura 1.1: Localização da Pedreira Barroca em imagem de satélite retirada e modificada do *software Google Earth Pro*. Em vermelho está destacado o caminho descrito acima, partindo de Mariana, MG, e no canto inferior direito há o detalhe da área de estudo.

1.3 OBJETIVOS

O objetivo central deste trabalho é caracterizar, à luz de estudos petrológicos e geocronológicos, uma ocorrência de metassomática no leste do Quadrilátero Ferrífero (QF), a fim de melhor entender a petrogênese das rochas de filiação ultramáfica envolvidas e implicações relacionadas. Tais estudos tiveram ênfase nos litotipos da base do Supergrupo Rio das Velhas e nas rochas associadas do embasamento cristalino. De modo específico, o objetivo baseia-se em:

- Descrição detalhada das paragêneses minerais e microestruturas das rochas metamórficas e metassomáticas associadas em escalas macro e microscópicas;
- · Análise de química mineral e confecção de mapas químicos em minerais zonados;
- Estudos geocronológicos de isótopos U-Pb e Lu-Hf em zircão visando à determinação da origem dos grãos e a datação da idade do metassomatismo;
- Compilação e interpretação dos resultados obtidos em todas as fases para caracterização do metassomatismo no QF, assim como do contexto em que se formou.

1.4 NATUREZA DO PROBLEMA

O termo metamorfismo foi originalmente utilizado por James Hutton em sua obra *Theory of the Earth* (1795) ao explicar a gradativa transformação, em estado sólido, de sedimentos para rochas recristalizadas, com mudanças texturais e mineralógicas. De uma maneira simplificada, o referido termo diz respeito aos processos de transformação por meio dos quais, em resposta a condições novas, uma rocha originalmente formada em um ambiente ígneo ou sedimentar recristaliza-se para produzir uma rocha metamórfica. Normalmente esse processo é isoquímico; havendo modificações químicas o processo é dito metassomático. No metassomatismo, a composição química da rocha é modificada de forma extensa durante a recristalização, usualmente ocorrendo: (i) onde soluções quentes podem circular livremente pelas rochas, dissolvendo algumas substâncias e precipitando outras, ou (ii) onde camadas adjacentes são de composição química contrastante, reagindo entre si na interface (Harlov & Austrheim 2013).

Nesse contexto, as rochas de filiação ultramáfica têm destaque. Estas rochas são constituídas por mineralogia essencialmente anidra e de composição química contrastante à maioria das rochas da crosta, sendo muito reativas quando submetidas às condições físicas diferentes daquelas vigentes à época de sua formação (Strieder, 1992). Assim, quando em metamorfismo, o contraste químico permite a formação da denominada **alteração de** *blackwall* (Harlov & Austrheim 2013), que se trata do resultado de reações metamórficas de desequilíbrio por ação de fluidos metassomáticos. O *blackwall*, portanto, se forma no contato entre rochas de composições muito contrastantes, félsica e ultramáfica, e comumente é constituído por clorita, biotita e anfibólio (Frost 1975).

A partir do exposto acima, percebeu-se o potencial de estudo da alteração de *blackwall* na região leste do Quadrilátero Ferrífero, mais especificamente entre os municípios de Ouro Preto e Mariana, onde existem clorititos metassomáticos formados no contato entre intrusões ultramáficas, pertencentes à base do Supergrupo Rio das Velhas (Alkmim & Marshak 1998, Lana *et al.* 2013) e gnaisses félsicos e meta-tonalitos atribuídos ao Complexo Santa Bárbara (Fonseca 2017). Poucos estudos quanto a petrologia dessas alterações foram realizados por Jordt-Evangelista (1984) e Roeser (1979), trazendo, dominantemente, uma descrição petrográfica macro e microscópica e algumas análises químicas. Dessa forma, esse trabalho pretende trazer uma contribuição petrológica e geocronológica mais robusta, visto que esses clorititos metassomáticos são o repositório de significativas informações sobre a evolução do Quadrilátero Ferrífero. Essa decodificação pode ser feita pelos métodos utilizados nesse TCC.

1.5 METODOLOGIA

O seguinte roteiro metodológico, dividido em 3 etapas (revisão bibliográfica, trabalhos de campo e trabalhos de laboratório), foi adotado neste TCC. A Tabela 1.1 apresenta o cronograma de atividades desenvolvidas sistematicamente para o cumprimento de todas as etapas que serão descritas a seguir.

Cronograma	Mês					
Atividades (relacionadas na metodologia de estudo)	1	2	3	4	5	6
Pesquisa acerca da geologia regional e modelos geotectônicos	Х	х	х	х	х	х
Realização de trabalho de campo		Х				
Descrição de lâminas delgadas			х	х		
Obtenção e tratamento dos dados de microssonda eletrônica					х	Х
Compilação e interpretação de dados geocronológicos	Х	Х	х	х		
Auxílio na redação do artigo internacional		Х	х			
Redação da monografia				х	х	х
	7	8	9	10	11	12
Pesquisa acerca da geologia regional e modelos geotectônicos	Х	х	х			
Realização de trabalho de campo	Х					
Descrição de lâminas delgadas	Х					
Tratamentos dos dados de microssonda eletrônica		Х				
Redação da monografia e apresentação		х	х			
Apresentação da monografia				X	Х	Х

Tabela 1.1: Cronograma de atividades necessárias à produção do Trabalho de Conclusão de Curso.

1.5.1 Revisão bibliográfica

Consistiu na pesquisa detalhada sobre rochas de filiação ultramáfica e processos metamórficometassomáticos, a fim de compreender a gênese de metassomatitos relacionados, e no estudo sobre métodos de geocronologia em zircão e microanálises, estes voltados ao procedimento básico de operação e funcionamento de uma microssonda eletrônica. Além disso, foram pesquisados diversos trabalhos a respeito da geologia da região, incluindo contexto geotectônico e metamorfismo.

1.5.2 Trabalhos de campo

Os trabalhos de campo se basearam no reconhecimento regional das litologias tipo da porção inferior do Supergrupo Rio das Velhas e do embasamento cristalino, assim como da evolução do metamorfismo no Quadrilátero Ferrífero entre as localidades de Pedreira de Acaiaca – MG e Distrito Bandeirantes – MG. Além disso, principalmente, realizou-se o estudo detalhado local da ocorrência metassomática de filiação ultramáfica da Pedreira Barroca, cujas amostras foram laminadas e submetidas à análise de química mineral e geocronologia U-Pb e Lu-Hf, descritas a seguir.

1.5.3 Trabalhos de laboratório

1.5.3.1 Descrição microscópica de amostras

Das amostras previamente selecionadas a partir de descrição e classificação macroscópicas, foram confeccionadas 5 lâminas delgadas, cuja análise petrográfica (mineralogia, microestrutura e composição modal) foi realizada em microscópio petrográfico de polarização LEICA por luz transmitida. A descrição ainda contou com a captura de fotomicrografias representativas de paragêneses e microestruturas pela câmera AxioCam Erc5s acoplada a um microscópio petrográfico ZEISS, procedimento realizado no Laboratório de Microscopia da Pós-Graduação do DEGEO/UFOP. As abreviações minerais contidas nas fotomicrografias estão de acordo com a padronização internacional proposta por Whitney & Evans (2010). As principais informações acerca das lâminas descritas estão sumarizadas na Tabela 1.2 e as descrições estão expostas na seção Descrição de Amostras do Capítulo 4.

				Análises					
Amostra	Localização	Litotipo	Unidade	Lâmina	Química Mineral	U-Pb SHRIMP	U-Pb LA- ICP-MS	Lu-Hf	
10-MA	Pedreira Barroca	Cloritito	-	х	х	х	х	х	
AM-02	Pedreira Barroca	Hornblenda granofels	-	х	х	х	х	х	
AM-03	Pedreira Barroca	Biotita gnaisse	Complexo Santa Bárbara	х					
AM-04	Pedreira Barroca	Talco granofels	Supergrupo Rio das Velhas	x	X				
AM-05	Pedreira Barroca	Meta-tonalito	Complexo Santa Bárbara	х	х				

Tabela 1.2: Compilação das amostras estudadas e análises associadas.

1.5.3.2 Microssonda eletrônica

As microanálises de anfibólio, clorita, flogopita, plagioclásio e talco foram realizadas no Laboratório de Microscopia e Microanálises (LMic) do DEGEO/UFOP com microssonda eletrônica JEOL JXA-8230. O feixe de elétrons foi definido em tensão de 15 kV, corrente de 20 nA e *spot size* de 2-5 µm. As correções de matriz ZAF (Z – correção de número atômico; A – correção de absorção; F – correção de fluorescência) foram aplicadas. Tempos de contagem nos picos/*background* foram 10/5 s para todos os elementos (Na, Si, Al, Mg, Fe, Cr, Ti, Ca, Ni, K, Mn), exceto para o Ba (30/15 s). Anfibólio e plagioclásio foram analisados ao longo de perfis transgranulares, e clorita, flogopita e talco por poucos pontos no núcleo e nas bordas. Erros analíticos estão entre 0,19 e 1,03%. O teor total de ferro obtido por microssonda eletrônica foi considerado como FeO.

As fórmulas minerais foram calculadas com base em 23 oxigênios equivalentes para o anfibólio (com estimativas de Fe⁺³, Leake *et al.* 1997) e 28 oxigênios equivalentes para a clorita (Deer *et al.* 1992) pelo software MINPET 2.02. Para os feldspatos, a fórmula geral foi obtida com base em 8 oxigênios utilizando uma planilha do *Microsoft*® *Office* Excel 2016.

Mapas químicos de plagioclásio também foram obtidos por microssonda eletrônica a fim de ilustrar os zoneamentos minerais. Condições de operação foram 15 kV, 20 nA e 20 ms por *spot*. Todos os elementos considerações aqui (Si, Al, Fe, Mg, Mn, Ca, Ti) foram analisados por *Wavelenght Dispersion Spectroscopy* (WDS). Os mapas mostram as distribuições quantitativas de elementos.

A química de zircões foi realizada no Laboratório de Geocronologia do DEGEO/UFOP via *Laser Ablation Inductively Coupled Plasma Mass Spectrometry* (LA-ICP-MS) para elementos traços (Sr, Y, Nb, Ba, Ta, Th, U). Para detalhes operacionais, ver Geocronologia – Isótopos U-Pb e Lu-Hf.

1.5.3.3 Geocronologia – isótopos U-Pb e Lu-Hf em zircão

A preparação das amostras, responsabilidade do LoPAG do DEGEO/UFOP, se deu por cominuição em britador de mandíbula e moinho a disco, e sucessivo bateamento para concentração dos grãos de zircão. Com o auxílio de lupa binocular, cerca de 200 grãos de zircão foram manualmente pinçados, colados em fita adesiva e cobertos por resina. Por fim, para obtenção de imagens em Microscópio Eletrônico de Varredura (JEOL JSM-6510), a montagem foi polida e metalizada com carbono. Foram obtidas imagens de catodoluminescência (CL) e de elétrons retro-espalhados (BSE) no Laboratório de Microscopia e Microanálises (LMIc) do DEGEO/UFOP.

A datação dos grãos de zircão foi realizada no Laboratório de Geocronologia do DEGEO/UFOP via LA-ICP-MS, nesta ordem CETAC LSX-213 G2+ e ThermoScientifc[™] ELEMENT 2, segundo a metodologia de Gerdes & Zeh (2006, 2009). A calibração foi realizada usando o *standard* GJ-1 (Jackson *et al.* 2004).

Análises de isótopos U-Pb também foram realizadas via SHRIMP (*Sensitive High Mass Resolution Ion Micropobe*) na *University of Western Australia*. A preparação, a princípio, consistiu na separação magnética e na retirada da fração magnética de cada concentrado. Cerca de 60 grãos não magnéticos foram manualmente retirados de cada concentrado, colados em fita adesiva e envolvidos por Epoxy na confecção de pastilhas. Após secar e curar, a montagem foi polida com lixas de papel e pó de diamante e, em seguida, metalizada com carbono para obtenção de imagens por MEV *Tescan Vega 3*. Foram obtidas imagens BSE, que permitem detectar as áreas metassomatizadas e visualizar a estrutura interna do zircão. O processamento de dados e os diagramas de concórdia foram realizados, respectivamente, nos softwares Squid 2.5 (Ludwig 2009) e Isoplot 3.75 (Ludwig 2012).

1.5.3.4 Tratamento e análise de dados

Os dados obtidos por química mineral e geocronologia foram tratados pelos *softwares Microsoft*® *Office* Excel 2016, Origin 6.1 e Minpet 2.02, sendo os dois primeiros utilizados, nesta

ordem, para confecção de diagramas binários e ternários e o último para a classificação mineral e cálculo de fórmula geral. Mapas foram confeccionados via ArcGis 9.3 e 10.1, e as imagens editadas via CorelDraw® 2016, Power Point 2016 e QGis 2.18 Las Palmas.

1.6 ORGANIZAÇÃO DO VOLUME DE TCC

O Trabalho de Conclusão de Curso é estruturado segundo o modelo admitido pela Universidade Federal de Ouro Preto/Escola de Minas, referente às disciplinas TCC401 e TCC402 da grade curricular obrigatória do curso de Engenharia Geológica.

O Capítulo 1 apresenta este estudo e, ao relatar os objetivos e a natureza do problema, visa justificá-lo. Por meio da metodologia, trata com detalhe dos procedimentos gerais e das principais variáveis de cada método de trabalho, de forma a assegurar a integridade e a reprodução dos dados aqui apresentados.

O Capítulo 2 faz um apanhado geral da geologia regional do Quadrilátero Ferrífero, no contexto geotectônico do Cráton São Francisco, conferindo ênfase às rochas metaultramáficas do Supergrupo Rio da Velhas e aos terrenos arqueanos granito-gnáissicos na descrição das unidades litoestratigráficas e abordando alguns modelos de evolução tectônica.

O Capítulo 3 descreve o estado da arte sobre metassomatismo, pormenorizando conceitos e destacando estudo de caso do Quadrilátero Ferrífero. Ênfase é dada aos fluidos metamórficos e metassomáticos, com o intuito de melhor caracterizá-los e permitir um entendimento mais simples acerca da formação da alteração de *blackwall*.

O Capítulo 4 apresenta os dados obtidos ao longo do projeto de iniciação científica e de construção deste volume de TCC: descrição macro e microscópica das amostras, química mineral e química de zircão. Para facilitar a apresentação dos resultados, são utilizadas tabelas, diagramas e fotomicrografias.

O Capítulo 5 traz as discussões e conclusões do Trabalho de Conclusão de Curso.

O Capítulo 6, por fim, contém as referências bibliográficas utilizadas.

CAPÍTULO 2

GEOLOGIA REGIONAL

1.7 INTRODUÇÃO

A área de estudo está inserida no contexto geológico do Quadrilátero Ferrífero (QF), reconhecida província metalogenética de Minas Gerais, principalmente por seus depósitos de ouro e ferro de classe mundial. Com uma complexa e variada evolução tectono-estrutural, visto a superposição de eventos deformacionais fossilizados do seu registro geológico (Alkmim & Marshak 1998, Chemale *et al.* 1991, 1994, Dorr II 1969, e Endo 1997), e com uma estratigrafia típica, o QF, em termos geotectônicos, está inserido na porção meridional do Cráton São Francisco (CSF).

Por sua vez, o CSF é uma unidade crustal arqueano-paleoproterozoica, individualizada por Almeida (1977, 1981), cuja estabilidade é relativa ao Evento Brasiliano e a remobilizações orogenéticas mais jovens, sendo delimitado, em todas as direções (Alkmim 2004), pelas faixas Brasília, Rio Preto, Sergipana, Rio do Pontal e Araçuaí, e pelo Cinturão Mineiro (Endo 1997). A porção meridional do CSF, conforme Almeida (1981) e Chemale *et al.* (1991, 1994), é distintamente caracterizada por granito-gnaisses migmatizados, que encerram inúmeras intrusões, e *greenstone belts* Arqueanos, e sequências supracrustais do Proterozoico, o que tem correspondência nas unidades litoestratigráficas definidas por Alkmim & Marshak (1998) e Dorr II (1969) para o QF: embasamento cristalino e Supergrupo Rio das Velhas de idades arqueanas, e Supergrupo Minas e Grupo Itacolomi, do Paleoproterozoico. A estes, ainda, são somadas intrusões pós-Minas de idade neoproterozoica.

1.8 QUADRILÁTERO FERRÍFERO

1.8.1 Arcabouço estrutural

A arquitetura geológica do QF, a exemplo de outros terrenos arqueanos (Anhausser *et al.* 1969), tem padrão geral de domos e quilhas (Alkmim & Marshak 1998) (Figura 2.1). O embasamento cristalino ocorre como complexos metamórficos dômicos (*e.g.*, Bação, Belo Horizonte e Santa Bárbara), margeados por sequências supracrustais, supergrupos Rio das Velhas e Minas, dispostas como megassinclinais (*e.g.*, Moeda e Dom Bosco), homoclinal Serra do Curral e anticlinal de Mariana. Este arcabouço estrutural, datado do Transamazônico (Noce 1995, Machado *et al.* 1996, Romano 1989 *in* Alkmim & Marshak 1998), é resultado de um evento deformacional de caráter

extensional, fruto da desestabilização de um orógeno prévio. Assim, o *uplift* do embasamento teria ocorrido por um mecanismo semelhante ao de formação de *metamorphic core complexes* (Chemale *et al.* 1991, 1994), o qual se relaciona ao desenvolvimento de uma falha de descolamento litosférico.

Além dessa estruturação geral, o QF registra outros dois padrões deformacionais pós-Minas. O primeiro, de caráter compressional associado à Orogênese Transamazônica, produziu dobras com *trending* nordeste e vergência para noroeste, dentre elas os sinclinais Gandarela e de Ouro Fino e o anticlinal de Conceição (Alkmim & Marshak 1998, e Marshak & Alkmim 1989). O outro, tradicionalmente associado ao Evento Brasiliano, trata de falhas de empurrão com vergência para oeste, relacionadas a um sistema *strike-slip fault* que configura as *nappes* de cavalgamento do Grupo Itacolomi. Segundo Alkmim *et al.* (1993), esse evento deformacional se aproveitou de planos de fraqueza pré-existentes para gerar estruturas penetrativas que sobrepuseram, mais intensamente na porção oriental do QF, estruturas Transamazônicas.

Figura 0.1: Mapa geológico simplificado do Quadrilátero Ferrífero modificado de Farina *et al.* (2016), Alkmin & Marshak (1998) e Dorr II (1969). O polígono vermelho destaca a área de estudo da Pedreira Barroca.

Chemale *et al.* (1991, 1994) concordam com a evolução tectono-estrutural proposta por Alkmim & Marshak (1998), todavia a trata de forma mais concisa, pormenorizando dois eventos deformacionais principais. O primeiro, uma tectônica extensional decorrente da amalgamação Transamazônica, definiu a estruturação geral do QF ao provocar a exumação de núcleos metamórficos arqueanos, marcados por zonas de cisalhamento com foliação de borda proeminente, e a consequente formação de megadobras adjacentes. O segundo, compressional associado ao fechamento de um protooceano Brasiliano, trata de cavalgamentos com vergência para oeste, que afetaram, principalmente, o leste do QF, aproveitando-se de descontinuidades pré-existentes.

Endo (1997) descreve a evolução tectônica do QF fundamentada em análise estrutural criteriosa de feições cinemáticas. Conforme o autor, em síntese, no Arqueano ocorreram três eventos deformacionais em regime transpressivo de orientação norte-sul, todos correspondentes ao Ciclo Jequié. Na devida ordem, são referidos como Rio das Velhas I, Rio das Velhas II e Rio das Velhas III, cujos componentes cinemáticos são: dextral dúctil, sinistral dúctil, e dextral dúctil-rúptil. Ao Ciclo Transamazônico, do Paleoproterozoico, Endo (1997) associa dois megaeventos sobrepostos, também em regime transpressivo de orientação norte-sul. O primeiro, pós-Minas e pré-Itacolomi, é compressional de cinemática dextral, e o segundo, pós-Itacolomi, com cinemática sinistral, é dividido em uma fase compressional prévia e outra de colapso extencional. Por fim, no Neoproterozoico, é definido o Ciclo Brasiliano que, por sua vez, registra vergência tectônica de leste para oeste e é caracterizado pela reativação das principais descontinuidades crustais antigas.

Dorr II (1969), em comparação aos modelos expostos, encerra a evolução tectono-estrutural do QF a três eventos deformacionais compressionais. O primeiro, que afetou apenas a sequência Rio das Velhas, é tido como o principal condicionante da discordância angular daquela com a sequência Minas, tendo reconhecido incremento de intensidade a oeste. O segundo, que ocorreu entre a deposição do Supergrupo Minas e do Grupo Itacolomi, é caracterizado pela não formação de dobramentos e outras estruturas associadas expressivas, sendo o núcleo deformacional acusado pela área fonte dos metaconglomerados itabiríticos basais do Grupo Itacolomi. Finalmente, à estruturação geral do QF, Dorr II (1969) relaciona o último evento deformacional, que teria afetado toda sua sequência deposicional Pré-Cambriana. Segundo o autor, este evento teria moldado as megaestruturas sinclinais e anticlinais do QF, e promovido o soerguimento parcial do embasamento cristalino, o que, por sua vez, foi impulsionado por epirogênese regional associada a processos erosivos. Este evento teria vergência tectônica para oeste.

Em suma, apesar das diferentes interpretações relativas à evolução tectono-estrutural do Quadrilátero Ferrífero, os principais autores convergem a uma ideia semelhante: tal evolução é o resultado da sobreposição, do Neoarqueano ao Neoproterozoico, de, pelo menos, três ciclos deformacionais: Jequié, Transamazônico e Brasiliano. Os dois últimos são os responsáveis pela arquitetura final do QF, condicionando, nessa ordem, o padrão de domos e quilhas e o sistema de empurrões. Desde Dorr II (1969), a evolução em discussão era inserida em contextos geotectônicos complexos, que vieram a ser melhor explicados por análises cinemáticas minuciosas e estudos

geocronológicos, muitas vezes relacionados ao registro geológico correspondente do continente africano ocidental que, a partir do Neoproterozoico, compartilhou a mesma evolução tectônica no contexto de Gondwana. Como também, da geologia Pré-Cambriana do Brasil, principalmente no âmbito do Cráton São Francisco.

1.8.2 Evolução do metamorfismo

No Quadrilátero Ferrífero, o grau metamórfico é mais elevado na parte oriental e próximo a intrusões ígneas e zonas de *uplift* do embasamento, o que reproduz a evolução tectono-estrutural da área (Alkmim & Marshak 1998). Dorr II & Barbosa (1963) *in* Herz (1978) afirmam que o metamorfismo das sequências pré-Minas foi de alto grau, todavia, as assembleias minerais das rochas supracrustais sugerem baixo grau, o que é entendido como a ação retrógrada do metamorfismo pós-Minas (Herz 1978). Evidências comprobatórias deste retrometamorfismo, por exemplo, são reações em que biotita e granada são parcialmente substituídas por clorita, e estaurolita por cloritóide. Assim sendo, de forma geral, as rochas de sequências supracrustais estão metamorfizadas em baixo grau (fácies xisto-verde), e os complexos granito-gnáissicos em fácies anfibolito (Herz 1978).

Zonas de cisalhamento ocorrem no contato entre as sequências supracrustais e o embasamento ao redor dos domos, e a elas relacionadas são descritas, principalmente no Complexo Bação, segundo Herz (1978), Jordt-Evangelista *et al.* (1992), e Marshak *et al.* (1992), auréolas de metamorfismo de alta temperatura e baixa pressão que se assemelham ao contato com uma rocha intrusiva. Nas porções leste e sul do QF, no entanto, a evolução do grau metamórfico é descrita por metamorfismo regional Barroviano, cujas zonas mais abrangentes são a da clorita e da biotita, sendo a primeira, conforme Herz (1978), de difícil definição em algumas áreas devido à presença de Mg-clorita, estável em até fácies anfibolito inferior.

Estudos mais recentes de Cutts *et al.* (2018), Aguilar *et al.* (2017) e Medeiros Júnior *et al.* (2016) estão em acordo com o exposto no tocante à impressão do metamorfismo transmazônico sobre as rochas arqueanas do embasamento cristalino, adicionando o entendimento da sobreimpressão brasiliana.

Cutts *et al.* (2018), cujo foco de estudo foi a porção sul da Faixa Araçuaí, defende que o Evento Transmazônico promoveu o metamorfismo em fácies anfibolito dos terrenos arqueanos, TTG e *greenstone belts*, no intervalo de 2098-1989 Ma (Aguilar *et al.* 2017), e que a formação da arquitetura em domos e quilhas se deu em 2775 Ma, com base em datação do metamorfismo dos domos gnáissicos. Ainda, como mencionado por Jordt-Evagelista *et al.* (1994), segundo Medeiros Júnior *et al.* (2016), porções do embasamento cristalino dessa área de estudo, por exemplo Complexo Acaiaca, atingiram fácies granulito. Por fim, a idade do pico do metamorfismo progressivo é 2015 \pm 21 Ma,

com condições máximas de P-T de metamorfismo de 5-7 kbar e 750-800 °C (Cutts *et al.* 2018). Agora, quanto ao Evento Brasiliano, que não deformou extensivamente as rochas do Quadrilátero Ferrífero, Cutts *et al.* (2018) defendem que o metamorfismo atingiu fácies xisto-verde. As idades obtidas neste estudo são semelhantes àquelas de Aguilar *et al.* (2017).

Aguilar *et al.* (2017), por geoocronologia U-Pb em grãos de titanita e monazita, identificaram impressões térmicas, datadas em 2080-1940 Ma, referentes ao metamorfismo paleoproterozoico, sugestivo de fácies anfibolito por ter atingido temperaturas de 650-700 °C, como exposto por Cutts *et al.* (2018) e antes indicado por Jordt-Evangelista *et al.* (1992). Tomando os modelos de evolução tectônica proposto para o Quadrilátero Ferrífero que atribuem a uma extensão pós-colisional a responsabilidade pelo padrão estrutural em domos e quilhas, Aguilar *et al.* (2017) vão ao encontro de tal interpretação ao determinar, por ampla distribuição de dados geocronológicos em titanita e monazita, que a porção meridional do Cráton São Francisco foi afetada não somente por uma extensão crustal, mas também pelo aquecimento térmico prolongado associado. Assim sendo, tais autores classificam o metamorfismo paleoproterozoico como um "evento magmático de vida longa", o qual seria contemporâneo à época de estabilização do Cráton São Franciso. As datações obtidas, Cutts *et al.* (2018), são 2100-2070 Ma e 2070-2050 Ma, nesta ordem ditas sin-colisiconal (Evento Transamazônico) e sin-extensional.

Medeiros Jr. *et al.* (2016), promoveram a caracterização geotermobarométrica e geocronológica por Th-U-Pb em monazita dos granulitos do Complexo Acaiaca, sudeste de Minas Gerais. Segundo os autores, tal complexo registra um evento metamórfico de fácies granulito com condições de P-T que alcançaram 5-9 kbar e 800 °C, semelhante ao determinado por Cutts *et al.* (2018). A idade desse evento, aproximadamente 2060 Ma (Medeiros Jr. *et al.* 2016), permite interpretar, portanto, que unidades metamórficas granulíticas são relacionadas àquelas de fácies anfibolito mais comuns no Quadrilátero Ferrífero. O Complexo Acaiaca, por sua vez, está associado a gnaisses anfibolíticos do Complexo Mantiqueira, datado em 2085-2041 Ma (Noce *et al.* 2007 *in* Medeiros *et al.* 2016).

No geral, ao Quadrilátero Ferrífero, cuja história metamórfica é bastante complexa, são atribuídos pelo menos três eventos deformacionais (Cordani *et al.* 1980 *in* Ladeira & Roeser 1983, e Dorr II 1969). Os dois primeiros, de idade arqueana, são descritos pelos autores como responsáveis pela deformação dos ortognaisses do embasamento e das rochas do *greenstone belt* Rio das Velhas, que segundo Alkmim & Marshak (1998) compõem o Ciclo Jequié e segundo Lana *et al.* (2013) o Ciclo Rio das Velhas. O terceiro, consenso entre os mais diversos autores, é o Ciclo Trasamazônico, responsável pela deformação da sequência Minas.

Por fim, no tocante ao metassomatismo, o consenso de que este conjunto de reações metamórficas tem natureza e extensão relacionados à atividade ígnea, segundo Herz (1978), não é

unanimidade no QF. Todavia, há concordância de que o metassomatismo está associado a rochas gnáissicas, desenvolvido em seus limites, sendo reconhecidos, localmente, um ou outro tipo geral de metassomatismo de Eskola (1939) *in* Herz (1978): alcalino, cálcico, por elementos metálicos e por elementos não-metálicos.

1.8.3 Unidades litoestratigráficas

A estruturação estratigráfica do Quadrilátero Ferrífero, área clássica na geologia précambriana no mundo, é apresentada na coluna a seguir (Figura 2.2) e os dados geocronológicos associados são compilados na Tabela 2.1. Para fins deste estudo, todavia, o embasamento cristalino e o Grupo Nova Lima, base do Supergrupo Rio das Velhas, se destacam.

Tabela 0.1: Compilação de dados geocronológicos do Quadrilátero Ferrífero (MG). As referências são: [1] Babinski *et al.* (1995), [2] Cabral *et al.* (2012), [3] Hartmann *et al.* (2006), [4] Koglin *et al.* (2014), [5] Lana *et al.* (2013), [6] Machado *et al.* (1996), [7] Machado *et al.* (1992), [8] Machado & Carneiro (1992), [9] Moreira *et al.* (2016), [10] Noce *et al.* (2005), [11] Noce *et al.* (1998), [12] Romano *et al.* (2013) e [13] Fonseca (2017).

Unidada Estuationáfica	Litatina		Defenêncie (c)		
Unidade Estrangranca	Litoupo	Cristalização	Detrítico	Sedimentação	Referencia(s)
Supergrupo Minas					
Grupo Sabará	Rochas metassedimentares		2125		[6]
Grupo Piracicaba					
Formação Cercadinho	Meta-arenitos	3360-2666			[6]
Grupo Itabira					
Formação Gandarela	Meta-carbonatos			2420	[1]
Formação Cauê	Formação Ferrífera	2655			[2]
Grupo Caraça					
Formação Moeda	Meta-arenitos		3809-2580		[3] e [4]
Supergrupo Rio das Velhas					
Grupo Maquiné					
Formação Casa Forte	Meta-arenitos			2730	[9]
Formação Palmital	Meta-pelitos			2744	[9]
	Granitoide potássico	2612			[11] e [12]
Grupo Nova Lima	Meta-vulcânicas félsicas	2792-2751			[7] e [10]
Grupo Nova Linia	Meta-pelitos		3540-2996		[6]
			3809-2749		[3]
Grupo Quebra Ossos	Esteatitos (Blackwall)				Este Estudo
Complexo Santa Bárbara	Meta-tonalitos				Este Estudo
	Gnaisses	3225-2850			[5], [8], [12] e [13]

Figura 0.2: Coluna estratigráfica do Quadrilátero Ferrífero modificado de Farina *et al.* (2016), Alkmim & Marshak (1998) e Dorr II (1969).

1.8.3.1 Embasamento cristalino

O embasamento cristalino arqueano do QF é constituído por complexos gnáissicos TTG (tonalito-trondhjemito-granodiorito) migmatizados e polideformados, cujas assembleias minerais relatam, sobretudo, hornblenda + biotita + plagiolásio + quartzo tonalitos e plagioclásio + K-feldspato + biotita + quartzo granodioritos, conforme Carneiro *et al.* (1992), e Noce (1995) *in* Lana *et al.* (2013). A crosta continental sofreu pronunciadas alterações químicas nesse tempo, migrando do magmatismo

sódico típico relatado para o magmatismo de médio- a alto-potássio responsável pela colocação de extensivos granito-granodioritos no embasamento (Jahn *et al.* 1981 *in* Farina *et al.* 2015, e Machado & Carneiro 1992). No que concerne à geoquímica, em síntese, os TTG são ricos em SiO₂ (comumente maior que 70%) e em Na₂O, tendo baixas razões K₂O/Na₂O e CaO/Na₂O em comparação aos K-granitoides (Bickle *et al.* 1989, Frost *et al.* 1998, Keller & Schoene 2012, Laurent *et al.* 2014 *in* Farina *et al.* 2015).

Dados geocronológicos U-Pb e geoquímicos recentes de Lana *et al.* (2013) e Farina *et al.* (2016) permitem a subdivisão da história arqueana do embasamento cristalino em eventos magmáticos principais: Santa Bárbara (3220-3200 Ma), Rio das Velhas I (2930-2900 Ma), Rio das Velhas II (2800-2770 Ma) e Mamonas I e II (respectivamente, 2750-2700 Ma e 2620-2580 Ma). O primeiro, que trata dos TTG do Complexo Santa Bárbara, registra as rochas mais antigas do QF, referindo-se à evolução crustal do Paleoarqueano. O segundo, fossilizado nos complexos Bação, Belo Horizonte e Bonfim, sugere que a maior parte da crosta siálica da porção sul do Cráton São Francisco já havia sido formada ainda no Mesoarqueano. Os últimos, tomados como contemporâneos à deposição do Grupo Nova Lima (Baltazar & Zucchetti 2007, Lobato *et al.* 2007 *in* Dopico *et al.* 2017) no Neoarqueano, têm seus registros sobrepostos por um evento deformacional de idade semelhante que, segundo Alkmim & Marshak (1998), se trata do Ciclo Jequié.

À vista do exposto, a história do embasamento cristalino do Quadrilátero Ferrífero pode ser simplificada em duas fases principais. A primeira, compreendida entre 3220 e 2770 Ma, trata da colocação extensiva de magmas TTG e da extrusão de rochas máfico-ultramáficas (Teixeira *et al.* 1996 *in* Lana *et al.* 2013), que vieram a compor o *greenstone belt* Rio das Velhas. E a segunda, entre 2750 e 2600 Ma, explana sobre a colocação de granitoides potássicos, segundo Romano *et al.* (2013), derivados da fusão parcial da crosta TTG. Assim sendo, sob olhar evolutivo magmático (Figura 2.3), os gnaisses TTG marcam a época de formação e espessamento de uma crosta continental primitiva, essencialmente siálica, e os K-granitoides, por sua vez, a passagem para o estágio de estabilização crustal, indicando, com base em dados U-Pb (Lana *et al.* 2013), o desenvolvimento de um núcleo cratônico rígido. Por fim, à luz da interpretação geotectônica, a evolução de aproximadamente 620 Ma do embasamento do QF relata a geodinâmina da Terra durante o Arqueano, associando-a à produção da crosta continental primitiva.

Figura 0.3: Diagrama da evolução magmática do embasamento cristalino do QF baseada em Martin *et al.* (2014) e Turner *et al.* (2014).

1.8.3.2 Supergrupo Rio das Velhas

Antes definido por Dorr II *et al.* (1957) como a sequência metavulcano-sedimentar mais antiga do Quadrilátero Ferrífero, o Supergrupo Rio das Velhas, segundo Dorr II (1969), é subdividido em dois grupos: Nova Lima e Maquiné. Ladeira (1980) atribuiu o Grupo Nova Lima à base da sequência *greenstone belt* Rio das Velhas e, com base na divisão informal por ele proposta, extrai-se que este grupo é composto por komatiítos e basaltos intercalados por sedimentos químicos, capeados por sedimentação clástica. A unidade komatiítica, normalmente descrita como esteatito, serpentinito e talco-xisto, apresenta-se em estruturação *pillow*, e é caracterizada por textura *spinifex, cumulus* de olivina e *intercumulos* de ortopiroxênio (Ladeira 1980 e Ladeira & Roeser 1983). Na sedimentação química destacam-se sequências carbonáticas e formação ferrífera tipo Algoma, e a clástica deu origem a pelitos, arenitos e conglomerados. Tal empilhamento estratigráfico, assim como as peculiaridades preservadas nas rochas metaultramáficas, segundo Schrank *et al.* (1990) *in* Lana *et al.* (2013), relata um ambiente de vulcanismo marinho.

O Grupo Maquiné, por sua vez, em contato gradacional e discordante com o Grupo Nova Lima, é caracterizado por ser uma sequência clástica fluvio-marinha, interpretada como tipo *flysch* e molassa (Dorr II 1969), constituindo uma sucessão com gradação inversa. A área fonte desta unidade, por geocronologia U-Pb de zircões detríticos (Machado *et al.* 1996), é continental com idades variando entre 3260 e 2877 Ma, o que remete ao próprio embasamento cristalino. Todavia, até o momento, a idade máxima de deposição do Grupo Maquiné, proposta por Moreira *et al.* (2016), é de 2730 Ma.

Portanto, em um contexto geotectônico, o Supergrupo Rio das Velhas, visto ser uma sequência *greenstone belt* típica, se desenvolveu em uma zona extensional contemporânea aos últimos estágios evolutivos do embasamento cristalino no Neoarqueano. Além de datação U-Pb, tal interpretação leva em conta a compreensão básica de ambientes geotectônicos, cujas evidências consideram a gradação inversa característica do Grupo Maquiné e o fato deste ser considerado depósito tipo *flysch* e molassa. Assim sendo, tem-se que o Supergrupo Rio das Velhas trata-se de uma bacia de fechamento, que preservou sequências de uma bacia de ante-arco em um contexto de acreção lateral de terrenos (Figura 2.4). Todavia, as condições de metamorfismo relacionadas ao fechamento desta bacia ainda não estão bem elucidadas (Dopico *et al.* 2017).

Figura 0.4: Sequência de cartoons que retratam a evolução geodinâmica Neoarqueana do Quadrilátero Ferrífero, modificado de Dopico *et al.* (2017). Estágio Neoarqueano Inferior (2,80 Ga): retrabalhamento da crosta Paleoarqueana e Mesoarqueana, e início do desenvolvimento da Bacia do Rio das Velhas. Estágio Neoarqueano Inferior (2,75 Ga): Colisão e reativação de zonas de sutura, produção de magmas alto-K e desenvolvimento da Bacia Maquiné. Estágio Neoarqueano Médio (2,70-2,60 Ga): desenvolvimento da Bacia Minas em condições de margem passiva.

1.8.3.3 Supergrupo Minas

O Supergrupo Minas, depositado em discordância angular sobre o Supergrupo Rio das Velhas e o embasamento cristalino (Figuras 2.2 e 2.4), é uma sequência metassedimentar paleoproterozoica (Babinski *et al.* 1991, Machado *et al.* 1989 *in* Endo 1997) que foi deformada pela primeira vez durante o Evento Transamazônico. Segundo Alkmim & Marshak (1998), esta unidade é subdividida nos grupos: Tamanduá, Caraça, Itabira, Piracicaba e Sabará.

A base da unidade é ocupada pelos grupos Tamaduá e Caraça, que registram a sedimentação clástica, de conglomerados a pelitos, da transição de ambiente aluvial para marinho costeiro (Dorr II 1969). Dados U-Pb de zircões detríticos de Hartmann *et al.* (2006), Machado *et al.* (1996) *in* Lana *et al.* (2013), ratificados por Dopico *et al.* (2017), sugerem que os TTG e as intrusões potássicas do embasamento cristalino são as fontes de tais sedimentos, sendo a idade máxima de deposição 2600 Ma. A deposição do Grupo Itabira, que compreende as Formações Ferríferas Bandadas Cauê e os carbonatos estromatolíticos Gandarela, segundo Barbosa (1979) *in* Renger *et al.* (1994), ocorreu num período de quiescência tectônica em ambiente de transgressão marinha, sendo a idade máxima de deposição 2400 Ma (Babinski *et al.* 1995 *in* Dopico *et al.* 2017).

Sobre a sequência inicial do Supergrupo Minas foi depositada a sequência marinha do Grupo Piracicaba. Esta, com idades que remontam aos registros isotópicos do Grupo Caraça (Machado *et al.* 1996), é caracterizada por horizontes de conglomerados intraformacionais com seixos de formação ferrífera e carbonato (Dorr II 1969), que remetem a exposição do Grupo Itabira à erosão. Assim, está marcada o início de uma fase de perturbação tectônica que virá a remodelar a Bacia Minas (Renger *et al.* 1994). Por fim, o fechamento da bacia se deu em 2120 Ma (Dopico *et al.* 2017) com a deposição sin-orogênica do Grupo Sabará. O registro sedimentar Transmazônico é interpretado como uma sequência *flysch* (Dorr II 1969), caracterizando a inversão da Bacia Minas.

1.8.3.4 Grupo Itacolomi

Em contato discordante com o Supergrupo Minas, o Grupo Itacolomi é constituído por metarenitos de granulação grossa e conglomerados polimíticos (Dorr II 1969), arquitetados em *nappes* de cavalgamento nas porções sul e leste do Quadrilátero Ferrífero (Alkmim & Marshak 1998). Reconhecidas como de ambiente lacustre, tais rochas apresentam clastos deformados de formação ferrífera bandada, provavelmente oriundos da Formação Cauê (Dorr II 1969). Por fim, conforme dados U-Pb obtidos em zircões detríticos por Machado *et al.* (1996) *in* Dopico *et al.* (2017), tem-se que o Grupo Itacolomi é pouco mais novo que o Grupo Sabará, com idade de 2125 Ma.

1.8.3.5 Intrusões pós-Supergrupo Minas

Alkmim & Marshak (1998), baseados em dados geocronológicos de Noce (1995) e Silva *et al.* (1995), reconhecem três fases de magmatismo pós-Minas. A primeira, com idade de 2080 Ma, gerou

os granitoides que intrudem os domos do embasamento cristalino. A segunda, também documentada por Herz (1970), trata de pegmatitos de 2060 Ma também intrudidos no embasamento. E a última produziu diques máficos em 1714 Ma.

2.1 INTRODUÇÃO

Segundo recomendações da IUGS - *Subcommission on the Systematics of Metamorphic Rocks* (Zharikov *et al.* 2007), metamorfismo é o conjunto de transformações minerais e/ou microestruturais, mormente no estado sólido e sem alteração química significativa, que acomete rochas ígneas, sedimentares e metamórficas quando submetidas a condições físicas diferentes daquelas de formação, da superfície terrestre e da diagênese. E metassomatismo, originalmente introduzido por Naumann em sua obra *Lehrbuch der Mineralogie* (1826), é o processo metamórfico pelo qual uma rocha, ou parte dela, tem sua composição química extensivamente alterada pela introdução e/ou remoção de componentes químicos pela interação com soluções fluidas quentes. Destarte, metassomatismo pode ser entendido como uma transferência de massa por fluidos essencialmente reativos e subsequente equilíbrio mineral, sendo eficiente quando tais fluidos são capazes de fluir ativamente entre os grãos minerais da rocha (Harlov & Austrheim 2013).

Conforme Korzhinskii (1970) *in* Strieder (1992) e Zharikov *et al.* (2007), a seguir são sumarizados os tipos de metassomatismo. O **metassomatismo difuso** dá-se pela transferência de soluto em um sistema fluido estagnado por gradiente químico, resultante da justaposição, em metamorfismo, de rochas de composições contrastantes. O **metassomatismo de infiltração**, por sua vez, dá-se pela transferência de soluto por fluidos efetivamente pervasivos, o que prediz rochas de permeabilidade considerável. A força motriz é o gradiente de pressão e de concentração entre os fluidos e os poros da rocha. O **metassomatismo de contato** ocorre no contato, ou próximo dele, entre rochas intrusivas e suas hospedeiras, podendo se desenvolver em qualquer momento da evolução magmática, causando a substituição dos litotipos envolvidos. O **metassomatismo limítrofe** é uma resposta a gradientes de atividades fluidas no contato entre litologias contrastantes. E o **autometassomatismo**, por fim, é aquele que se desenvolve ao topo de intrusões ígneas no estágio pósmagmático.

Assim sendo, segundo Zharikov *et al.* (1998) *in* Zharikov *et al.* (2007), o metassomatismo é diferente dos demais processos endotérmicos, uma vez que inclui: (i) substituição de íon por íon em minerais por mecanismo que garante a sincronia entre a dissolução e a precipitação de novos minerais, mantendo o volume constante, (ii) substituição de rochas no estado sólido ao contrário das interações magma/rocha e cristalização fracionada, (iii) mudanças substanciais de composição química, exceto em H_2O e CO_2 permitidas no metamorfismo isoquímico, e (iv) formação de um padrão zonal

característico, que representa o equilíbrio químico entre duas rochas ou entre a rocha e o fluido (nesta ordem, metassomatismo difuso e de infiltração).

Na literatura geológica, o estudo do metassomatismo é negligenciado perante outros processos metamórficos, sendo tratado por generalizações. Segundo Roeser (1987) e Roeser *et al.* (1987), isto se deve à complexidade desse processo, que inviabiliza sua reprodução em laboratório por se tratar de um sistema químico aberto. Ou seja, a quantificação de processos está condicionada a muitos fatores que se colocam como problemas, por exemplo: transporte e migração de massa, causas dos processos de difusão e infiltração, leis reguladoras do crescimento de cristais e constância de volume. Isto posto, a seguir é apresentado de forma objetiva as características dos principais agentes do metassomatismo, os fluidos, assim como uma contextualização quanto a rochas ultramáficas.

2.2 FLUIDOS METAMÓRFICOS E METASSOMÁTICOS

2.2.1 Fluidos metamórficos

Segundo Winter (2014), acredita-se que os fluidos são ubíquos no metamorfismo, todavia a única evidência direta remanescente deste fato são as pequenas inclusões fluidas de alta densidade aprisionadas em alguns minerais metamórficos (Hollister & Crawford 1981, Roedder 1984, Crawford & Hollister 1986 *in* Winter 2014). Isto se justifica pelo fato de praticamente todos os fluidos intergranulares de alta pressão e temperatura, antes em equilíbrio com as paragêneses minerais de pico metamórfico, terem escapado por liberação de pressão. No entanto, a existência de fluidos em uma rocha não é garantia de que eles coexistiram em equilíbrio à época do metamorfismo.

Outra evidência da existência de fluidos metamórficos é menos direta, mas contundente. A existência de minerais hidratados (*e.g.*, serpentina e talco) e carbonatados (*e.g.*, dolomita e magnesita) sob condições metamórficas rígidas requer a existência de fluidos para que a pressão volátil necessária à sua estabilização seja mantida (Winter (2014).

Via de regra, fluidos introduzidos durante o metamorfismo tem origem meteórica, magmática e metamórfica, quando liberados por reações de desvolatilização. Quanto a isso, no entanto, segundo Thompson (1983), embora a geração de fluidos via desvolatilização seja uma consequência da maioria das reações metamórficas, os fluidos podem não estar presentes em todos os momentos do evento metamórfico.

Ainda conforme Winter (2014), entende-se que os fluidos metamórficos, por vezes equivalentes a mais de 10% do volume total de uma rocha, tem por função dissolver e precipitar minerais, transportar calor e solutos, trocar componentes químicos à medida que as reações metamórficas se desenrolam e catalisar processos deformacionais. Auréolas de metamorfismo de

contato, introduzindo o metassomatismo, por exemplo, são maiores onde fluidos estão disponíveis para o transporte de calor e matéria.

2.2.2 Fluidos metassomáticos

Os controles do metassomatismo são, sobretudo, os diferentes fluidos percoladores de rocha, os quais justificam sua complexidade por promover a interação entre reações químicas e processo de fluxo físico. Para a plena compreensão dos mecanismos metassomáticos, então, é fundamental estudar as propriedades dos fluidos associados, o que nem sempre é possível, já que as principais fontes de informação sobre fluidos de profundidade são os estudos de relação de fase, solubilidade e composicional de fases fluidas (Harlov & Austrheim 2013).

De forma geral, segundo Harlov & Austrheim (2013), qualquer fluido crustal, quando migra de um tipo de rocha para outro, pode causar metassomatismo, sendo aqueles com maior concentração de sólidos dissolvidos (salmouras) e em maior quantidade, os mais propensos a promover mudanças químicas significativas. As origens possíveis para esses fluidos são: (i) fluidos magmáticos liberados durante a cristalização, (ii) fluidos expelidos de poros por compactação (bacias sedimentares), e (iii) fluidos metamórficos. Estes, por sua vez, não são os principais, uma vez que as reações metamórficas são típicas de ambiente de alta pressão e, portanto, de baixa permeabilidade.

Como as alterações metassomáticas resultam da ação de fluidos, responsáveis pela adição e/ou remoção de compostos em solução, os principais tipos de metassomatismo são: de infiltração e de difusão (Korzhinskii 1957 *in* Zharikov *et al.* 2007). Entre eles, o primeiro ocorre de forma mais extensa que o segundo, visto o seu mecanismo de transporte mais eficiente. Isto posto, a análise dos efeitos da infiltração de fluidos, no tocante à termodinâmica, segundo Korzhinskii (1958, 1970) *in* Harlov & Austrheim (2013), é eficientemente realizada por uma modificação da regra das fases de Gibbs (P + F = C + 2, onde P = fases, F = graus de liberdade, e C = componentes). Isto é, são diferenciados os componentes móveis e imóveis, nesta ordem definidos como aqueles em solução e constituintes da rocha, de forma que os gradientes químicos são ditados apenas pelo fluido e por sua fonte.

Por fim, como o metassomatismo está intimamente relacionado a processos metalogenéticos (*e.g.*, escarnitos, greisens e complexos alcalinos), inclusive sendo subdividido por Korzhinskii (1953) *in* Zharikov *et al.* (2007) em metassomatismo de estágio magmático e de estágio pós-magmático, os fluidos costumam, de forma equivocada, ser caracterizados quanto às alterações que causam nas rochas. Isto, pois, tais alterações não refletem a composição original do fluido, mas sim as mudanças induzidas na rocha a medida que o fluido evolui para o equilíbrio com a rocha hospedeira. Além disso,

são os componentes menos abundantes que produzem as mais variadas rochas (Harlov & Austrheim 2013).

2.3 METASSOMATISMO EM ROCHAS ULTRAMÁFICAS

De um modo geral, as rochas ultramáficas têm mineralogia essencialmente anidra sensível a metamorfismo, via de regra silicatos ferro-magnesianos como olivina e piroxênio, e composição química contrastante às das rochas com que estão em contato. Tais aspectos viabilizam a alta reatividade dessas rochas, atestada pela comum ocorrência de metassomatismo. Para melhor exemplificar tal reatividade tem-se o processo de serpentinização, que trata da transformação de minerais ígneos de protólito ultramáfico, por simples hidratação (OH⁻) sob condições de metamorfismo, em minerais predominantemente do grupo das serpentinas (Strieder 1992). A reação a seguir representa a hidratação da olivina e sua transformação em serpentina:

 $2Mg_2SiO_4 + H_2O + 2H^+ \rightarrow Mg_3Si_2(OH)_4 + Mg^{2+}$

Os processos metassomáticos que afetam rochas ultramáficas geram alterações de *blackwall*, rodingitos e listvenitos, apresentados a seguir. As alterações de *blackwall*, enfoque deste estudo, formam-se no contato entre rochas de composições contrastantes, comumente félsicas e ultramáficas, como resultado de reações de desequilíbrio por atividades de fluidos metassomáticos, e são geralmente constituídas por clorita, anfibólio (actinolita ou hornblenda) e/ou flogopita (Frost 1975). O *blackwall* é, portanto, entendido como uma combinação de metassomatismos de difusão e infiltração (Harlov & Austrheim 2013 e Bucher *et al.* 2005). Os rodingitos, comumente associados à serpentinização, consistem em rochas de assembleias enriquecidas em CaO e deficiente em SiO₂ e Na₂O. Segundo Bach & Klein (2009) *in* Harlov & Austrheim (2013), a gênese desses metassomatitos enfatiza os gradientes químicos relacionados à transferência de massa de SiO₂ e CaO entre os litotipos contrastantes. Por fim, os listvenitos, segundo Halls & Zhao (1995) *in* Harlov & Austrheim (2013), são rochas metassomáticas constituídas essencialmente por Mg-Fe carbonato, quartzo e fuchsita. Em comparação às rochas anteriores, os listvenitos podem ser economicamente importantes, principalmente relacionado a ouro e prata, sugerindo uma ligação direta entre sistemas ígneos, metassomatismo e mineralização.

2.3.1 Rochas metassomáticas no Quadrilátero Ferrífero

As rochas metaultramáficas do Quadrilátero Ferrífero, como detalhado no Capítulo 2, compõem a base do *greenstone belt* Rio das Velhas em associação aos TTG do embasamento cristalino, sendo encontradas, principalmente, nas porções sul e sudeste. Segundo investigações de

Roeser (1987), cujas principais localidades estudadas coincidem, em parte, com a área de estudo, os afloramentos de esteatitos, rocha popularmente conhecida como pedra-sabão, ocorrem em arranjos zonados de limites irregulares, que em direção ao contato com os gnaisses encaixantes são, assim, descritos: (i) esteatito maciço, (ii) rocha a carbonato-talco, (iii) rocha a anfibólio-talco, e (iv) cloritito (Figura 3.1). A transição entre as zonas é interpretada como gradual, exceto a do cloritito que constitui alteração de *blackwall*.

De acordo com o autor supracitado, o esteatito é definido como uma rocha metassomática, pois não existe nenhuma rocha, sedimentar ou ígnea, que, metamorfizada em condições isoquímicas, apresenta composição com 55% de SiO₂, 30% de MgO e teores de Cr e Ni da ordem de 2000 ppm. Isto posto, é plausível que o protólito dos esteatitos possa ser: (i) calcários dolomíticos, ou (ii) ultrabasitos/ultramafitos. No caso do Quadrilátero Ferrífero, evidências de campo que refutam a existência de corpos estratiformes de pedra-sabão e guardam texturas ígneas reliquiareas (e.g., *pillow lava e spinifex*), e a geoquímica que bem caracteriza os elementos imóveis (Cr e Ni) sugestivos de paragênese original, elucidam o protólito dos esteatitos como magmatitos ultrabásicos/ultramáficos. As evidências de metassomatismo, então, seriam a alta concentração em SiO₂ (Figura 3.1), que remete à sua transferência para rocha, assim como de Al₂O₃ e CaO, e o empobrecimento em MgO, Fe₂O₃ e Na₂O. Por fim, Roeser (1987) entende, baseado em quantificação de processos geoquímicos, que a formação da pedra-sabão é o resultado de, no mínimo, dois processos metassomáticos consecutivos: serpentinização e esteatitização, que se reproduzem em escalas local e regional, com ocorrências de núcleos serpentinizados preservados. Os mesmos resultados foram discutidos por Roeser *et al.* (1987).

Figura 2.1: Desenho esquemático da relação de alteração de *blackwall* descrita por Roeser (1987). Nele se destaca a transferência de SiO₂ para a zona metassomatizada, caracterizando tal processo.

2.4 GEOCRONOLOGIA DE EVENTOS METASSOMÁTICOS

No geral, a datação de qualquer evento geológico requer a individualização de geocronômetros minerais que registram, apenas, o evento de interesse. Exemplos de fases cronômetro são zircão, monazita e titanita, ditos minerais radiogênicos, cujo decaimento é a base das metodologias de datação. No caso de metassomatismo, a recristalização mineral é, então, um processo chave para a geocronologia, uma vez que controla tanto a petrologia como o registro isotópico dos minerais, de forma a poder ser completa ou não, sugerindo a possibilidade de preservação de assembleias reliquiares pré-metassomáticas. Comumente, rochas metassomáticas contêm misturas de fases minerais recém-formadas e reliquiares, o que torna sua geocronologia mais complexa que a de sistemas isotópicos ideais.

Portanto, o reconhecimento e a diferenciação dos processos de um evento metassomático, o qual pode ser extensivo ou pontual na rocha, é fundamental para a compreensão da evolução geológica relacionada. Isto posto, assumindo a premissa introdutória, tem-se que, no metassomatismo, vários processos podem afetar o registro isotópico de minerais e, consequentemente, a datação, de forma que a compreensão dos fluidos metassomáticos, principal agente de recristalização: "sinal revelador do metassomatismo" (Harlov & Austrheim 2013), é necessária para definir as paragêneses minerais características do evento de interesse.

CAPÍTULO 4

CARACTERIZAÇÃO PETROGRÁFICA, GEOQUÍMICA E GEOCRONOLÓGICA DOS CLORITITOS METASSOMÁTICOS

3.1 INTRODUÇÃO

Este capítulo servirá de base para os itens "Descrição de Amostras" e "Resultados" do artigo científico que será submetido ao periódico internacional *Precambrian Research*, com o título "Archean tonalite magmatism and Cambrian blackwall metassomatism in evolution of Barroca chloritites, Quadrilátero Ferrífero" (Qualis A1), por Queiroga et al.. Todos os dados obtidos são apresentados a seguir, sumarizados em: descrição petrográfica, química mineral, e geocronologia e química de zircão. A sistemática de apresentação, assim como a disposição das tabelas e figuras, segue os padrões internacionais de publicação.

3.2 DESCRIÇÃO MACRO E MICROSCÓPICA DAS AMOSTRAS

Segundo as recomendações da *International Union of Geological Scienses* (IUGS) para a sistemática de rochas metamórficas e ígneas, nesta ordem Fettes & Desmons (2007) e Le Bas & Streckeisen (1991), foram classificados cinco litotipos neste estudo, a saber: cloritito, hornblenda granofels, talco granofels, meta-tonalito e biotita gnaisse (Tabela 1.2). Os dois primeiros, singularmente, constituem a alteração de *blackwall* resultante do metassomatismo decorrente do desequilíbrio químico entre o talco granofels e o meta-tonalito, à época do metamorfismo, respectivamente tratados como intrusão ultramáfica e xenólito félsico. O cloritito ocorre próximo ao referido xenólito, enquanto o hornblenda granofels, por sua vez, está mais próximo do ultramáfito. As Figuras 4.1 e 4.3A-D caracterizam as ocorrências em campo, enquanto a Figura 4.2 é um desenho esquemático que resume a alteração de *blackwall* como vista em campo. A Figura 4.1 merece maior destaque, uma vez que ela mostra que a alteração de *blackwall* se desenvolve no meta-tonalito.

Figura 3.1: Alteração de blackwall que ocorre no contato entre a intrusão ultramáfica e o xenólito félsico.

Figura 3.2: Desenho esquemático da relação de alteração de *blackwall* descrita em campo (Pedreira Barroca – MG). Nele são destacados a composição modal dos litotipos envolvidos no metassomatismo, assim como a transferência de massa.

Figura 3.3: (A) Biotita gnaisse dobrado e magmatizado; (B) Porfiroclasto de feldspato com textura *augen*; (C e D) talco granofels e em (C) notam-se porfiroblastos de carbonato de coloração marrom.

O cloritito mostra uma assembleia mineral (Figura 4.4A-F) enriquecida em Al e constituída por clorita + flogopita + talco + plagioclásio ± zircão. Tem microestrutura porfiroblástica com matriz decussada, caracterizada pela disposição não orientada dos filossilicatos. O plagioclásio (3%), pórfiro subédrico, é tipicamente incolor e apresenta extinção concêntrica diagnóstica de zoneamento químico e sobrecrescimento em descontinuidade óptica com o grão hospedeiro. A clorita (75%), caracterizada por pleocroísmo incolor a verde-claro e extinção ondulante, segundo sinal de elongação negativo l(-), trata-se da Mg-clorita. A flogopita (15%) apresenta forte pleocroísmo incolor a verde, e extinção ondulante e incompleta. O talco (7%) é diferenciado por ser incolor e não pleocróico. O zircão, por fim, é o mineral acessório que se destaca pelo relevo muito alto e por quase sempre ocorrer com halo pleocróico.

Figura 3.4: Fotomicrografias selecionadas do cloritito (amostra AM-01). (A e B) Geral da lâmina, em que são destacados clorita (Chl), flogopita (Phl), talco (Tlc) e plagioclásio (Pl); (C e D) Detalhe da ocorrência de plagioclásio (Pl) com destaque para o zoneamento químico marcado pela extinção concêntrica, e (E e F) Grãos de zircão (Zrn) associados à filossilicatos. Os pares de fotomicrografias mostram, respectivamente, imagens à nicóis paralelos e nicóis cruzados.

O hornblenda granofels, em relação ao litotipo anterior, também de fácies anfibolito inferior, é enriquecido em Ca e Mg e composto por hornblenda + clorita + flogopita + talco + plagioclásio \pm carbonato \pm zircão, com microestrutura decussada (Figura 4.5A-D). A hornblenda (47%), subédrica, é diagnosticada por pleocroísmo incolor – verde – verde-oliva e ângulo de extinção maior que 17°. De acordo com a classificação de Leake *et al.* (1997), este clinoanfibólio é classificado como Mg-hornblenda (maiores detalhes no item 4.3.3 – Química Mineral). O carbonato, quase sempre relacionado à hornblenda, é acessório e caracterizado por pleocroismo de relevo incipiente, clivagem em 75°, cor de interferência de ordem superior e extinção incompleta. Os demais minerais da assembleia em discussão se apresentam com as mesmas características diagnósticas descritas para o cloritito (Mg-clorita (20%), flogopita (15%), talco (10%) e plagioclásio (8%))). O zircão, para ambos os casos, ocorre comumente associado aos filossilicatos.

Figura 3.5: Fotomicrografias selecionadas do hornblenda granofels (amostra AM-02). (A e B) Geral da lâmina, em que são destacados Mg-hornblenda (Hbl), clorita (Chl), talco (Tlc) e plagioclásio (Pl), no qual está acentuada a extinção concêntrica; e (C e D) Detalhe da ocorrência de Mg-hornblenda (Hbl), em associação às palhetas decussadas da clorita (Chl) e da flogopita (Phl). Os pares de fotomicrografias mostram, respectivamente, imagens a nicóis paralelos e a nicóis cruzados.

O talco granofels do Supergrupo Rio das Velhas, referido esteatito ou pedra-sabão, é essencialmente constituído por uma assembleia mineral típica de protólito ultramáfico, isto é, talco e Mg-clorita, com carbonato acessório, e caracterizado por textura granolepidoblástica (Figura 4.6A-B). O talco (45%) é incolor e se apresenta como grãos subidioblásticos, com comum aspecto "sujo" sugestivo de alteração. A Mg-clorita (35%), por sua vez, é, também subidioblástica, e tem pleocroismo verde-claro a amarelo, por vezes muito incipiente, e sinal de elongação negativo l(-). O carbonato (20%), identificado por apresentar pleocroismo de relevo, extinção incompleta e clivagem romboédrica.

Figura 3.6: Fotomicrografias selecionadas do talco granofels (amostra AM-04). (A e B) Geral da lâmina, em que são destacados talco (Tlc), clorita (Chl) e carbonato (Cb). O par de fotomicrografias mostra, respectivamente, imagem a nicóis paralelos e nicóis cruzados.

O meta-tonalito é constituído por uma assembleia mineral equigranular tipicamente quartzofeldspática, com biotita e mica branca associadas (Figura 4.7A-C). O quartzo (29%) é incolor e ocorre em arranjo poligonal, e os feldspatos reconhecidos são plagioclásio (54%) e álcali-fedspato (4%) subordinado, com ocorrência de saussuritização. Ambas variedades são semelhantes, sendo diferenciadas por macla *carlsbad* pouco frequente associada a extinção ondulante nos álcalis, e macla polissintética e extinção concêntrica nos plagioclásios. A biotita (8%) é diagnosticada por pleocroísmo verde a verde-claro, por vezes com matizes amarronzados, e extinção paralela e incompleta, enquanto a mica branca é incolor. Alguns grãos de anfibólio (3%) também ocorrem, sendo caracterizados por cor de interferência amarelo de segunda ordem. Zircão, rutilo e apatita são minerais acessórios, sendo identificados, nesta ordem, por relevo muito alto, hábito prismático hexagonal e acicular e relevo moderado, e cor marrom-acastanhada típica.

Figura 3.7: Fotomicrografias selecionadas do meta-tonalino (amostra AM-05). (A) Geral da lâmina, onde anfibólio (Amp) e plagioclásio (Pl) chamam atenção, os primeiros pela cor de interferência e hábito, e os segundos por extinção concêntrica e macla polissintética, ainda se destaca a alteração dos grãos por sericitização (B) Detalhe do plagioclásio (Pl); e (C) Detalhe do anfibólio (Amp). As fotomicrografias são, todas, a nicóis cruzados.

O gnaisse atribuído ao Complexo Santa Bárbara é ortoderivado, apresentando microestrutura granolepidoblástica típica, cujas finas bandas melanocráticas são compostas por biotita e clorita, e as bandas félsicas por quartzo e feldspato (Figura 4.8A-B), que tem formato ocelar característico (textura augen). Macroscopicamente a rocha é polideformada, registrando dobramentos e feições de magmatização sugestivo de deformação em regime majoritariamente dúctil. A biotita (15%), bem como a clorita, apresentam-se subédricas e com inclusões de zircão, sendo diferenciadas pelo fato de a biotita apresentar pleocroísmo verde-oliva a amarelo e extinção ondulante e incompleta, e a Mg-clorita (5%) pleocroismo verde-claro a amarela e extinção ondulante apenas, com sinal de elongação negativo l(-). O feldspato (25%), subédrico, mostra macla polissintética incipiente e extinção concêntrica, apresentando poucas feições de alteração, provavelmente fruto de sericitização. O quartzo (55%) ocorre como cristais xenoblásticos límpidos em contato poligonal, sugestivo de recristalização na ausência de esforços deformacionais. Os minerais acessórios são epidoto, zircão e opacos. O epitodo é incolor e de relevo alto, sendo que a variação de cor de interferência aponta para a espécie zoisitaclinozoisita (azul-acinzentado anômalo), e allanita (amarelo anômalo quase que isotrópico) com sobrecrescimento de epidoto s.s.. O zircão ocorre incolor ou na variedade metamítica (cor amarronzada), sendo alguns grãos idioblásticos com clara diferenciação núcleo/borda. Halos pleocróicos ocorrem, todavia são bastante incipientes.

Figura 3.8: Fotomicrografias selecionadas do gnaisse (amostra AM-03). (A e B) Geral da lâmina, com destaque para o bandamento marcado pela orientação de grãos, sendo as bandas máficas marcadas por biotita (Bt), incipientes em relação às félsicas, constituídas por quartzo (Qz) e plagioclásio (Pl). O par de fotomicrografias mostra, respectivamente, imagem a nicóis paralelos e a nicóis cruzados.

3.3 QUÍMICA MINERAL

Os principais minerais do *blackwall* (AM-01 e AM-02), do ultramafito do Supergrupo Rio das Velhas (AM-04) e do xenólito félsico do Complexo Santa Bárbara (AM-05) foram analisados segundo técnicas de microssonda eletrônica detalhadas no item 1.5 (Metodologia) deste estudo, de forma a determinar suas fórmulas gerais e variações composicionais. Análises foram feitas no núcleo, na borda e em posições intermediárias de grãos de anfibólio, biotita, clorita, flogopita e plagioclásio. Os resultados obtidos são apresentados, ao final deste item, nas Tabelas 4.2 a 4.20. Para a amostra AM-01, foram gerados mapas químicos quantitativos de um grão de plagioclásio, que evidenciam o zoneamento químico entre Ca e Na (Figura 4.17). Os 12 campos de análise são ilustrados na Figura 4.9, e a Tabela 4.1 atribui a eles os minerais analisados e a estes as respectivas numerações de análise fornecidos pelo Laboratório de Microscopia e Microanálises (LMic) do DEGEO/UFOP.

Figura 3.9: Representação das lâminas indicando os campos analisados em cada uma. Sit = campo analisado.

Tabela 3.1: Relação de lâminas, campos, minerais e pontos analisados. Segundo Whitney & Evans (2010), Chl = clorita, Phl = flogopita, Hbl = hornblenda, Tlc = talco, Pl = plagioclásio e Bt = biotita.

Lâmina	Campo	Mineral	Spots
AM-01	Sit_7	Pl	24 - 35
	Sit_8	Pl	15 - 23
	Sit_10	Chl	1 - 15
		Phl	16 - 24
	Sit_X	Chl	6 - 14
		Phl	1 - 5
AM-02	Sit_4	Hbl	1 - 13
		Chl	14 - 18
	Sit_5	Hbl	19 - 29
		Chl	30 - 36
	Sit_6	Pl	37 - 45
AM-04	Sit_1	Chl	1 - 10
		Tlc	11 - 15
	Sit_2	Chl	16 - 37
		Tlc	38 - 45
AM-05	Sit_1	Pl	41 - 52
	Sit_2	Pl	25 - 40
	Sit_3	Hbl	12 - 17
		Bt	1 - 11

O conjunto de fotomicrografias a seguir (Figuras 4.10A-E. 4.11A-D, 4.12A-B e 4.13A-C) apresentam os campos de análise e os *spots* relacionados em microssonda eletrônica para as lâminas AM-01, AM-02, AM-04 e AM-05, segundo o que foi sumarizado na tabela anterior. Aos minerais analisados são atribuídos legenda para melhor identificação (Whitney & Evans 2010).

Figura 3.10: Imagens de elétrons retroespalhados referentes aos campos Sit_7 (imagens A e B), Sit_8 (imagem C), Sit_10 (imagem D) e Sit_X (imagem E) da lâmina AM-01 – cloritito. A disposição dos pontos analíticos, assinalados em vermelho, assim como será apresentado até a Figura 4.13, busca abranger todo o grão mineral, de forma a ser possível diferenciar borda, posição intermediária e núcleo. Para o plagioclásio do campo Sit_8 foi gerado mapa químico quantitativo, que será apresentado na Figura 4.17. Nos campos Sit_7 e Sit_8 apenas plagioclásios (Pl) foram analisados, e em Sit_10 e Sit_X clorita (Chl) e flogopita (Phl).

Figura 3.11: Imagens de elétrons retroespalhados referentes aos campos Sit_4 (imagens A e B), Sit_5 (imagem C) e Sit_6 (imagem D) da lâmina AM-02 – hornblenda granofels. Nos campos Sit_4 e Sit_5 foram analisadas hornblenda (Hbl) e clorita (Chl), e em Sit_6 apenas plagioclásio (Pl).

Figura 3.12: Imagens de elétros retroespalhados referentes aos campos Sit_1 (imagem A) e Sit_2 (imagem B) da lâmina AM-04 – talco granofels. Em ambos os campos foram analisadas clorita (Chl) e talco (Tlc).

Figura 3.13: Imagens de elétrons retroespalhados referentes aos campos Sit_1 (imagem A), Sit_2 (imagem B) e Sit_3 (imagem C) da lâmina AM-05 – meta-tonalito. Nos dois primeiros campos foi analisado apenas plagioclásio (Pl), e no terceiro hornblenda (Hbl) e biotita (Bt).

3.3.1 Clorita – Chl

A clorita é o mineral mais abundante no metassomatito e se trata, essencialmente, de uma fase mineral magnesiana, cujo teor de MgO varia entre 28,011 – 26,58% para AM-01, e 28,30% – 26,94% para AM-02, como acusado pelo sinal de elongação negativo l(-) em microscopia. Analisada em quatro campos, a composição pouco varia ao longo das zonas da alteração de *blackwall*, assim como no próprio grão mineral, mantendo baixa variação dos teores de MgO, FeO e TiO₂. O teor de FeO varia entre 9,33% – 8,56% e 9,64% - 8,65%, respectivamente para AM-01 e AM-02, e o de TiO₂, para as mesmas amostras, entre 0,08% – 0% e 0,07% - 0%. A fórmula geral da clorita para AM-01 e Am-02 é, respectivamente, $(Mg_{4,07-4,04}Fe^{+2}_{0,76-0,72}Al_{1,11-1,2})(Si_{2,89-2,8}Al_{1,11-1,2})O_{10}(OH)_8$ e $(Mg_{4,04-4,04}Fe^{+2}_{0,72-0,71}Al_{1,17-1,24})(Si_{2,83-2,77}Al_{1,17-1,24})O_{10}(OH)_8$.

No talco granofels, cuja análise foi feita em dois campos, todavia, a clorita apresenta-se, em relação à anterior, enriquecida em MgO e TiO₂, respectivamente entre 31,12% - 29,13% e 0,10% - 0%, e empobrecida em FeO e Al₂O₃, entre 8,20% - 6,63% e 16,22% - 14,14%. Esta composição química, em relação à antes avaliada para o *blackwall*, mostra o enriquecimento em Al da paragênese mineral próxima ao xenólito félsico no tocante à assinatura química da intrusão ultramáfica. A fórmula

geral para a Mg-clorita na rocha ultramáfica é $(Mg_{4,49-4,39}Fe^{+2}_{0,60-0,64}Al_{0,82-0,96})(Si_{3,18-3,04}Al_{0,82-0,96$

3.3.2 Flogopita – Phl

A flogopita, tipo de mica que ocorre exclusivamente na zona metassomatizada, foi analisada apenas para a amostra AM-01. A flogopita mostra fórmula geral $K_{0,94}(Mg_{2,26}Fe^{+2}_{0,49})Si_{2,89}Al_{1,11}O_{10}(OH)_2.$

Em escala de grão, nota-se que a formação da variedade flogopita é justificada pelo teor elevado de MgO, variando entre 21,13% - 20,40%, em detrimento aos de FeO e K₂O, respectivamente entre 8,10% - 7,06% e 10,31% - 9,81%. Um sutil enriquecimento em FeO é notado do núcleo para a borda dos grãos.

3.3.3 Clinoanfibólio – Hbl

O anfibólio pertence à serie dos clinoanfibólios cálcicos que, segundo Leake *et al.* (1997), é classificado com Mg-hornblenda, visto a razão Mg/(Mg+Fe²⁺) ser maior que 0,5 e Si na fórmula estar entre 6.,50 e 7,50 (Figura 4.14). Tal clinoanfibólio ocorre na zona do *blackwall* mais afastada ao xenólito tonalítico (AM-02), o que é sugestivo de enriquecimento em Ca e Mg das paragêneses minerais associadas. Os grãos de anfibólio não mostram variação composicional marcante, sendo a fórmula geral para as amostras AM-02 e AM-03, respectivamente, $(Ca_{1,90-1,76}Na_{0,10-0,22})(Mg_{4,35-3,78}Fe^{+3}_{0,35-0,74}Fe^{+2}_{0,19-0,04})(Si_{7,65-6,96}Al_{0,35-1,04})O_{22}(OH)_2$ e $(Ca_{1,82}Na_{0,18})(Mg_{3,75}Fe^{+3}_{0,14}Fe^{+2}_{0,71})(Si_{7,61}Al_{0,39})$ O₂₂(OH)₂.

Figura 3.14: Classificação de Ca-anfibólios segundo Leake *et al.* (1997). Os resultados analíticos são apresentados nas Tabelas 4.10 a 4.12.

3.3.4 Talco – Tlc

O talco é o principal mineral formador de rocha da intrusão ultramáfica, com composição modal de aproximadamente 47%, sendo restrita sua presença na zona metassomatizada, onde clorita e flogopita se destacam. As análises realizadas apenas em AM-04 sugerem homogeneidade química, o que se confirma pelo teor de MgO entre 30,13% - 29,62% e de SiO₂ entre 62,75% - 61,74%.

3.3.5 Plagioclásio – Pl

O plagioclásio ocorre em todos os litotipos estudados, de forma que as análises de grãos foram realizadas nas amostras AM-01, AM-02 e AM-05. Os teores de Na₂O, CaO e K₂O variam, respectivamente, entre 11,63% – 9,44%, 3,51% – 0,10%, e 0,14% – 0,07% para AM-01; 11,60% – 10,08%, 2,68% – 0,15%, e 0,10% – 0,06% para AM-02; e 12,02% – 8,69%, 1,16% – 0,08%, e 0,26% – 0,06% para AM-05.

Isto posto, todos os resultados sugerem que os plagioclásios são sódicos, tendo sido atestado alto teor do *end-member* albita. Os valores de Ab, An e Or validam tal afirmativa, à saber:

- Ab: 98,81% 82,40% (AM-01), 98,83% 87,05% (AM-02), e 99,21% 85,83% (AM-05);
- An: 16,93% 0,49% (AM-01), 12,53% 0,75% (AM-02), e 3,36% 0,41% (AM-05);
- Or: 0,79% 0,40% (AM-01), 0,58% 0,36% (AM-02), e 12,52% 0,31% (AM-05).

Como preconizado pelo mapa químico gerado para AM-01 e os diagramas ternários (Figuras 4.15A-B e 4.16A-B), os plagioclásios têm, no geral, zoneamento químico normal caracterizado por enriquecimento em CaO no núcleo (Figura 4.17), logo interpreta-se que não são neoformados, ou seja, provém do granitoide tonalítico.

Figura 3.15: (A) Evolução dos resultados analíticos quanto aos *end menbers* anortita (An), albita (Ab) e ortoclásio (Or) para o plagioclásio (Pl) do campo Sit_8 do cloritito (AM-01); e (B) diagrama ternário para as mesmas análises, no qual azul = núcleo e preto = borda e intermediário. Os resultados analíticos referentes estão na Tabela 4.16.

Figura 3.16: (A) Evolução dos resultados analíticos quanto aos *end menbers* anortita (An), albita (Ab) e ortoclásio (Or) para o plagioclásio (Pl) do campo Sit_6 do hornblenda granofels (AM-02); e (B) diagrama ternário para as mesmas análises, no qual azul = núcleo e preto = borda e intermediário. Os resultados analíticos referentes estão na Tabela 4.17.

Figura 3.17: Mapa químico quantitativo que aponta o zoneamento composicional do plagioclásio (Pl) do campo Sit_8 do cloritito (AM-01). Nota-se enriquecimento em Na₂O em direção às bordas do grão. Os resultados analíticos referentes estão na Tabela 4.16 e o diagrama ternário na Figura 4.15.

3.3.6 Biotita – Bt

A biotita do tonalito (AM-05) é rica em K₂O, 10,35% – 9,76%, e MgO, 18,79% – 17,69%, sendo sua fórmula geral $K_{0,93}(Mg_{2,02}Fe^{+2}_{0,62})Si_{2,89}Al_{1,11}O_{10}(OH)_2$. O pleocroísmo levemente amarronzado de alguns grãos é sugestivo de concentrações mais elevadas de TiO₂.

A seguir são apresentadas as tabelas com os resultados analíticos obtidos via microssonda eletrônica JEOL JXA-8230.

Amostra	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01
Campo	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Ponto	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Posição	Interm.	Interm.	Núcleo	Interm.	Interm.	Borda	Interm.	Núcleo	Interm.	Interm.	Interm.	Borda	Interm.	Interm.	Borda
SiO ₂	28.850	29.275	29.433	29.432	29.073	28.896	29.534	29.075	29.192	28.080	28.931	29.314	29.919	28.800	29.271
TiO ₂	0.015	0.024	0.001	0.046	0.026	0.012	0.037	0.044	0.030	0.000	0.006	0.035	0.055	0.019	0.045
Al_2O_3	20.178	20.629	20.576	20.529	20.619	19.903	20.175	19.718	19.662	18.563	19.950	20.427	19.720	20.304	20.347
FeO	8.988	8.996	9.149	9.002	9.008	8.970	9.142	8.832	9.326	8.854	8.914	8.870	8.790	9.058	8.815
MnO	0.119	0.086	0.097	0.063	0.102	0.096	0.134	0.116	0.094	0.079	0.042	0.096	0.075	0.134	0.109
MgO	27.859	27.850	27.701	28.011	27.677	27.672	27.908	27.921	27.538	26.576	27.602	27.896	26.668	27.476	27.783
CaO	0.014	0.021	0.000	0.003	0.003	0.018	0.022	0.016	0.033	0.040	0.000	0.000	0.017	0.036	0.020
Na ₂ O	0.016	0.046	0.039	0.014	0.060	0.027	0.024	0.047	0.037	0.079	0.045	0.018	0.037	0.031	0.022
K ₂ O	0.049	0.032	0.082	0.033	0.186	0.050	0.025	0.050	0.048	0.069	0.033	0.024	1.039	0.051	0.039
Cr ₂ O ₃	0.053	0.021	0.026	0.000	0.000	0.000	0.000	0.004	0.070	0.000	0.000	0.038	0.008	0.000	0.000
Total	86.217	87.030	87.145	87.203	86.900	85.717	87.076	85.874	86.130	82.433	85.624	86.818	86.387	85.995	86.528
Si	5.661	5.681	5.706	5.699	5.664	5.702	5.733	5.722	5.743	5.771	5.711	5.700	5.870	5.668	5.709
Ti	0.003	0.003	0.000	0.007	0.004	0.001	0.006	0.006	0.004	0.000	0.001	0.006	0.009	0.003	0.007
Al IV	2.339	2.319	2.294	2.301	2.336	2.298	2.267	2.278	2.257	2.229	2.289	2.300	2.130	2.332	2.291
Al VI	2.321	2.391	2.406	2.379	2.394	2.322	2.343	2.292	2.303	2.261	2.351	2.380	2.430	2.368	2.379
Fe	1.475	1.460	1.484	1.457	1.468	1.480	1.484	1.453	1.535	1.521	1.471	1.443	1.442	1.491	1.439
Mn	0.020	0.015	0.016	0.010	0.017	0.017	0.021	0.020	0.015	0.014	0.007	0.016	0.013	0.022	0.018
Mg	8.150	8.056	8.007	8.086	8.040	8.138	8.078	8.190	8.078	8.144	8.122	8.089	7.801	8.062	8.078
Ca	0.002	0.004	0.000	0.000	0.000	0.004	0.004	0.004	0.006	0.009	0.000	0.000	0.004	0.008	0.004
Na	0.008	0.019	0.015	0.004	0.023	0.011	0.008	0.019	0.015	0.032	0.019	0.008	0.015	0.011	0.008
K	0.013	0.007	0.020	0.007	0.047	0.013	0.007	0.013	0.013	0.018	0.008	0.005	0.260	0.013	0.010
Cr	0.008	0.003	0.005	0.000	0.000	0.000	0.000	0.000	0.011	0.000	0.000	0.006	0.002	0.000	0.000

Tabela 3.2: Resultados analíticos para a clorita (Chl) do campo Sit_10 do cloritito (AM-01). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Amostra	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01
Campo	Х	Х	Х	Х	Х	Х	Х	Х	Х
Ponto	6	7	8	9	10	11	12	13	14
Posição	Borda	Interm.	Interm.	Interm.	Núcleo	Interm.	Interm.	Interm.	Borda
SiO ₂	28.731	28.907	28.701	28.126	28.836	28.672	28.925	28.703	28.793
TiO ₂	0.022	0.005	0.081	0.024	0.003	0.000	0.044	0.026	0.041
Al_2O_3	20.514	21.032	20.933	20.638	20.690	20.647	20.751	20.555	20.065
FeO	8.911	9.130	8.811	8.882	8.585	8.561	8.834	9.081	8.809
MnO	0.077	0.125	0.107	0.103	0.096	0.088	0.098	0.080	0.090
MgO	27.613	27.942	27.765	26.899	27.402	27.277	27.616	27.183	27.712
CaO	0.007	0.012	0.036	0.017	0.015	0.000	0.036	0.013	0.024
Na ₂ O	0.062	0.000	0.031	0.025	0.000	0.007	0.030	0.041	0.035
K ₂ O	0.021	0.009	0.013	0.024	0.024	0.019	0.010	0.030	0.022
Cr ₂ O ₃	0.018	0.025	0.031	0.000	0.000	0.000	0.001	0.029	0.000
Total	86.038	87.281	86.597	84.738	85.720	85.339	86.406	85.789	85.719
Si	5.644	5.603	5.600	5.607	5.670	5.662	5.651	5.656	5.679
Ti	0.003	0.001	0.012	0.003	0.000	0.000	0.006	0.004	0.006
Al IV	2.356	2.397	2.400	2.393	2.330	2.338	2.349	2.344	2.321
Al VI	2.384	2.403	2.410	2.457	2.460	2.462	2.421	2.426	2.339
Fe	1.464	1.480	1.438	1.480	1.412	1.414	1.443	1.496	1.453
Mn	0.013	0.021	0.018	0.017	0.017	0.015	0.017	0.013	0.015
Mg	8.085	8.073	8.078	7.994	8.031	8.032	8.043	7.985	8.148
Ca	0.002	0.002	0.008	0.004	0.004	0.000	0.008	0.002	0.004
Na	0.023	0.000	0.011	0.012	0.000	0.004	0.011	0.015	0.015
K	0.005	0.002	0.002	0.005	0.005	0.005	0.002	0.008	0.005
Cr	0.003	0.005	0.005	0.000	0.000	0.000	0.000	0.005	0.000

Tabela 3.3: Resultados analíticos para a clorita (Chl) do campo Sit_X do cloritito (AM-01). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Amostra	AM-02	AM-02	AM-02	AM-02	AM-02
Campo	4	4	4	4	4
Ponto	14	15	16	17	18
Posição	Borda	Interm.	Núcleo	Interm.	Borda
SiO ₂	29.039	28.296	27.481	28.360	28.679
TiO ₂	0.015	0.000	0.029	0.002	0.070
Al ₂ O ₃	21.720	20.606	22.387	21.316	21.573
FeO	9.451	9.285	9.213	9.290	9.637
MnO	0.120	0.065	0.117	0.075	0.092
MgO	28.242	26.940	26.257	27.417	27.794
CaO	0.000	0.045	0.021	0.014	0.025
Na ₂ O	0.033	0.052	0.092	0.044	0.029
K ₂ O	0.028	0.030	0.072	0.035	0.024
Cr_2O_3	0.000	0.000	0.064	0.000	0.039
Total	88.682	85.395	85.870	86.586	88.110
Si	5.544	5.614	5.427	5.545	5.527
Ti	0.002	0.000	0.004	0.000	0.010
Al IV	2.456	2.386	2.573	2.455	2.473
Al VI	2.424	2.424	2.637	2.455	2.427
Fe	1.509	1.541	1.522	1.519	1.553
Mn	0.019	0.011	0.020	0.012	0.015
Mg	8.038	7.968	7.731	7.992	7.985
CaO	0.000	0.010	0.004	0.003	0.005
Na	0.012	0.020	0.035	0.017	0.011
K	0.007	0.008	0.018	0.009	0.006
Cr	0.000	0.000	0.010	0.000	0.006

Tabela 3.4: Resultados analíticos para a clorita (Chl) do campo Sit_4 do hornblenda granofels (AM-02). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Amostra	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02
Campo	5	5	5	5	5	5	5
Ponto	30	31	32	33	34	35	36
Posição	Interm.	Interm.	Núcleo	Interm.	Interm.	Interm.	Borda
SiO ₂	28.425	29.363	28.851	28.741	28.122	28.705	28.940
TiO ₂	0.047	0.032	0.004	0.028	0.031	0.049	0.029
Al_2O_3	21.013	20.914	21.206	20.821	21.299	20.667	21.618
FeO	9.154	8.961	9.007	9.346	8.649	9.003	9.010
MnO	0.129	0.110	0.116	0.107	0.043	0.078	0.016
MgO	27.683	28.134	28.303	27.559	27.567	27.476	28.168
CaO	0.000	0.033	0.006	0.000	0.007	0.010	0.020
Na ₂ O	0.054	0.055	0.021	0.074	0.033	0.033	0.075
K ₂ O	0.078	0.071	0.035	0.029	0.039	0.049	0.067
Cr_2O_3	0.002	0.008	0.019	0.024	0.000	0.021	0.000
Total	86.692	87.834	87.708	86.769	85.888	86.168	88.023
Si	5.557	5.653	5.567	5.610	5.530	5.633	5.557
Ti	0.007	0.005	0.001	0.004	0.005	0.007	0.004
Al IV	2.443	2.347	2.433	2.390	2.470	2.367	2.443
Al VI	2.397	2.393	2.387	2.400	2.460	2.413	2.447
Fe	1.497	1.443	1.454	1.526	1.422	1.478	1.447
Mn	0.021	0.018	0.019	0.018	0.007	0.013	0.003
Mg	8.068	8.075	8.142	8.019	8.082	8.038	8.063
Ca	0.000	0.007	0.001	0.000	0.001	0.002	0.004
Na	0.020	0.021	0.008	0.028	0.013	0.013	0.028
K	0.019	0.017	0.009	0.007	0.010	0.012	0.016
Cr	0.000	0.001	0.003	0.004	0.000	0.003	0.000

Tabela 3.5: Resultados analíticos para a clorita (Chl) do campo Sit_5 do hornblenda granofels (AM-02). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Amostra	AM-04	AM-04	AM-04	AM-04	AM-04	AM-04	AM-04	AM-04	AM-04
Campo	1	1	1	1	1	1	1	1	1
Ponto	1	2	3	4	6	7	8	9	10
Posição	Borda	Interm.	Núcleo	Núcleo	Borda	Borda	Núcleo	Núcleo	Borda
SiO ₂	30.799	30.927	31.145	31.118	31.120	31.193	30.961	31.020	31.049
TiO ₂	0.102	0.071	0.047	0.069	0.065	0.041	0.039	0.039	0.045
Al_2O_3	15.965	15.907	16.025	15.489	15.817	15.259	15.656	16.126	15.612
FeO	7.725	6.875	7.073	7.014	7.323	7.877	7.954	8.204	7.940
MnO	0.134	0.005	0.124	0.061	0.133	0.189	0.190	0.144	0.120
MgO	29.874	30.103	30.327	30.003	30.270	29.507	29.567	29.327	29.127
CaO	0.023	0.020	0.000	0.015	0.010	0.024	0.023	0.024	0.030
Na ₂ O	0.000	0.000	0.014	0.015	0.005	0.005	0.021	0.040	0.000
K ₂ O	0.017	0.027	0.009	0.015	0.023	0.019	0.029	0.043	0.041
Cr ₂ O ₃	0.651	0.573	0.271	0.523	0.596	0.586	0.685	0.908	0.802
Total	85.309	84.615	85.095	84.345	85.378	84.770	85.172	85.928	84.835
Si	6.077	6.123	6.130	6.178	6.119	6.199	6.130	6.096	6.168
Ti	0.015	0.011	0.007	0.010	0.010	0.006	0.006	0.006	0.007
Al IV	1.923	1.877	1.870	1.822	1.881	1.801	1.870	1.904	1.832
Al VI	1.787	1.833	1.840	1.798	1.779	1.769	1.780	1.826	1.818
Fe	1.275	1.138	1.164	1.165	1.204	1.309	1.317	1.348	1.319
Mn	0.022	0.001	0.021	0.010	0.022	0.032	0.032	0.024	0.020
Mg	8.788	8.884	8.898	8.880	8.873	8.741	8.726	8.591	8.626
Ca	0.005	0.004	0.000	0.003	0.002	0.005	0.005	0.005	0.006
Na	0.000	0.000	0.005	0.006	0.002	0.002	0.008	0.015	0.000
K	0.004	0.007	0.002	0.004	0.006	0.005	0.007	0.011	0.010
Cr	0.101	0.090	0.042	0.082	0.093	0.092	0.107	0.141	0.126

Tabela 3.6: Resultados analíticos para a clorita (Chl) do campo Sit_1 do talco granofels (AM-04). Numeração original fornecido pela LMic do DEGEO/UFOP.

Amostra	AM-04	AM-04	AM-04	AM-04							
Campo	2	2	2	2	2	2	2	2	2	2	2
Ponto	16	17	18	19	20	21	22	23	24	25	26
Posição	Borda	Núcleo	Borda	Borda	Núcleo	Borda	Núcleo	Interm.	Núcleo	Interm.	Borda
SiO ₂	32.677	32.420	31.510	32.714	32.341	31.716	30.941	31.406	31.557	32.423	32.609
TiO ₂	0.024	0.052	0.021	0.044	0.000	0.051	0.028	0.092	0.105	0.010	0.035
Al ₂ O ₃	14.244	14.145	16.217	14.338	14.934	15.392	15.520	15.672	15.692	14.552	14.225
FeO	6.628	6.893	7.813	7.256	7.478	7.646	7.817	7.621	7.649	7.481	7.404
MnO	0.107	0.096	0.185	0.146	0.205	0.102	0.203	0.159	0.159	0.168	0.181
MgO	31.062	31.122	30.200	31.278	30.883	30.255	29.346	29.920	30.163	30.793	30.894
CaO	0.104	0.019	0.055	0.021	0.000	0.037	0.005	0.023	0.016	0.019	0.003
Na ₂ O	0.042	0.022	0.000	0.000	0.010	0.028	0.060	0.007	0.013	0.028	0.028
K ₂ O	0.049	0.042	0.012	0.018	0.011	0.020	0.053	0.026	0.037	0.037	0.020
Cr ₂ O ₃	0.669	0.820	0.816	0.703	0.659	0.820	0.963	0.833	0.738	0.569	0.639
Total	85.705	85.717	86.866	86.547	86.618	86.151	84.972	85.806	86.170	86.169	86.051
Si	6.376	6.339	6.107	6.337	6.273	6.194	6.142	6.158	6.160	6.320	6.357
Ti	0.004	0.008	0.003	0.006	0.000	0.007	0.004	0.014	0.015	0.001	0.005
Al IV	1.624	1.661	1.893	1.663	1.727	1.806	1.858	1.842	1.840	1.680	1.643
Al VI	1.646	1.599	1.807	1.607	1.683	1.734	1.772	1.778	1.770	1.660	1.627
Fe	1.082	1.127	1.266	1.176	1.213	1.249	1.298	1.250	1.249	1.220	1.207
Mn	0.018	0.016	0.030	0.024	0.034	0.017	0.034	0.026	0.026	0.028	0.030
Mg	9.036	9.071	8.725	9.033	8.930	8.809	8.684	8.745	8.777	8.948	8.979
Ca	0.022	0.004	0.011	0.004	0.000	0.008	0.001	0.005	0.003	0.004	0.001
Na	0.016	0.008	0.000	0.000	0.004	0.011	0.023	0.003	0.005	0.011	0.011
K	0.012	0.010	0.003	0.004	0.003	0.005	0.013	0.007	0.009	0.009	0.005
Cr	0.103	0.127	0.125	0.108	0.101	0.126	0.151	0.129	0.114	0.088	0.098

Tabela 3.7: Resultados analíticos para a clorita (Chl) do campo Sit_2 do talco granofels (AM-04). Numeração original fornecida pelo LMic do DEGEO/UFOP. *A continuação da tabela, até o ponto 37, está na próxima página.

Amostra	AM-04	AM-04	AM-04	AM-04	AM-04	AM-04	AM-04	AM-04	AM-04	AM-04	AM-04
Campo	2	2	2	2	2	2	2	2	2	2	2
Ponto	27	28	29	30	31	32	33	34	35	36	37
Posição	Borda	Interm.	Núcleo	Interm.	Borda	Borda	Núcleo	Interm.	Borda	Interm.	Interm.
SiO ₂	31.335	31.726	31.745	31.684	31.437	32.104	31.796	31.917	31.947	31.371	32.078
TiO ₂	0.062	0.031	0.067	0.074	0.047	0.027	0.029	0.038	0.017	0.018	0.039
Al ₂ O ₃	15.897	15.600	15.225	15.205	15.399	14.558	15.176	15.315	16.127	15.079	14.699
FeO	7.951	7.673	7.572	7.684	7.834	7.578	7.598	7.761	7.890	7.517	7.599
MnO	0.136	0.168	0.165	0.084	0.164	0.121	0.142	0.185	0.195	0.197	0.232
MgO	29.790	30.076	30.340	30.119	29.729	30.479	30.182	30.289	30.897	30.149	30.420
CaO	0.029	0.002	0.017	0.024	0.000	0.000	0.000	0.000	0.017	0.003	0.008
Na ₂ O	0.007	0.021	0.057	0.015	0.018	0.000	0.039	0.033	0.031	0.022	0.035
K ₂ O	0.024	0.031	0.064	0.043	0.022	0.017	0.036	0.028	0.060	0.028	0.027
Cr ₂ O ₃	0.771	0.630	0.766	0.638	0.694	0.602	0.725	0.812	0.888	0.795	0.669
Total	86.033	86.001	86.098	85.614	85.388	85.518	85.731	86.461	88.140	85.297	85.850
Si	6.135	6.200	6.206	6.222	6.197	6.304	6.232	6.215	6.110	6.194	6.283
Ti	0.009	0.005	0.010	0.011	0.007	0.004	0.004	0.006	0.002	0.003	0.006
Al IV	1.865	1.800	1.794	1.778	1.803	1.696	1.768	1.785	1.890	1.806	1.717
Al VI	1.805	1.790	1.706	1.742	1.767	1.674	1.732	1.725	1.740	1.704	1.673
Fe	1.302	1.254	1.238	1.262	1.292	1.244	1.245	1.264	1.262	1.241	1.245
Mn	0.023	0.028	0.027	0.014	0.027	0.020	0.024	0.031	0.032	0.033	0.038
Mg	8.695	8.763	8.842	8.817	8.737	8.922	8.819	8.793	8.809	8.874	8.882
Ca	0.006	0.000	0.004	0.005	0.000	0.000	0.000	0.000	0.003	0.001	0.002
Na	0.003	0.008	0.022	0.006	0.007	0.000	0.015	0.012	0.011	0.008	0.013
K	0.006	0.008	0.016	0.011	0.006	0.004	0.009	0.007	0.015	0.007	0.007
Cr	0.119	0.097	0.118	0.099	0.108	0.093	0.112	0.125	0.134	0.124	0.103

Amostra	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01
Campo	10	10	10	10	10	10	10	10	10
Ponto	16	17	18	19	20	21	22	23	24
Posição	Borda	Interm.	Núcleo	Interm.	Interm.	Borda	Interm.	Núcleo	Interm.
Na ₂ O	0.106	0.123	0.156	0.163	0.143	0.113	0.131	0.185	0.170
SiO ₂	39.255	39.237	39.302	38.897	39.133	39.795	39.055	39.910	39.261
MgO	20.792	20.632	20.403	20.160	20.360	20.509	20.516	20.803	20.508
Al_2O_3	15.390	15.744	16.205	16.097	16.009	15.756	15.843	16.279	16.235
K2O	10.311	10.266	10.175	10.143	10.178	10.245	10.170	10.026	9.813
CaO	0.003	0.017	0.012	0.004	0.000	0.006	0.012	0.014	0.016
TiO ₂	0.177	0.155	0.139	0.150	0.126	0.219	0.183	0.152	0.209
Cr_2O_3	0.022	0.046	0.036	0.000	0.000	0.000	0.016	0.000	0.005
MnO	0.058	0.044	0.042	0.100	0.062	0.116	0.107	0.089	0.060
FeO	8.006	7.792	7.577	7.656	7.516	8.102	7.982	7.604	7.315
Total	94.120	94.056	94.047	93.370	93.527	94.861	94.015	95.062	93.592
Na	0.015	0.017	0.022	0.023	0.020	0.016	0.019	0.026	0.024
Si	2.870	2.866	2.864	2.859	2.868	2.882	2.857	2.872	2.865
Mg	2.267	2.247	2.217	2.209	2.225	2.214	2.237	2.232	2.231
Al	1.130	1.134	1.136	1.141	1.132	1.118	1.143	1.128	1.135
Al VI	0.197	0.221	0.256	0.254	0.251	0.227	0.222	0.253	0.262
K	0.962	0.957	0.946	0.951	0.952	0.947	0.949	0.920	0.914
Ca	0.000	0.001	0.001	0.000	0.000	0.000	0.001	0.001	0.001
Ti	0.010	0.009	0.008	0.008	0.007	0.012	0.010	0.008	0.011
Cr	0.001	0.003	0.002	0.000	0.000	0.000	0.001	0.000	0.000
Mn	0.004	0.003	0.003	0.006	0.004	0.007	0.007	0.005	0.004
Fe	0.490	0.476	0.462	0.471	0.461	0.491	0.488	0.458	0.446
X Mg	0.765	0.761	0.753	0.751	0.756	0.752	0.756	0.756	0.756
X Fe	0.165	0.161	0.157	0.160	0.157	0.167	0.165	0.155	0.151
X Ti	0.003	0.003	0.003	0.003	0.002	0.004	0.003	0.003	0.004
X Al VI	0.066	0.075	0.087	0.086	0.085	0.077	0.075	0.086	0.089
X K	0.984	0.981	0.976	0.976	0.979	0.983	0.980	0.972	0.973

Tabela 3.8: Resultados analíticos para a flogopita (Phl) do campo Sit_10 do cloritito (AM-01). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Amostra	AM-01	AM-01	AM-01	AM-01	AM-01
Campo	Х	Х	Х	Х	Х
Ponto	1	2	3	4	5
Posição	Borda	Interm.	Núcleo	Interm.	Borda
Na ₂ O	0.130	0.188	0.190	0.181	0.093
SiO ₂	39.938	39.328	38.883	39.711	39.103
MgO	21.023	20.866	20.739	21.134	20.773
Al_2O_3	15.378	16.019	16.158	15.765	15.869
K ₂ O	10.219	10.019	9.893	10.173	10.335
CaO	0.054	0.024	0.029	0.040	0.026
TiO ₂	0.257	0.175	0.123	0.104	0.140
Cr_2O_3	0.031	0.000	0.044	0.000	0.062
MnO	0.014	0.069	0.021	0.051	0.042
FeO	8.065	7.300	7.060	7.554	7.972
Total	95.109	93.988	93.140	94.713	94.415
Na	0.018	0.027	0.027	0.025	0.013
Si	2.885	2.863	2.853	2.873	2.850
Mg	2.264	2.264	2.268	2.280	2.257
Al	1.115	1.137	1.147	1.127	1.150
Al VI	0.194	0.237	0.250	0.218	0.213
Κ	0.942	0.930	0.926	0.939	0.961
Ca	0.004	0.002	0.002	0.003	0.002
Ti	0.014	0.010	0.007	0.006	0.008
Cr	0.002	0.000	0.003	0.000	0.004
Mn	0.001	0.004	0.001	0.003	0.003
Fe	0.487	0.444	0.433	0.457	0.486
X Mg	0.765	0.766	0.767	0.770	0.762
X Fe	0.165	0.150	0.146	0.154	0.164
X Ti	0.005	0.003	0.002	0.002	0.003
X Al VI	0.066	0.080	0.084	0.074	0.072
ХК	0.977	0.970	0.969	0.971	0.984

Tabela 3.9: Resultados analíticos para a flogopita (Phl) do campo Sit_X do cloritito (AM-01). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Amostra	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02
Campo	4	4	4	4	4	4	4	4	4	4	4	4	4
Ponto	1	2	3	4	5	6	7	8	9	10	11	12	13
Posição	Borda	Interm.	Interm.	Núcleo	Interm.	Interm.	Borda	Borda	Interm.	Núcleo	Interm.	Interm.	Borda
SiO ₂	51.89	51	51.92	52.29	50.41	51.18	51.54	52.96	51.15	51.04	51.26	52.33	53.96
TiO ₂	0.04	0.04	0.02	0.09	0.04	0.01	0.04	0.04	0.04	0.03	0.02	0.02	0.04
Al_2O_3	7.21	7.87	7.28	7	8.91	8.38	7.59	6.29	8.18	7.93	7.57	7.03	4.83
FeO	6.23	6.32	6.31	6.15	6.76	6.65	6.28	5.91	6.4	6.41	6.37	6.09	5.47
MnO	0.22	0.18	0.12	0.17	0.16	0.16	0.19	0.16	0.18	0.17	0.16	0.18	0.12
MgO	19.61	18.65	19.21	19.23	18.38	18.68	19.09	19.88	18.88	18.84	19.13	19.58	20.51
CaO	11.84	11.8	11.82	12.08	11.89	12.06	11.85	12.29	11.82	11.88	11.93	12.05	12.58
Na ₂ O	0.98	1.1	0.95	0.93	1.25	1.18	1.11	1.01	1.15	1.14	1.04	0.98	0.67
K2O	0.09	0.09	0.09	0.07	0.14	0.11	0.09	0.07	0.11	0.09	0.09	0.08	0.04
Cr ₂ O ₃	0	0	0.03	0.04	0.01	0	0	0.05	0	0.02	0.03	0	0.01
Total	98.110	97.050	97.720	98.010	97.940	98.410	97.780	98.610	97.910	97.530	97.570	98.340	98.220
Si (T)	7.098	7.088	7.139	7.187	6.962	7.033	7.099	7.236	7.039	7.058	7.074	7.157	7.389
Al (T)	0.902	0.912	0.861	0.813	1.038	0.967	0.901	0.764	0.961	0.942	0.926	0.843	0.611
$Fe^{3}(T)$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ti (T)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al (C)	0.259	0.376	0.318	0.320	0.411	0.389	0.330	0.248	0.365	0.350	0.305	0.289	0.168
Cr (C)	0.000	0.000	0.003	0.004	0.001	0.000	0.000	0.005	0.000	0.002	0.003	0.000	0.001
$Fe^{3}(C)$	0.713	0.701	0.726	0.653	0.739	0.690	0.723	0.625	0.737	0.741	0.735	0.697	0.558
Ti (C)	0.004	0.004	0.002	0.009	0.004	0.001	0.004	0.004	0.004	0.003	0.002	0.002	0.004
Mg (C)	3.999	3.864	3.938	3.940	3.784	3.827	3.920	4.049	3.873	3.884	3.936	3.992	4.187
$Fe^{2}(C)$	0.000	0.033	0.000	0.054	0.041	0.074	0.000	0.050	0.000	0.000	0.000	0.000	0.068
Mn (C)	0.025	0.021	0.014	0.020	0.019	0.019	0.022	0.019	0.021	0.020	0.019	0.021	0.014
Ca (C)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Tabela 3.10: Resultados analíticos para a hornblenda (Hbl) do campo Sit_4 do hornblenda granofels (AM-02). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Mg (B)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\mathrm{Fe}^{2}(\mathrm{B})$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn (B)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ca (B)	1.735	1.757	1.741	1.779	1.759	1.776	1.749	1.799	1.743	1.760	1.764	1.766	1.846
Na (B)	0.260	0.243	0.253	0.221	0.241	0.224	0.251	0.201	0.257	0.240	0.236	0.234	0.154
Ca (A)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na (A)	0.000	0.054	0.000	0.027	0.094	0.090	0.045	0.067	0.050	0.066	0.042	0.026	0.024
K (A)	0.016	0.016	0.016	0.012	0.025	0.019	0.016	0.012	0.019	0.016	0.016	0.014	0.007

Batista, J. P. F. 2018, Caracterização Petrológica e Geocronológica dos Clorititos Metassomáticos e Rochas Associadas do Leste do Quadrilátero Ferrífero, MG.

Tabela 3.11: Resultados analíticos para a hornblenda (Hbl) do campo Sit_5 do hornblenda granofels (AM-02). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Amostra	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02	AM-02
Campo	5	5	5	5	5	5	5	5	5	5	5
Ponto	19	20	21	22	23	24	25	26	27	28	29
Posição	Borda	Interm.	Interm.	Núcleo	Interm.	Interm.	Borda	Borda	Núcleo	Núcleo	Borda
SiO ₂	56.100	52.580	53.280	52.370	53.270	52.060	52.260	55.570	53.740	51.690	56.020
TiO ₂	0.000	0.020	0.060	0.030	0.030	0.010	0.010	0.000	0.010	0.040	0.020
Al ₂ O ₃	2.850	6.140	6.460	6.520	5.890	7.100	7.040	3.640	4.990	7.820	2.710
FeO	4.610	5.950	6.260	6.420	5.860	6.330	6.100	5.060	5.540	6.390	4.720
MnO	0.180	0.160	0.200	0.190	0.150	0.190	0.200	0.140	0.240	0.170	0.150
MgO	21.470	19.940	19.670	19.650	19.970	19.540	19.300	20.910	20.570	19.060	21.380
CaO	12.880	12.150	11.820	11.870	12.230	12.030	11.810	12.830	12.310	12.010	13.010
Na ₂ O	0.380	0.760	0.850	0.870	0.810	0.960	0.950	0.500	0.660	1.050	0.370
K2O	0.050	0.110	0.070	0.080	0.060	0.090	0.100	0.060	0.070	0.090	0.050
Cr ₂ O ₃	0.000	0.010	0.000	0.000	0.040	0.000	0.030	0.000	0.020	0.000	0.070
Total	98.520	97.820	98.670	98.000	98.310	98.310	97.800	98.710	98.150	98.320	98.500
Si (T)	7.639	7.220	7.241	7.174	7.285	7.123	7.180	7.574	7.343	7.086	7.647

Al (T)	0.361	0.780	0.759	0.826	0.715	0.877	0.820	0.426	0.657	0.914	0.353
$Fe_3(T)$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ti (T)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al (C)	0.096	0.213	0.274	0.226	0.234	0.267	0.319	0.158	0.146	0.348	0.083
Cr (C)	0.000	0.001	0.000	0.000	0.004	0.000	0.003	0.000	0.002	0.000	0.008
$Fe_3(C)$	0.398	0.683	0.711	0.736	0.662	0.724	0.701	0.378	0.633	0.733	0.345
Ti (C)	0.000	0.002	0.006	0.003	0.003	0.001	0.001	0.000	0.001	0.004	0.002
Mg (C)	4.358	4.082	3.985	4.013	4.071	3.986	3.953	4.249	4.190	3.895	4.351
$Fe_2(C)$	0.127	0.000	0.000	0.000	0.009	0.000	0.000	0.199	0.000	0.000	0.194
Mn (C)	0.021	0.019	0.023	0.022	0.017	0.022	0.023	0.016	0.028	0.020	0.017
Ca (C)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg (B)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$Fe_2(B)$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn (B)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ca (B)	1.879	1.788	1.721	1.742	1.792	1.764	1.738	1.874	1.802	1.764	1.903
Na (B)	0.100	0.202	0.224	0.231	0.208	0.236	0.253	0.126	0.175	0.236	0.097
Ca (A)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na (A)	0.000	0.000	0.000	0.000	0.007	0.018	0.000	0.006	0.000	0.043	0.001
K (A)	0.009	0.019	0.012	0.014	0.010	0.016	0.018	0.010	0.012	0.016	0.009

Amostra	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05
Campo	3	3	3	3	3	3
Ponto	12	13	14	15	16	17
Posição	Núcleo	Núcleo	Interm.	Núcleo	Interm.	Borda
SiO ₂	53.292	53.770	53.586	53.975	54.855	54.530
TiO ₂	0.228	0.281	0.241	0.233	0.223	0.174
Al_2O_3	5.346	5.653	4.974	4.966	4.520	4.575
FeO	7.536	7.696	7.472	7.532	7.323	7.155
MnO	0.189	0.158	0.194	0.169	0.183	0.213
MgO	18.585	18.494	18.827	18.890	18.150	18.304
CaO	11.798	12.030	11.987	11.925	12.268	12.086
Na ₂ O	0.884	1.170	0.898	0.785	0.721	0.727
K ₂ O	0.063	0.071	0.065	0.068	0.059	0.053
Cr ₂ O ₃	0.048	0.072	0.035	0.093	0.049	0.039
Total	97.969	99.395	98.279	98.636	98.351	97.856
Si (T)	7.373	7.371	7.400	7.411	7.609	7.579
Al (T)	0.627	0.629	0.600	0.589	0.391	0.421
$\operatorname{Fe}^{3}(T)$	0.000	0.000	0.000	0.000	0.000	0.000
Ti (T)	0.000	0.000	0.000	0.000	0.000	0.000
Al (C)	0.244	0.283	0.209	0.214	0.347	0.328
Cr (C)	0.005	0.008	0.004	0.010	0.005	0.004
Fe ³ (C)	0.585	0.423	0.537	0.586	0.141	0.247
Ti (C)	0.024	0.029	0.025	0.024	0.023	0.018
Mg (C)	3.833	3.779	3.876	3.867	3.753	3.793
$\operatorname{Fe}^{2}(C)$	0.287	0.459	0.326	0.279	0.708	0.585
Mn (C)	0.022	0.018	0.023	0.020	0.022	0.025
Ca (C)	0.000	0.000	0.000	0.000	0.000	0.000
Mg (B)	0.000	0.000	0.000	0.000	0.000	0.000
Fe ² (B)	0.000	0.000	0.000	0.000	0.000	0.000
Mn (B)	0.000	0.000	0.000	0.000	0.000	0.000
Ca (B)	1.749	1.767	1.774	1.754	1.823	1.800
Na (B)	0.237	0.233	0.226	0.209	0.177	0.196
Ca (A)	0.000	0.000	0.000	0.000	0.000	0.000
Na (A)	0.000	0.078	0.014	0.000	0.017	0.000
K (A)	0.011	0.012	0.011	0.012	0.010	0.009

Tabela 3.12: Resultados analíticos para a hornblenda (Hbl) do campo Sit_3 do meta-tonalito (AM-03). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Amostra	AM-04	AM-04	AM-04	AM-04	AM-04
Campo	1	1	1	1	1
Ponto	11	12	13	14	15
Posição	Inter.	Inter.	Núcleo	Inter.	Borda
SiO ₂	62.169	62.309	62.306	62.754	61.741
TiO ₂	0.024	0.030	0.055	0.031	0.032
Al_2O_3	0.172	0.109	0.190	0.133	0.413
FeO	2.137	2.120	1.712	1.727	1.898
MnO	0.000	0.026	0.021	0.002	0.000
MgO	29.460	29.744	29.977	30.127	29.624
CaO	0.000	0.049	0.000	0.001	0.054
Na ₂ O	0.060	0.062	0.056	0.035	0.139
K ₂ O	0.067	0.070	0.061	0.077	0.099
Cr ₂ O ₃	0.018	0.072	0.050	0.004	0.007
Total	94.122	94.689	94.526	94.937	94.048

Tabela 3.13: Resultados analíticos para o talco (Tlc) do campo Sit_1 do talco granofels (AM-04). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Tabela 3.14: Resultados analíticos para o talco (Tlc) do campo Sit_2 do talco granofels (AM-04). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Amostra	AM-04							
Campo	2	2	2	2	2	2	2	2
Ponto	38	39	40	41	42	43	44	45
Posição	Borda	Núcleo	Borda	Borda	Borda	Inter.	Borda	Inter.
SiO ₂	62.503	61.896	60.615	61.526	61.871	62.947	62.678	62.744
TiO ₂	0.038	0.032	0.044	0.051	0.045	0.059	0.047	0.111
Al ₂ O ₃	0.315	0.350	0.733	0.370	0.308	0.240	0.237	0.176
FeO	1.657	1.631	1.643	1.721	2.146	1.804	1.772	1.779
MnO	0.023	0.028	0.002	0.000	0.037	0.000	0.013	0.000
MgO	29.983	29.952	29.354	29.286	29.803	30.509	30.235	30.284
CaO	0.017	0.025	0.058	0.009	0.028	0.030	0.031	0.027
Na ₂ O	0.167	0.148	0.201	0.117	0.089	0.131	0.158	0.087
K ₂ O	0.164	0.217	0.326	0.195	0.118	0.150	0.177	0.117
Cr ₂ O ₃	0.066	0.068	0.000	0.000	0.026	0.041	0.031	0.027
Total	94.981	94.386	93.153	93.372	94.551	96.025	95.437	95.428

Amostra	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01
Campo	7	7	7	7	7	7	7	7	7	7	7	7
Ponto	24	25	26	27	28	29	30	31	32	33	34	35
Posição	Borda	Interm.	Interm.	Interm.	Interm.	Núcleo	Interm.	Interm.	Interm.	Interm.	Interm.	Borda
SiO ₂	65.407	64.388	64.145	63.901	63.495	66.603	64.542	64.342	64.789	65.880	64.886	67.650
Al_2O_3	21.617	22.264	22.399	22.483	22.895	20.728	22.125	22.353	21.633	21.559	21.668	20.280
FeO	0.000	0.000	0.032	0.000	0.002	0.000	0.005	0.020	0.000	0.000	0.048	0.024
CaO	2.129	2.870	3.319	3.412	3.511	1.339	3.036	3.052	3.512	2.134	2.386	0.300
Na ₂ O	10.325	9.925	9.750	9.623	9.441	10.885	9.837	9.807	10.155	10.524	10.384	11.262
K ₂ O	0.094	0.091	0.081	0.094	0.116	0.081	0.079	0.117	0.074	0.087	0.076	0.090
BaO	0.023	0.037	0.001	0.015	0.028	0.018	0.008	0.006	0.003	0.006	0.083	0.001
Total	99.595	99.575	99.727	99.528	99.488	99.654	99.632	99.697	100.166	100.190	99.531	99.607
Si	2.885	2.847	2.835	2.830	2.815	2.929	2.852	2.843	2.856	2.889	2.871	2.966
Al	1.124	1.161	1.167	1.174	1.196	1.075	1.153	1.164	1.124	1.115	1.130	1.048
Fe	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.002	0.001
Ca	0.101	0.136	0.157	0.162	0.167	0.063	0.144	0.144	0.166	0.100	0.113	0.014
Na	0.883	0.851	0.836	0.826	0.811	0.928	0.843	0.840	0.868	0.895	0.891	0.957
K	0.005	0.005	0.005	0.005	0.007	0.005	0.004	0.007	0.004	0.005	0.004	0.005
Ва	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
Anortita	10.175	13.707	15.761	16.296	16.934	6.336	14.505	14.577	15.981	10.028	11.219	1.443
Albita	89.290	85.776	83.781	83.169	82.400	93.207	85.046	84.758	83.618	89.486	88.355	98.041
Ortoclásio	0.535	0.517	0.458	0.535	0.666	0.456	0.449	0.665	0.401	0.487	0.425	0.516

Tabela 3.15: Resultados analíticos para a plagioclásio (Pl) do campo Sit_7 do cloritito (AM-01). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Amostra	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01	AM-01
Campo	8	8	8	8	8	8	8	8	8
Ponto	15	16	17	18	19	20	21	22	23
Posição	Borda	Interm.	Interm.	Núcleo	Núcleo	Núcleo	Intem.	Interm.	Borda
SiO ₂	69.008	67.236	65.925	65.978	66.335	65.215	67.189	67.005	67.720
Al ₂ O ₃	20.092	20.369	21.125	21.254	21.242	21.453	20.773	20.312	19.709
FeO	0.000	0.009	0.028	0.042	0.000	0.016	0.009	0.003	0.037
CaO	0.166	0.681	1.394	1.542	1.750	2.055	1.230	0.862	0.102
Na ₂ O	11.635	11.368	10.734	10.720	10.623	10.525	10.710	11.009	11.460
K ₂ O	0.090	0.096	0.121	0.141	0.101	0.081	0.078	0.093	0.124
BaO	0.016	0.000	0.047	0.059	0.012	0.041	0.040	0.013	0.003
Total	101.007	99.759	99.374	99.736	100.063	99.386	100.029	99.297	99.155
Si	2.983	2.950	2.910	2.904	2.908	2.885	2.939	2.952	2.983
Al	1.024	1.054	1.099	1.103	1.098	1.119	1.071	1.055	1.023
Fe	0.000	0.000	0.001	0.002	0.000	0.001	0.000	0.000	0.001
Ca	0.008	0.032	0.066	0.073	0.082	0.097	0.058	0.041	0.005
Na	0.975	0.967	0.919	0.915	0.903	0.903	0.908	0.940	0.979
K	0.005	0.005	0.007	0.008	0.006	0.005	0.004	0.005	0.007
Ba	0.000	0.000	0.001	0.001	0.000	0.001	0.001	0.000	0.000
Anortita	0.778	3.187	6.650	7.305	8.297	9.695	5.941	4.126	0.486
Albita	98.719	96.278	92.663	91.899	91.133	89.850	93.610	95.344	98.811
Ortoclásio	0.502	0.535	0.687	0.795	0.570	0.455	0.449	0.530	0.703

Tabela 3.16: Resultados analíticos para a plagioclásio (Pl) do campo Sit_8 do cloritito (AM-01). Numeração original fornecida pelo LMic do DEGEO/UFOP. Com base nestes resultados, foi gerado mapa químico quantitativo (Figura 4.17).

Amostra	AM-02								
Campo	6	6	6	6	6	6	6	6	6
Ponto	37	38	39	40	41	42	43	44	45
Posição	Borda	Interm.	Interm.	Núcléo	Núcleo	Núcleo	Interm.	Interm.	Borda
SiO ₂	69.000	68.302	67.404	66.084	66.147	66.181	67.317	68.428	68.322
Al ₂ O ₃	20.454	20.936	21.397	22.367	22.213	22.386	21.251	20.655	20.283
FeO	0.030	0.000	0.005	0.000	0.000	0.008	0.000	0.038	0.052
CaO	0.152	0.727	1.478	2.519	2.498	2.685	1.282	0.260	0.197
Na ₂ O	11.032	11.001	10.574	10.139	10.080	10.307	10.734	10.932	11.601
K ₂ O	0.070	0.073	0.063	0.067	0.100	0.075	0.102	0.098	0.075
BaO	0.004	0.011	0.000	0.034	0.038	0.039	0.005	0.021	0.000
Total	100.742	101.050	100.921	101.210	101.076	101.681	100.691	100.432	100.530
Si	2.982	2.952	2.922	2.868	2.874	2.864	2.926	2.969	2.970
Al	1.042	1.067	1.094	1.145	1.138	1.142	1.089	1.057	1.039
Fe	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002
Ca	0.007	0.034	0.069	0.117	0.116	0.124	0.060	0.012	0.009
Na	0.924	0.922	0.889	0.853	0.849	0.865	0.905	0.920	0.978
K	0.004	0.004	0.003	0.004	0.006	0.004	0.006	0.005	0.004
Ва	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000
Anortita	0.753	3.509	7.144	12.026	11.977	12.532	6.155	1.290	0.926
Albita	98.835	96.072	92.493	87.593	87.453	87.051	93.261	98.131	98.655
Ortoclásio	0.413	0.419	0.363	0.381	0.571	0.417	0.583	0.579	0.420

Tabela 3.17: Resultados analíticos para a plagioclásio (Pl) do campo Sit_6 do hornblenda granofels (AM-02). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Amostra	AM-05											
Campo	1	1	1	1	1	1	1	1	1	1	1	1
Ponto	41	42	43	44	45	46	47	48	48	50	51	52
Posição	Núcleo											
SiO ₂	69.432	69.128	69.229	68.479	69.663	68.962	68.947	69.681	69.325	68.262	69.125	69.022
Al_2O_3	19.478	19.685	19.994	19.880	19.438	19.937	19.517	19.729	19.794	20.068	19.554	19.895
FeO	0.027	0.000	0.024	0.000	0.013	0.020	0.000	0.025	0.014	0.001	0.012	0.161
CaO	0.089	0.441	0.575	0.619	0.160	0.400	0.171	0.233	0.260	0.702	0.208	0.403
Na ₂ O	11.973	11.345	11.391	11.445	11.888	11.636	11.562	11.732	11.697	12.019	12.104	11.709
K ₂ O	0.079	0.079	0.074	0.080	0.072	0.057	0.200	0.064	0.091	0.102	0.257	0.085
BaO	0.000	0.013	0.008	0.013	0.004	0.004	0.095	0.003	0.011	0.000	0.000	0.002
Total	101.078	100.691	101.295	100.516	101.238	101.016	100.492	101.467	101.192	101.154	101.260	101.277
Si	3.001	2.996	2.985	2.979	3.005	2.983	2.998	2.998	2.992	2.960	2.990	2.982
Al	0.993	1.006	1.016	1.019	0.989	1.017	1.001	1.001	1.007	1.026	0.997	1.013
Fe	0.001	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.001	0.000	0.000	0.006
Ca	0.004	0.020	0.027	0.029	0.007	0.019	0.008	0.011	0.012	0.033	0.010	0.019
Na	1.003	0.953	0.952	0.965	0.994	0.976	0.975	0.979	0.979	1.011	1.015	0.981
K	0.004	0.004	0.004	0.004	0.004	0.003	0.011	0.004	0.005	0.006	0.014	0.005
Ва	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000
Anortita	0.407	2.094	2.703	2.889	0.735	1.858	0.802	1.082	1.207	3.110	0.928	1.858
Albita	99.162	97.460	96.883	96.666	98.871	97.826	98.082	98.564	98.290	96.352	97.707	97.676
Ortoclásio	0.431	0.447	0.414	0.445	0.394	0.315	1.116	0.354	0.503	0.538	1.365	0.467

Tabela 3.18: Resultados analíticos para a plagioclásio (Pl) do campo Sit_1 do meta-tonalito (AM-05). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Amostra	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05
Campo	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Ponto	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Posição	Núcleo	Núcleo	Núcleo	Núcleo	Núcleo	Núcleo	Núcleo	Núcleo	Núclleo	Núcleo	Núcleo	Núcleo	Núcleo	Núcleo	Núcleo	Núcleo
SiO ₂	68.304	69.264	68.058	68.822	69.967	68.283	66.950	69.728	69.148	69.435	56.883	68.506	68.903	68.220	69.073	69.227
Al_2O_3	19.777	19.880	20.483	19.662	19.584	21.342	19.892	19.314	20.030	19.449	19.866	19.511	19.587	20.086	20.364	19.857
FeO	0.020	0.000	0.010	0.030	0.000	0.017	0.005	0.028	0.000	0.000	0.000	0.000	0.012	0.038	0.000	0.000
CaO	0.636	0.307	1.164	0.382	0.093	0.251	0.081	0.088	0.587	0.248	0.301	0.562	0.552	0.689	0.728	0.466
Na ₂ O	11.544	11.851	11.322	11.579	12.053	11.733	12.002	12.017	11.510	11.695	8.691	11.580	11.491	11.131	11.518	11.522
K ₂ O	0.083	0.069	0.089	0.136	0.067	0.088	0.139	0.072	0.073	0.076	1.927	0.118	0.070	0.146	0.076	0.065
BaO	0.000	0.004	0.000	0.000	0.000	0.010	0.001	0.001	0.000	0.003	0.044	0.015	0.000	0.005	0.000	0.000
Total	100.364	101.375	101.126	100.611	101.764	101.724	99.070	101.248	101.348	100.906	87.712	100.292	100.615	100.315	101.759	101.137
Si	2.977	2.986	2.949	2.990	3.003	2.937	2.961	3.008	2.981	3.004	2.864	2.988	2.992	2.972	2.968	2.989
Al	1.016	1.011	1.046	1.007	0.991	1.082	1.037	0.982	1.018	0.992	1.179	1.003	1.003	1.032	1.032	1.011
Fe	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Ca	0.030	0.014	0.054	0.018	0.004	0.012	0.004	0.004	0.027	0.011	0.016	0.026	0.026	0.032	0.034	0.022
Na	0.976	0.991	0.951	0.975	1.003	0.978	1.029	1.005	0.962	0.981	0.848	0.979	0.968	0.940	0.960	0.965
K	0.005	0.004	0.005	0.008	0.004	0.005	0.008	0.004	0.004	0.004	0.124	0.007	0.004	0.008	0.004	0.004
Ba	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
Anortita	2.941	1.406	5.350	1.777	0.423	1.163	0.369	0.401	2.730	1.153	1.643	2.595	2.576	3.280	3.361	2.178
Albita	96.602	98.218	94.163	97.470	99.214	98.352	98.878	99.207	96.866	98.426	85.835	96.756	97.035	95.892	96.221	97.460
Ortoclási o	0.457	0.376	0.487	0.753	0.363	0.485	0.753	0.391	0.404	0.421	12.522	0.649	0.389	0.828	0.418	0.362

Tabela 3.19: Resultados analíticos para a plagioclásio (Pl) do campo Sit_2 do meta-tonalito (AM-05). Numeração original fornecida pelo LMic do DEGEO/UFOP.

Amostra	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05	AM-05
Campo	3	3	3	3	3	3	3	3	3	3	3
Ponto	1	2	3	4	5	6	7	8	9	10	11
Posição	Borda	Núcleo	Borda	Borda	Interm.	Interm.	Núcleo	Núcleo	Interm.	Interm.	Borda
Na ₂ O	0.209	0.345	0.260	0.258	0.389	0.259	0.234	0.285	0.317	0.228	0.236
SiO ₂	38.920	39.349	39.373	39.009	39.732	39.497	39.387	39.563	37.622	39.457	39.066
MgO	18.173	18.480	18.124	18.240	18.795	18.470	18.265	18.637	17.691	18.445	17.751
Al_2O_3	15.063	14.677	15.120	15.161	15.453	14.891	15.668	15.462	14.693	15.396	15.193
K ₂ O	10.268	9.906	10.252	10.353	10.168	10.123	10.224	10.080	9.756	10.105	10.294
CaO	0.040	0.040	0.023	0.047	0.034	0.046	0.022	0.009	0.035	0.028	0.036
TiO ₂	1.557	1.525	1.573	1.555	1.506	1.567	1.572	1.508	1.479	1.502	1.564
Cr ₂ O ₃	0.054	0.065	0.026	0.090	0.117	0.024	0.070	0.075	0.053	0.000	0.100
MnO	0.097	0.025	0.018	0.086	0.033	0.018	0.117	0.043	0.000	0.125	0.020
FeO	9.857	10.057	9.945	9.928	10.126	10.108	9.899	9.881	9.684	10.074	10.121
Total	94.238	94.469	94.714	94.727	96.353	95.003	95.458	95.543	91.330	95.360	94.381
Na	0.030	0.049	0.037	0.037	0.054	0.037	0.033	0.040	0.047	0.032	0.034
Si	2.872	2.892	2.887	2.866	2.864	2.887	2.864	2.870	2.863	2.872	2.879
Mg	1.999	2.024	1.981	1.998	2.020	2.013	1.980	2.016	2.007	2.002	1.950
Al	1.128	1.108	1.113	1.134	1.136	1.113	1.136	1.130	1.137	1.128	1.121
Al VI	0.181	0.163	0.193	0.178	0.177	0.171	0.206	0.192	0.181	0.193	0.199
K	0.966	0.929	0.959	0.970	0.935	0.944	0.948	0.933	0.947	0.938	0.968
Ca	0.003	0.003	0.002	0.004	0.003	0.004	0.002	0.001	0.003	0.002	0.003
Ti	0.086	0.084	0.087	0.086	0.082	0.086	0.086	0.082	0.085	0.082	0.087
Cr	0.003	0.004	0.002	0.005	0.007	0.001	0.004	0.004	0.003	0.000	0.006
Mn	0.006	0.002	0.001	0.005	0.002	0.001	0.007	0.003	0.000	0.008	0.001
Fe	0.608	0.618	0.610	0.610	0.610	0.618	0.602	0.600	0.616	0.613	0.624
		-		-	-	-	-	-			-
X Mg	0.695	0.701	0.690	0.696	0.699	0.697	0.689	0.697	0.695	0.693	0.682
X Fe	0.212	0.214	0.212	0.212	0.211	0.214	0.209	0.207	0.213	0.212	0.218
X Ti	0.030	0.029	0.030	0.030	0.028	0.030	0.030	0.028	0.029	0.028	0.030
X Al VI	0.063	0.056	0.067	0.062	0.061	0.059	0.072	0.067	0.063	0.067	0.070
XK	0.967	0.947	0.961	0.960	0.943	0.959	0.965	0.958	0.950	0.965	0.964

Tabela 3.20: Resultados analíticos para a biotita (Bt) do campo Sit_3 do meta-tonalito (AM-05). Numeração original fornecida pelo LMic do DEGEO/UFOP.

3.4 ANÁLISE ISOTÓPICA U-Pb E DETERMINAÇÃO DOS ELEMENTOS TRAÇOS EM ZIRCÃO

As análises em grãos de zircão foram determinadas para as amostras AM-01 e AM-02 do cloritito de *blackwall*, sendo as técnicas analíticas utilizadas para a caracterização isotópica relatadas no item Metodologia deste estudo. Todos os cristais de zircão foram fotografados por catodoluminescência (CL) (Figuras 4.18A-D e 4.19A-D) e por elétrons retroespalhados (BSE)

(Figuras 4.20 e 4.21), e a documentação destas imagens foi fundamental na avaliação de padrões de zoneamento, inclusões e fissuras, além de útil como guia para as análises isotópicas pontuais. Por fim, é importante ressaltar que as análises isotópicas foram realizadas via La-ICP-MS no Laboratório de Geocronologia do DEGEO/UFOP e validadas via SHRIMP na *University of Western Australia*.

Figura 3.18: Imagem por catodoluminescência (CL) dos grãos de zircão do cloritito (AM-01). Em A tem-se uma visão geral de todos os grãos de zircão coletados, e em B, C e D há detalhes da análise realizada, onde o círculo vermelho refere-se aos isótopos U-Pb via LA-ICP-MS, o branco menor aos isótopos Lu-Hf via LA-ICP-MS e o branco maior às análises de elementos traço via *laser ablation*.

Figura 3.19: Imagem por catodoluminescência (CL) dos grãos de zircão do hornblenda granofels (AM-02). Em A tem-se uma visão geral de todos os grãos de zircão coletados, e em B, C e D há detalhes da análise realizada, onde o círculo vermelho refere-se aos isótopos de U-Pb via LA-ICP-MS, o branco menor aos isótopos Lu-Hf via LA-ICP-MS e o branco maior às análises de elementos traço via *laser ablation*.

Figura 3.20: Imagem por elétrons retroespalhados (BSE) de grãos de zircão coletados no cloritito (AM-01).

Figura 3.21: Imagem por elétrons retroespalhados (BSE) de grãos de zircão coletados no hornblenda granofels (AM-02).

3.4.1 Datação U-Pb em zircão

No cloritito (AM-01), das onze análises isotópicas U-Pb realizadas, três mostram resultados discordantes, representando zircões parcialmente hidrotermalizados. Estas análises apresentam alta média de U = 2490 ppm contra U = 306 ppm dos demais grãos, e possuem baixa média da razão Th/U = 0,055 em relação a Th/U = 0,234. Nove análises alinham-se na regressão com intercepto superior 2812,7 ± 6 Ma e inferior 513 ± 29 Ma (Figura 4.22). Como as idades calculadas sugerem perda de Pb para o tempo zero e, com base no exposto no tópico anterior, que tal perda remete ao Cambriano, as idades 207 Pb/²⁰⁶Pb foram recalculadas para este tempo. Em comparação aos dados SHRIMP apresentados, as análises isotópicas via LA-ICP-MS obtiveram *clusters* de idade com interceptos superior e inferior no *plot* da discórdia iguais, respectivamente, a 2994,4 ± 5,3 Ma e 468 ± 13 Ma para MSWD = 2,9, e 2841,6 ± 4,8 Ma e 534 ± 15 para MSWD = 1,9 (Figura 4.23).

Figura 3.22: Diagrama discórdia para a amostra AM-01 resultante das análises via SHRIMP. Nele o intercepto superior é $2812,7 \pm 6$ Ma e o inferior 513 ± 29 Ma.

Figura 3.23: Diagrama discórdia para a amostra AM-01 resultante das análises via LA-ICP-MS. Nele os interceptos superiores são 2994,4 \pm 5,3 Ma e 2841,6 \pm 4,8 Ma e os inferiores 468 \pm 13 Ma e 534 \pm 15 Ma.

Para o hornblenda granofels (AM-02), entre as quinze análises isotópicas U-Pb realizadas, seis são discordantes, sendo também correspondentes a zonas parcialmente hidrotermalizadas dos zircões. Quanto maior o grau de hidrotermalização, mais discordante o resultado analítico, expondo mais altas concentrações de U e baixas razões Th/U, cujas médias, nesta ordem, são U = 1253 ppm e Th/U = 0,119, como obtido para a AM-01. No diagrama discórdia para MSWD = 20, a regressão tem intercepto superior 2805 \pm 9 Ma e inferior 474 \pm 45 Ma (Figura 4.24). Por fim, os dados obtidos via LA-ICP-MS tem intercepto superior 2748,6 \pm 2,4 Ma e inferior 612 \pm 2,3 Ma (Figura 4.25).

Figura 3.24: Diagrama discórdia para a amostra AM-02 resultante das análises via SHRIMP. Nele intercepto superior é 2805 ± 9 Ma e inferior 474 ± 45 Ma.

Figura 3.25: Diagrama discórdia para a amostra AM-02 resultante das análises via LA-ICP-MS. Nele o intercepto superior é 2748,6 \pm 2,4 Ma e o inferior 612 \pm 2.3 Ma.

3.4.2 Análises isotópicas Lu-Hf em zircão

O exame isotópico Lu-Hf é concordante com os apontamentos da química de elementos traços detalhados no próximo item. Os valores de ϵ Hf obtidos para os zircões do cloritito (AM-01) e do hornblenda granofels (AM-02) estão compreendidos entre -5,08 e +1,15, e -6,48 e -4.35 (Figura 4.26), respectivamente, evidenciando uma origem dominantemente crustal. Estes dados estão em concordância com os obtidos por Albert *et al.* (2016), que obtiveram dados de ϵ Hf para granitóides e gnaisses ortoderivados do sudeste do Cráton São Francisco. Por fim, a baixa razão ¹⁷⁶Lu/¹⁷⁷Hf, aliada à baixa mobilidade do elemento Hf no zircão, sugere idades-modelo precisas: T_{DM} = 3,2-3,0 Ga para AM-01, e T_{DM} = 3,2-3,1 Ga para AM-02.

Figura 3.26: Diagrama Idade U-Pb vs. ɛHf (t) acusando a proveniência crustal dos grãos de zircão, com alguma influência mantélica para AM-01.

3.4.3 Química de elementos traços em zircão

A química de elementos traços, como sugerido, corrobora a natureza crustal dos grãos de zircão, o que é mostrado pelo diagrama Yb vs. U (Albert *et al.* 2016 e Grimes *et al.* 2007), no qual os valores de U/Yb entre 0,4 e 3,0 para AM-01 e entre 0,6 e 2,0 para AM-02 plotam no campo de zircões

continentais (Figura 4.27). No mais, os teores de elementos terras raras (ETR) são semelhantes para o cloritito (AM-01) e para o hornblenda granofels (AM-02), sendo um enriquecimento mais pronunciado em ETR pesados notado em AM-01 em relação a AM-02, o que é validado pela razão Yb/La variando entre 40 e 900. A AM-01 mostra anomalia positiva a levemente negativa em Eu, o que pode sugerir retenção por plagioclásio, enquanto a AM-02 mostra tendência negativa. Também, é

notável uma anomalia positiva de Ce em ambas as amostras.

Figura 3.27: Diagrama Yb vs. U, segundo Albert *et al.* (2016) e Grimes *et al.* (2017), no qual os valores de U/Yb para AM-01 e para AM-02 plotam no campo dos zircões continentais. A cor dos *spots* segue a mesma legenda do diagrama da Figura 4.26, ou seja, AM-01 = preto e AM-02 = azul.

A seguir, as Tabelas 4.21 e 4.22 apresentam os resultados analíticos para os elementos maiores e traços dos grãos de zircão das amostras AM-01 e AM-02.

Ponto	Th	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но
11	55.70	388648.72	1531.27	5.77	19.87	3.06	18.13	9.71	10.33	16.07	9.00	124.69	53.54
12	63.27	389396.81	1683.04	2.35	12.80	1.91	12.61	4.99	8.33	12.65	6.64	127.96	53.14
14	69.62	347959.22	2002.11	20.09	63.08	10.56	58.18	24.66	15.64	30.38	10.20	136.35	54.51
15	126.95	420384.81	1797.57	11.58	33.52	3.68	24.26	9.90	10.03	27.93	11.31	155.84	59.22
17	91.72	456621.41	1630.70	2.72	9.54	0.79	6.18	3.19	2.71	10.44	5.68	77.62	33.51
18	63.79	467696.59	456.89	3.18	11.41	1.08	6.29	4.37	2.15	6.12	2.78	34.79	11.28
19	94.04	469765.88	380.06	1.40	13.34	0.94	5.08	3.54	3.08	9.22	2.91	32.44	11.03
21	112.39	491581.75	815.88	7.02	25.51	2.98	19.87	10.18	8.43	18.35	6.79	80.89	26.88
22	100.97	509666.06	527.45	2.06	13.74	0.69	3.92	3.24	5.07	10.16	3.78	35.14	13.75
23	145.05	522405.69	1269.39	5.89	29.31	4.22	27.16	13.58	13.02	26.56	13.01	141.87	48.18
24	30.09	333586.59	279.65	2.02	3.82	n.d.	0.93	2.59	1.64	5.11	1.70	21.17	5.88
25	125.94	519321.34	1481.96	1.25	6.00	n.d.	2.97	3.23	2.32	13.23	6.87	106.15	43.11
36	47.59	804485.25	640.87	n.d.	4.78	0.28	1.85	1.22	1.06	8.00	3.40	43.92	16.87
38	125.10	935429.00	1201.90	4.64	24.01	2.47	15.25	9.18	5.83	17.50	9.15	109.13	41.47
39	335.97	945204.44	1521.59	4.46	22.40	2.94	17.05	7.07	7.30	23.96	10.76	133.75	48.06
40	253.07	946486.75	1477.47	9.30	38.87	4.38	28.24	11.89	8.72	23.31	9.94	123.74	43.03
41	69.32	1053097.00	857.23	9.84	23.75	2.91	20.88	7.11	9.02	11.72	4.77	52.53	21.00
42	61.49	238172.48	774.06	20.11	46.25	5.29	32.36	10.17	15.33	7.33	4.56	42.18	16.94
40	146.12	1098443.75	1757.20	4.74	16.92	2.61	14.21	6.87	6.65	11.57	10.50	143.49	58.52
44	71.93	1179304.13	1561.21	9.83	31.82	3.21	22.56	7.51	6.53	12.70	5.74	71.54	29.08
45	162.89	1314961.50	1912.58	1.83	15.46	0.80	4.07	4.83	3.37	22.33	11.78	146.40	51.73
46	145.43	1483171.25	1487.22	4.38	27.26	2.38	17.41	11.29	7.35	23.08	11.44	134.35	47.09
47	58.32	1630526.88	402.66	2.43	11.26	0.84	5.77	3.17	11.43	6.76	2.77	32.39	10.34
48	82.06	1620352.75	1458.27	5.03	24.14	3.59	19.98	7.63	13.74	16.89	7.07	81.18	29.32
49	55.42	1740223.38	666.34	1.10	4.26	0.29	2.20	1.47	5.13	5.41	3.42	45.09	17.59
50	39.82	2180887.00	603.37	2.37	6.89	0.92	4.09	3.28	2.31	7.09	3.21	32.46	13.25

Tabela 3.21: Resultados analíticos dos elementos maiores e traços de zircões do cloritito (AM-01). A continuação da tabela, de Er até Ba, está na página 88. Numeração original fornecida pelo Laboratório de Geocronologia do DEGEO/UFOP. *n.d. = não detectado, b.l. = abaixo do limite de detecção.

61	69.01	233864.13	789.30	8.37	34.29	5.39	32.34	16.41	9.86	25.68	4.88	60.37	20.14
62	98.28	257431.58	519.54	0.93	12.42	0.40	2.71	3.27	0.98	14.26	2.60	41.17	15.74
64	121.22	240898.89	1408.63	1.00	15.01	0.76	4.76	4.30	3.62	28.66	8.91	126.05	43.93
65	74.31	237105.05	767.52	1.14	8.70	0.33	3.16	3.07	1.59	12.85	3.46	50.06	20.21
66	66.70	232842.88	725.23	1.27	9.44	0.60	3.81	3.18	2.04	5.77	3.52	53.90	20.96
67	51.84	264949.84	490.11	b.l.	8.45	0.77	4.15	3.57	1.23	11.72	2.46	39.10	14.12
68	72.86	243989.11	776.86	2.58	20.22	1.36	8.99	4.51	5.82	13.48	3.24	53.02	20.43
71	57.16	237460.14	677.69	1.69	6.56	0.60	2.78	b.l.	1.16	6.06	2.88	46.29	18.82
72	69.84	256930.86	721.78	1.00	10.64	1.00	4.94	4.22	2.84	10.91	3.32	51.54	20.42
73	67.31	247032.84	1101.95	2.38	12.44	0.99	8.48	5.27	3.67	13.14	5.00	81.00	33.44
74	107.05	254578.45	1856.62	5.08	22.53	3.45	22.00	12.81	5.18	24.72	7.91	123.08	49.13
75	43.98	260168.36	381.70	0.51	7.11	b.l.	1.27	2.57	0.65	6.19	1.77	32.24	11.81
86	86.95	268458.88	944.89	3.28	18.79	2.04	13.37	6.72	5.70	18.72	4.21	75.56	25.56
87	79.92	255103.36	842.20	3.12	14.32	1.29	10.27	5.45	4.51	16.17	3.62	56.53	21.93
88	36.12	266907.19	334.19	0.56	7.08	b.l.	1.14	2.05	3.93	11.85	2.05	35.08	11.18
89	51.47	273398.53	455.36	1.80	8.92	0.74	5.72	4.78	2.01	13.13	2.46	37.83	12.28
90	39.34	269234.13	305.00	0.90	7.92	0.32	2.34	2.79	1.82	7.64	2.24	29.74	9.64
91	33.99	263674.41	476.74	1.11	7.78	b.l.	1.77	2.07	1.75	8.13	2.48	44.22	14.35
93	70.52	211225.75	443.31	9.09	59.39	6.74	36.28	15.38	10.96	23.60	4.14	44.62	12.67
94	139.34	278398.72	1018.95	0.99	18.38	0.32	1.34	3.55	1.31	21.98	7.24	109.18	37.83
95	132.76	279592.69	1472.15	3.17	12.93	1.42	8.63	6.30	3.32	22.58	6.78	116.58	42.70
96	102.50	244557.64	1487.17	0.93	8.42	0.71	2.75	5.14	1.76	9.89	4.98	96.96	39.31
97	62.78	265876.75	1169.94	8.78	40.20	6.30	35.66	20.65	13.87	28.19	6.32	85.65	32.35
99	118.44	289100.03	1578.06	b.l.	19.87	b.l.	2.15	5.86	2.30	34.87	10.88	163.77	55.96
100	43.49	286091.34	479.63	3.56	16.23	2.79	16.77	10.58	5.38	14.26	3.52	45.44	14.65

Batista, J. P. F. 2018, Caracterização Petrológica e Geocronológica dos Clorititos Metassomáticos e Rochas Associadas do Leste do Quadrilátero Ferrífero, MG.

Ponto	Er	Tm	Yb	Lu	Si	Hf	Pb	U	Sc	Sr	Nb	Ba
11	399.22	73.41	993.32	104.49	147570.57	8478.66	17.55	733.30	1383.67	19.21	23.81	37.92
12	379.28	78.91	1101.77	110.94	147570.57	9994.99	12.80	961.70	1240.11	23.62	16.75	5.07
14	395.29	85.75	1244.89	137.38	147570.59	9728.86	67.47	1424.03	840.14	20.74	12.65	138.36
15	365.30	61.08	765.89	73.09	147570.59	8594.83	19.86	733.09	1139.32	7.71	9.24	5.18
17	222.79	42.27	543.94	61.03	147570.59	8911.47	13.17	565.46	1230.83	4.15	9.74	6.83
18	72.98	13.05	174.06	20.03	147570.62	7698.69	16.05	170.02	1092.96	3.02	6.09	6.45
19	67.08	12.36	159.26	16.75	147570.60	7288.27	19.45	102.55	1132.63	0.85	5.40	1.60
21	161.41	27.43	323.74	32.56	147570.62	7721.26	15.14	361.01	1193.41	7.50	8.41	211.98
22	84.75	15.52	203.79	22.62	147570.60	7115.75	32.16	174.33	1066.51	22.96	6.08	908.24
23	266.27	45.39	534.43	50.82	147570.60	8343.02	23.77	491.13	1234.17	4.48	10.12	5.91
24	48.76	7.47	107.44	18.46	147570.60	7825.77	6.18	144.54	527.62	0.61	3.46	6.15
25	272.47	51.71	682.27	72.08	147570.60	8209.47	18.27	721.85	1409.40	5.20	8.58	1.87
36	101.55	18.59	241.99	25.20	147570.62	8001.65	9.82	237.00	1140.11	1.17	6.13	0.94
38	254.06	44.70	573.36	56.40	147570.64	8368.04	21.18	545.91	1266.34	3.81	8.56	15.55
39	258.96	46.28	543.96	53.26	147570.62	8288.24	39.27	807.99	1120.15	7.03	10.88	11.04
40	247.76	43.32	511.69	48.32	147570.64	8440.01	34.53	821.34	983.27	6.09	12.32	21.90
41	130.66	25.57	338.08	35.54	147570.64	8576.19	10.73	456.68	1125.25	2.61	34.71	8.13
42	123.04	22.42	269.62	38.38	147570.64	4034.52	236.51	777.31	197.53	7.68	2.98	6.13
43	380.00	77.93	1060.17	108.38	147570.64	8557.46	17.67	865.38	1486.55	23.82	7.92	13.85
44	187.16	40.38	557.21	61.90	147570.64	9019.23	9.74	859.30	1154.50	17.25	8.37	15.05
45	287.97	48.08	563.10	54.57	147570.64	8139.72	26.66	364.98	1036.53	2.43	9.09	17.27
46	248.00	44.94	520.00	43.79	147570.64	7437.41	24.23	356.57	1250.26	1.63	8.78	2.78
47	59.37	11.29	141.13	15.96	147570.64	7986.69	17.84	179.52	979.31	2.02	7.25	3.61
48	164.74	29.55	356.50	38.17	147570.65	8298.10	12.35	399.67	890.67	2.14	10.93	6.02
49	110.80	21.00	281.00	30.65	147570.65	8493.20	12.58	250.50	937.80	1.12	6.80	1.71
50	83.18	17.24	250.49	27.25	147570.65	10269.89	6.43	539.09	1101.07	3.37	6.39	2.91

61	83.67	21.81	239.89	35.36	147570.59	7878.89	85.84	370.24	1128.71	3.64	7.38	18.58
62	67.04	18.51	207.37	42.06	147570.59	9257.08	22.12	153.24	913.15	1.47	5.13	1.19
64	173.29	45.69	484.19	67.21	147570.59	7965.11	28.68	555.53	1209.36	4.54	7.81	9.92
65	83.85	25.57	290.00	42.06	147570.59	8096.59	12.85	348.01	1182.53	3.86	10.17	7.76
66	83.17	23.32	252.78	35.33	147570.59	8111.09	15.02	408.16	1017.00	3.19	6.14	43.94
67	62.93	18.01	177.55	37.71	147570.59	9351.73	8.69	340.29	1224.84	2.59	6.15	5.03
68	84.55	25.94	307.11	44.16	147570.59	7578.80	15.47	444.11	1277.04	2.29	6.54	5.41
71	84.79	25.38	281.65	45.82	147570.59	8514.19	11.93	381.70	942.75	1.98	6.21	7.57
72	82.58	26.44	288.98	43.23	147570.59	8012.80	12.62	416.80	1338.32	1.93	6.99	7.55
73	148.59	44.56	525.45	78.74	147570.59	8090.24	12.81	577.93	1442.51	2.75	7.67	3.91
74	222.00	65.99	782.42	110.55	147570.59	9147.02	28.39	1033.10	1317.07	11.21	8.62	9.75
75	55.44	16.95	197.90	30.36	147570.59	7901.79	9.62	230.22	1119.41	1.59	5.74	1.23
86	109.34	31.90	356.07	52.17	147570.59	8033.77	13.05	619.32	1132.82	6.32	8.22	9.37
87	96.66	27.76	316.35	49.59	147570.59	7834.84	15.03	516.43	1154.63	4.60	8.33	31.18
88	46.31	12.70	143.79	21.79	147570.61	9514.20	8.41	319.97	1054.34	0.87	5.36	2.55
89	50.54	14.43	173.28	25.76	147570.59	7985.75	12.73	179.06	1058.21	0.39	10.48	3.64
90	38.48	10.13	113.56	16.59	147570.59	7789.40	9.55	135.23	1027.16	5.02	5.10	71.05
91	63.57	18.11	205.51	30.64	147570.59	10874.35	7.89	606.60	974.19	4.16	7.07	8.99
93	49.70	13.24	125.18	27.94	147570.59	7606.67	9.85	376.43	617.70	7.39	4.65	9.24
94	159.77	42.03	437.66	58.79	147570.59	9300.11	30.89	488.38	1016.86	2.46	5.30	1.37
95	183.99	51.32	568.14	87.78	147570.59	8171.06	21.18	669.12	1205.35	4.48	8.05	4.01
96	176.35	48.87	571.76	86.60	147570.59	8534.65	19.43	555.55	1050.27	2.55	6.36	1.17
97	138.44	45.43	549.19	90.84	147570.59	8968.36	82.31	916.88	1066.87	13.26	9.79	178.77
99	214.49	52.99	531.22	65.91	147570.59	7235.47	32.89	212.81	1106.91	1.23	8.74	2.94
100	62.50	17.57	202.32	29.84	147570.59	7730.80	13.63	201.03	1176.82	1.37	6.27	3.85

Batista, J. P. F. 2018, Caracterização Petrológica e Geocronológica dos Clorititos Metassomáticos e Rochas Associadas do Leste do Quadrilátero Ferrífero, MG.
Ponto	Th	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но
11	88.68	316830.57	1288.95	6.71	23.07	3.24	17.81	11.82	12.34	22.25	6.77	90.86	37.55
12	54.82	345464.11	680.14	n.d.	9.29	n.d.	1.47	1.84	0.93	9.85	3.33	45.65	19.51
13	60.51	350811.10	674.28	0.82	9.24	0.22	2.51	2.56	0.99	10.28	3.87	50.88	21.13
14	66.00	349149.16	775.92	n.d.	11.28	0.45	1.02	3.19	0.77	10.41	4.04	54.80	23.04
15	58.35	366835.32	584.64	0.80	8.91	n.d.	b.l.	b.l.	0.51	10.15	2.81	45.06	20.87
16	95.46	361736.65	1283.81	n.d.	7.67	0.42	b.l.	3.20	2.62	16.46	5.93	81.26	34.42
17	52.74	340106.63	557.88	0.68	10.97	0.32	2.89	3.31	1.04	10.10	2.95	46.31	18.72
18	114.15	358368.18	981.89	2.27	20.04	1.33	8.25	6.56	2.67	16.73	6.02	78.41	30.79
20	44.33	360041.83	496.47	0.67	7.20	n.d.	0.75	1.45	1.36	7.60	2.60	37.01	15.75
21	75.06	367762.63	710.91	2.74	15.30	1.44	7.93	6.23	4.79	13.55	4.32	55.12	21.47
23	55.97	352059.00	512.67	n.d.	7.77	n.d.	b.l.	1.21	0.64	7.26	2.98	40.11	16.90
24	70.09	348537.82	802.97	0.79	12.37	0.31	1.45	1.93	1.07	11.88	3.71	51.49	22.02
25	49.81	354591.43	348.82	n.d.	8.49	0.28	b.l.	1.23	0.62	7.12	2.34	29.56	12.67
36	62.43	356498.89	674.39	3.14	14.78	1.82	10.25	6.29	1.66	9.38	4.38	51.37	20.50
37	45.92	348621.67	578.74	n.d.	6.94	n.d.	0.56	b.l.	0.59	9.02	2.09	38.81	17.10
38	49.11	339462.01	710.81	5.00	19.60	2.64	16.75	9.50	4.16	16.41	4.97	55.56	23.32
39	40.35	344189.57	870.44	8.30	24.59	3.27	20.41	10.42	7.72	16.06	5.50	68.12	26.93
40	72.48	369339.66	643.06	0.59	11.48	n.d.	0.78	3.26	0.61	7.23	3.70	53.42	21.88
41	89.71	350573.36	1071.72	n.d.	12.75	n.d.	0.62	0.96	1.26	9.16	5.00	67.61	28.88
42	53.05	336349.21	722.92	1.11	12.34	1.05	7.01	5.44	6.10	10.92	3.38	52.08	21.24
43	122.33	355452.41	1313.33	n.d.	13.72	n.d.	1.71	3.30	1.23	15.46	6.99	88.55	37.42
44	48.73	351530.05	625.28	1.81	9.08	0.43	3.51	3.99	1.28	12.47	3.86	45.15	18.08
45	44.08	346731.74	477.74	1.03	8.53	0.79	3.25	3.72	1.49	8.28	3.17	37.61	16.52
46	56.94	349687.47	562.72	1.11	6.73	0.38	2.02	2.84	1.63	9.14	2.98	42.50	18.05
47	43.30	348735.34	575.68	2.64	10.26	1.15	5.88	4.57	1.94	8.79	3.25	41.43	16.78
48	179.21	345842.51	1309.98	0.97	14.79	0.47	3.49	5.32	1.68	22.02	8.82	110.46	41.24

Tabela 3.22: Resultados analíticos dos elementos maiores e traços de zircões do hornblenda granofels (AM-02). A continuação da tabela, de Er até Ba, está na página 92. Numeração original fornecida pelo Laboratório de Geocronologia do DEGEO/UFOP. *n.d. = não detectado, b.l. = abaixo do limite de detecção.

49	106.33	375200.66	1281.46	11.35	26.98	3.48	26.74	19.12	6.01	30.64	7.55	84.42	35.76
50	66.82	385617.65	573.18	1.76	9.83	n.d.	3.83	2.95	0.87	14.24	3.48	48.28	21.05
61	68.04	349776.31	831.39	4.46	15.58	1.29	10.65	8.61	2.28	13.88	4.90	56.97	22.96
62	73.62	352751.47	635.48	n.d.	10.00	n.d.	0.58	2.04	0.59	12.98	3.33	47.78	20.68
63	90.25	354020.87	947.56	n.d.	11.55	0.18	0.70	2.04	0.55	13.06	5.33	65.83	27.57
64	53.00	406605.48	394.92	n.d.	8.63	0.68	3.10	1.50	0.73	6.95	1.98	29.90	13.80
65	117.08	353101.66	1118.18	n.d.	10.98	n.d.	1.33	3.31	1.24	18.67	6.42	77.57	31.44
66	60.15	353121.55	686.91	0.50	7.92	0.23	0.69	1.86	0.51	10.91	3.41	50.99	20.65
67	75.93	349036.21	848.14	0.60	10.03	0.40	1.53	1.72	0.89	8.48	4.40	55.24	23.35
68	86.65	354030.58	1089.28	n.d.	11.76	0.33	1.46	b.l.	1.17	10.82	5.92	74.65	30.78
69	66.17	339459.59	666.77	n.d.	10.11	n.d.	b.l.	2.11	0.67	9.68	3.26	46.62	21.81
70	64.29	353834.49	764.73	1.12	9.24	0.46	3.55	4.15	1.90	8.54	4.36	56.43	23.07
71	70.08	360678.63	576.43	2.16	13.81	0.75	5.68	b.l.	1.79	10.75	3.68	50.96	19.98
72	61.94	347658.50	840.35	n.d.	8.78	n.d.	0.56	2.73	0.51	10.50	3.97	55.36	22.06
73	58.36	353539.97	686.62	0.72	10.41	0.40	2.59	3.04	7.83	11.58	3.29	44.83	19.34
74	52.31	268793.75	754.75	1.13	7.66	n.d.	1.32	b.l.	0.62	12.02	4.13	47.50	22.82
75	38.53	343919.81	444.25	5.67	20.06	2.70	18.87	10.92	4.70	16.52	4.08	40.83	15.15
86	108.34	349487.92	1152.91	n.d.	15.90	n.d.	1.18	2.84	0.79	14.13	5.70	78.66	33.32
87	71.86	362017.76	714.17	n.d.	11.07	0.22	0.48	2.60	0.70	10.21	3.92	51.01	20.90
88	41.32	341273.64	417.58	n.d.	7.26	n.d.	b.l.	1.08	0.40	6.05	2.49	35.75	15.05
90	37.33	342910.31	729.08	3.51	10.56	1.97	12.57	7.11	2.86	16.52	5.28	55.07	21.40
91	77.95	345852.99	880.03	0.52	11.80	0.27	0.97	2.39	0.65	7.19	4.18	54.71	22.49
93	29.50	341642.65	427.05	n.d.	2.98	n.d.	b.l.	2.56	1.05	6.37	3.00	37.28	14.76
94	29.92	333762.97	363.20	3.27	14.17	1.79	9.60	8.08	16.17	11.77	2.55	29.71	12.16
96	43.90	346799.13	431.36	n.d.	2.59	n.d.	0.77	2.44	0.99	n.d.	3.01	34.67	15.92
97	63.96	355335.02	628.36	1.18	7.75	0.39	1.36	2.38	0.65	6.27	4.07	53.27	21.95
98	110.90	277229.12	1374.08	0.79	9.57	0.38	3.11	3.96	2.46	10.86	6.40	83.60	35.87
99	54.23	349963.20	728.18	n.d.	8.48	n.d.	0.66	1.10	0.50	10.23	3.36	47.73	21.14
100	96.07	345888.71	1180.71	0.85	10.25	n.d.	b.l.	3.73	1.02	11.29	5.74	78.40	32.18

Batista, J. P. F. 2018, Caracterização Petrológica e Geocronológica dos Clorititos Metassomáticos e Rochas Associadas do Leste do Quadrilátero Ferrífero, MG.

Spot	Er	Tm	Yb	Lu	Si	Hf	Pb	U	Sc	Sr	Nb	Ва
11	184.65	51.53	617.90	96.47	147570.61	9159.53	108.96	668.59	1250.22	10.47	18.24	14.37
12	83.29	22.31	255.77	36.63	147570.61	6378.91	12.03	282.44	1175.79	0.93	7.07	18.02
13	89.49	23.40	259.60	38.11	147570.61	6483.43	13.45	307.87	1155.15	0.84	5.14	5.83
14	99.08	24.79	301.34	40.94	147570.61	6215.28	15.84	319.79	1208.29	1.76	5.11	6.90
15	87.95	23.14	247.72	36.40	147570.61	6905.16	14.41	174.81	1254.55	b.l.	4.62	n.d.
16	156.90	38.67	423.21	60.91	147570.59	7685.20	22.96	496.61	1437.11	1.30	5.50	n.d.
17	83.09	20.96	251.24	35.47	147570.59	6092.51	12.74	216.59	1131.84	0.91	5.69	3.84
18	126.04	31.62	348.45	50.12	147570.59	6571.67	23.92	426.83	1244.39	1.51	6.41	4.34
20	70.88	19.01	224.84	31.90	147570.61	6859.92	10.40	187.10	1138.60	0.92	4.82	3.29
21	90.06	23.35	274.76	39.44	147570.61	6873.14	17.29	380.65	1254.72	1.28	7.21	3.69
23	74.99	19.58	229.92	33.90	147570.61	6720.80	13.24	180.63	1249.56	0.83	5.27	1.78
24	92.00	22.93	269.34	37.83	147570.61	6751.43	17.20	228.53	1169.40	1.18	4.99	1.83
25	55.81	14.83	174.47	25.68	147570.59	6642.00	14.03	267.70	1126.46	1.42	4.58	1.51
36	93.62	22.03	247.36	34.16	147570.61	7307.05	15.06	273.28	1307.94	1.18	4.87	5.13
37	75.04	19.16	215.08	33.99	147570.61	7454.26	11.46	194.32	1149.08	1.37	4.89	2.22
38	95.36	26.92	341.44	46.91	147570.61	7764.41	12.16	374.40	1151.33	0.71	5.64	29.37
39	115.52	30.23	352.50	48.11	147570.59	7337.07	19.43	505.41	1215.55	5.29	6.11	10.88
40	91.75	24.92	267.85	39.48	147570.61	7050.25	17.94	167.64	1166.83	1.05	4.93	2.18
41	124.08	30.93	354.58	48.81	147570.59	6712.50	20.80	328.06	1273.05	1.16	5.96	3.67
42	91.15	24.73	282.57	39.74	147570.61	7258.29	12.60	275.32	1229.41	1.97	7.13	3.69
43	157.08	39.35	442.43	59.93	147570.61	7580.09	31.33	444.41	1307.78	1.71	5.64	2.41
44	74.43	20.05	228.58	32.70	147570.61	6985.41	11.55	190.89	1204.87	0.70	5.02	2.88
45	63.32	16.28	181.54	25.63	147369.59	7039.86	10.13	155.32	1141.75	0.69	5.23	3.26
46	79.73	21.72	258.75	39.29	147570.61	7447.85	10.26	295.07	1215.70	2.36	5.17	2.92
47	71.37	19.49	229.54	33.35	147570.61	7067.70	10.88	262.00	1206.61	1.83	5.35	15.20
48	157.83	39.53	450.01	64.73	147570.61	7088.54	42.33	546.54	1155.13	1.01	8.15	31.57

49	138.29	36.22	423.84	60.63	147570.61	7834.74	27.04	313.88	1335.93	1.49	6.31	5.92
50	82.58	23.00	286.39	42.64	147570.62	7824.67	14.97	347.70	1450.38	1.20	5.68	6.20
61	98.32	26.58	303.88	42.54	147570.61	7804.49	16.84	303.54	1215.05	0.62	5.67	3.53
62	80.18	21.97	261.81	35.38	147570.61	7030.05	42.69	192.38	1273.66	6.76	5.14	57.34
63	112.53	31.41	353.61	48.63	147570.61	7220.55	21.77	327.43	1260.42	1.52	5.53	0.98
64	60.15	16.52	162.36	33.06	147570.61	9583.66	9.61	267.90	1518.65	1.55	7.80	1.88
65	126.80	34.18	387.93	53.58	147570.59	7274.47	27.76	366.77	1391.56	0.74	5.53	1.34
66	87.58	24.68	285.13	39.86	147570.61	7210.08	13.97	185.34	1283.71	0.67	5.53	1.01
67	98.79	26.56	316.09	45.59	147570.59	6941.92	18.23	259.53	1248.51	1.20	5.58	n.d.
68	127.68	34.26	400.09	55.50	147570.61	7146.04	21.55	386.35	1303.26	0.78	5.51	2.13
69	87.39	24.48	283.96	39.41	147570.61	7057.16	16.44	193.08	1251.08	0.53	4.89	1.74
70	92.55	25.04	284.99	39.10	147570.59	7810.18	15.57	212.91	1376.38	0.96	5.72	5.07
71	77.86	21.49	255.40	35.67	147570.62	7467.24	17.72	299.05	1130.63	1.43	5.55	1.79
72	96.31	25.63	301.14	42.19	147570.61	7208.07	16.53	205.91	1348.63	1.24	5.41	0.72
73	76.90	21.49	249.91	34.09	147570.61	7492.94	13.95	301.16	1298.36	0.64	5.54	1.15
74	91.45	24.84	244.23	49.02	147570.61	7555.99	13.10	130.14	795.49	1.40	3.64	3.32
75	60.35	15.91	190.06	27.03	147570.59	8068.88	17.54	267.83	1242.84	2.03	5.74	2.88
86	133.49	35.61	418.90	54.16	147570.61	7247.81	26.82	383.12	1316.32	1.40	6.00	1.55
87	79.84	21.47	257.83	33.74	147570.61	7460.41	16.99	219.12	1257.09	0.82	5.91	0.75
88	65.64	17.53	205.86	28.90	147570.61	7407.98	9.77	142.48	1320.05	0.61	4.48	1.82
90	79.92	20.76	246.58	34.08	147570.61	7997.56	10.38	236.08	1407.37	1.06	5.22	5.81
91	95.40	26.05	301.34	39.37	147570.61	7345.16	17.82	204.61	1303.13	1.22	5.66	1.42
93	62.30	16.60	188.58	26.73	147570.61	8394.65	7.37	260.56	1192.74	1.17	4.48	2.05
94	49.72	13.62	175.90	25.05	147570.61	9322.51	7.54	353.94	1100.99	2.46	7.89	10.85
96	57.47	16.44	210.30	28.87	147570.61	8591.54	10.45	290.61	1258.39	2.60	5.51	6.37
97	86.18	23.98	274.51	35.49	147570.61	8571.65	15.10	409.42	1355.54	2.52	5.32	6.81
98	141.20	37.76	411.16	63.01	147570.61	8393.41	16.98	492.23	1009.17	4.15	5.16	2.47
99	86.46	24.48	297.78	39.34	147570.61	7604.07	11.79	273.44	1321.25	0.70	5.98	1.58
100	128.72	37.94	457.93	61.98	147570.61	7538.48	22.79	402.95	1375.21	0.94	5.54	n.d.

Batista, J. P. F. 2018, Caracterização Petrológica e Geocronológica dos Clorititos Metassomáticos e Rochas Associadas do Leste do Quadrilátero Ferrífero, MG.

CAPÍTULO 5

DISCUSSÃO E CONCLUSÃO

O metassomatismo, tipo alteração de *blackwall* estudado neste trabalho, representa uma contribuição singular ao acervo geológico do Quadrilátero Ferrífero, visto suas implicações petrogenéticas quanto às rochas de filiação ultramáfica da base do *greenstone belt* Rio das Velhas e ao metamorfismo associado.

As relações de campo entre o gnaisse e o meta-tonalito do Complexo Santa Bárbara e o esteatito da base do Superbrupo Rio das Velhas sugerem uma sucessão de eventos geológicos, à saber: o embasamento cristalino, antes de alcançar esta condição metamórfica, foi intrudido por magmas ultramáficos que viriam a constituir o protólito do esteatito. Durante este processo, parte do protólito de composição tonalítica do gnaisse foi isolado no ultramafito como xenólito, no qual se formou a alteração de *blackwall*. A elucidação de que o protólito do esteatito é ultramáfico e plutônico se faz, com base em trabalhos já desenvolvidos sobre o tema no Quadrilátero Ferrífero, por química de rocha total, segundo Roeser (1987): 55% de SiO₂, 30% de MgO e teores de Cr e Ní da ordem de 2000 ppm, e, em conjunto, por estudos petrográficos que apontam pela preservação de minerais (olivina, piroxênio e espinélio) e texturas ígneas (granular e tamanho de grãos) (Fonseca 2011, Fonseca *et al.* 2018). Isto posto, assume-se que o protólito ultramáfico em discussão se trata de uma rocha de derivação peridotítica, cuja composição é característica da química mantélica.

O *blackwall* se desenvolveu, claramente, no xenólito tonalítico (Figura 4.1) de idade arqueana, e não sobre a rocha ultramáfica. Logo, está evidente que a gênese desse tipo de metassomatito é, como descrito por Harlov & Austrheim (2013) e Bucher *et al.* (2005), resultado da combinação extensiva de processos de difusão e infiltração de elementos móveis, induzidos por contraste composicional. Isto está em acordo com a transferência de massa de SiO₂, CaO e MgO. Outro fator que corrobora para essa conclusão é o zoneamento químico de grãos de plagioclásios, enriquecidos em CaO no núcleo em relação à borda, o que sugere que não se trata de grãos neoformados, mas sim herdados do protólito ígneo félsico.

Por fim, com base os dados químicos e isotópicos obtidos e considerando a discussão assinalada nos parágrafos anteriores, a história evolutiva para a geração do esteatito (Roeser 1987) e do *blackwall*, consequentemente, é a seguinte: (1) a geração magmática do peridotito, (2) o peridotito foi serpentinizado e, (3) CO₂ (emanado do manto ou das rochas metamórficas subjacentes) alterou o serpentinito para talco granofels. A etapa (3) é a que formou o *blackwall* por reação com o tonalito durante o metamorfismo orogênico de fácies anfibolito. Tais eventos são sugeridos pela geocronologia

em zircão que aponta idades (SHRIMP) arqueanas iguais a $2812,7 \pm 6$ Ma e $2841,6 \pm 4,8$ Ma para (1), e cambro-ordovicianas iguais 513 ± 29 Ma e 468 ± 13 Ma para (3). A Figura 5.1A-D sintetiza a evolução geológica que envolveu a área de estudo.

Figura 4.1: Esquema da evolução geológica da área de estudo, esclarecendo quanto às fases de intrusão da rocha metaultramáfica e a formação do *blackwall* no xenólito tonalítico. (A) Formação magmática do peridotito por intrusão em tonalito com a formação de xenólitos; (B) Serpentinização do peridotito, segundo Roeser (1987) um processo metassomático; (C) Alteração do serpentinito para talco granofels pela ação de fluidos ricos em CO₂ durante metamorfismo; e (D) Detalhe da alteração de *blackwall* formada no xenólito tonalítico, que representa a ocorrência da área de estudo.

Aguilar C. 2017. Palaeoproterozoic assembly of the São Francisco craton, SE Brazil: new insights from U–Pb titanite and monazite dating. *Precambrian Research*, **289**: 95-115.

Albert C., Farina F., Lana C., Gerdes A. 2015. Archean crustal evolution in the Southern São Francisco Craton (Brazil): constraints from U-Pb and Lu-Hf isotope analyses. *In*: 8th Hutton Symposium on Granites and Related Rocks. Florianópolis, Brasil, p. 53-67.

Albert C., Farina F., Lana C., Stevens G., Storey C., Gerdes A., Dopico C.M. 2016. Archean crustal Evolution in the Southern São Francisco cráton, Brazil: constraints from U-Pb, Lu-Hf and O isotope analyses. *Lithos*, **266**: 64-86.

Alkmim F.F. 2004. O que faz de cráton um cráton? O Cráton do São Francisco e as revelações almeidianas ao delimitá-lo. *In*: Geologia do Continente Sul-Americano: evolução da obra de Fernando Flávio Marques Almeida. São Paulo, p. 17-35.

Alkmim F.F., Brito Neves B.B., Alves J.A.C. 1993. Arcabouço tectônico do Cráton do São Francisco: uma revisão. *In*: O Cráton do São Francisco. Salvador, p. 45-62.

Alkmim F.F. & Marshak S. 1998. Transamazonian orogeny in the Southern São Francisco Craton region, Minas Gerais, Brazil: evidence for paleoproterozoic collision and colapse in the Quadrilátero Ferrífero. *Precambrian Research*, **90**: 29-58.

Almeida F.F.M. 1977. O Cráton do São Francisco. Revista Brasileira de Geociências, 7: 349-364.

Almeida F. F. M. 1981. O Cráton do Paramirim e suas relações com o do São Francisco. *In*: Simpósio sobre o Cráton do São Francisco e suas Faixas Marginais. Salvador, Anais, p. 1-10.

Almeida L.G., Cantro P.T.A., Endo I., Fonseca M.A. 2005. O Grupo Sabará no Sinclinal Dom Bosco, Quadrilátero Ferrífero: uma revisão estratigráfica. *Revista Brasileira de Geociências*, **35**: 177-186.

Angeli G. 2016. Arcabouço estrutural e contribuição à estratigrafia do Grupo Maquiné, Quadrilátero Ferrífero – MG. MS Dissertation, Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto 102 p.

Anhausser C.R., Mason R., Viljoen M.J., Viljoen R.P. 1969. Reappraisal of some aspects of Precambrian shield geology. *Geological Society of America Bulletin*, **80**: 2175-2200.

Arena K.R., Hartmann L.A., Lana C. 2016. Evolution of Neoproterozoic ophiolites from the southerns Brasiliano Orogen revealed by zircon U-Pb-Hf isotopes and geochemistry. *Precambrian Research*, **285**: 299-314.

Arena K.R., Hartmann L.A., Lana C. 2017. Tonian emplacement of ophiolites in the Southern Brasiliano Orogen delimited by U-Pb-Hf isotopes of zircon from metasomatites. *Gondwana Research*, **49**: 296-332.

Arena K.R., Hartmann L.A., Lana C. 2017. U-Pb-Hf isotopes and trace elements of metasomatic zircon delimit the Evolution of neoproterozoic Capané ophiolite in the Southern Brasiliano Orogen. International *Geology Review*, **60**: 911-928.

Babinski M., Chemale Jr. F., Van Schmus W.R. 1995. The Pb/Pb age of the Minas Supergroup carbonate rocks, Quadrilátero Ferrífero, Brazil. *Precambrian Research*, **72**: 235–245.

Bucher Kk, De Capitani C, Grapes R. 2005. The development of a margarite-corundum blackwall by metasomatic alteration of a slice of mica schist in ultramafic rock, Kvesjoen, Norwegian Caledonides. *The Canadian Mineralogist*, **43**: 129-156.

Bucher K. & Frey M. 2013. *Petrogenesis of Metamorphic Rocks*. Springer Science & Business Media, 428 p.

Cabral A.R., Zeh A., Koglin N., Seabra Gomes Jr. A.A., Viana D.J., Lehmann B. 2012. Dating the Itabira iron formation, Quadrilátero Ferrífero of Minas Gerais, Brazil, at 2.65 Ga: depositional U-Pb age of zircon from a metavolcanic layer. *Precambrian Research*, **40**: 204–205.

Chemale Jr. F., Rosière C.A., Endo I. 1991: Evolução tectônica do Quadrilátero Ferrífero, Minas Gerais: um modelo. *Pesquisas*, **18**: 104-127.

Chemale Jr.F., Rosière C.A., Endo I. 1994. The tectonic evolution of the Quadrilátero Ferrífero, Minas Gerias, Brazil. *Precambrian Researsch*, **65**: 25-54.

Cutts K., Lana C., Alkmim F., Peres G.G. 2018. Metamorphic imprints on units of the southern Araçuaí belt, SE Brazil: the history of superimposed Transamazonian and Brasiliano orogenesis. *Gondwana Research*, **58**: 211-234.

Dopico, C.I.M., Lana C., Moreira H.S., Cassino L.F, Alkmim F.F. 2017. U–Pb ages and Hf-isotope data of detrital zircons from the late Neoarchean-Paleoproterozoic Minas Basin, SE Brazil. *Precambrian Research*, **291**: 143-161.

Dorr II J.V.N. 1969. *Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil.* USGS Professional Paper, 110 p.

Dorr II J. V. N., Gair J. E., Pomerene J. B., Rynearson G. A., 1957. *Revisão da estratigrafia précambriana do Quadrilátero Ferrífero: Brazil.* Departamento Nacional de Produção Mineral, 31 p.

Endo I. 1997. Regimes tectônicos do Arqueano e Proterozóico no interior da placa Sanfranciscana: Quadrilátero Ferrífero e adjacências, Minas Gerais. PhD Tesis, Institudo de Geociências, Universidade de São Paulo, São Paulo, 243 p.

Farina F., Albert C., Lana C. 2015. The Neoarchean transition between mediumand high-K granitoids: clues from the Southern São Francisco Craton (Brazil). *Precambrian Research*, **266**: 375-394.

Farina F., Albert C., Dopico C.M., Aguilar C., Moreira H., Hippertt J., Cutts K., Alkmim F., Lana C. 2016. The Archean-Paleoproterozoic evolution of the Quadrilátero Ferrífero (Brasil): current models and open questions. *Journal of South American Earth Sciences*, **68**: 4-21.

Farndon J. 2006. *The Practical Encyclopedia of Rocks & Minerals: How to Find, Identify, Collect and Maintain the World's best Specimens, with over 1000 Photographs and Artworks*. Lorenz Books, 256 p.

Fernandes V.M.T. 2016. Petrogênese e geoquímica de rochas metaultramáficas e metamáficas do Corpo Córrego dos Boiadeiros, Grupo Nova Lima, Quadrilátero Ferrífero, MG. MS Dissertation, Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 96 p.

Fettes D. & Desmons J. 2007. *Metamorphic Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks*. Cambridge University Press, 244 p. Fonseca G. M. 2011. *Petrogênese de rochas ultramáficas do Quadrilátero Ferrífero e adjacências e sua relação genética com rochas metaultramáficas do tipo serpentinito e esteatito*. MS Dissertation Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 86 p.

Fonseca G.M. 2017. *Petrogênse de rochas metaultramáficas do Quadrilátero Ferrífero e adjacências e geocronologia de terrenos associados*. Phd Tesis, Departamento de Geologia, Universidade Federal de Ouro Preto, Ouro Preto, 106 p.

Fonseca G.M. & Jordt-Evangelista H. 2013. Rochas ultramáficas plutônicas do greenstone Rio das Velhas na porção central do Quadrilátero Ferrífero, Minas Gerais, Brasil. *Revista da Escola de Minas*, **66**: 67-75.

Fonseca G.M., Jordt-Evangelista H., Queiroga G.N. 2018. Petrogenesis of metaultrmafic rocks from the Quadrilátero Ferrífero and adjacente terrains, Minas Gerais, Brazil: two events of ultramafic magmatism? *Journal of South American Earth Scienses*, **82**: 16-32.

Franco A.S.P. & Endo I. 2004. Sinclinal Ouro Fino revisitado, quadrilátero ferrífero, Minas Gerais: uma hipótese sobre a sua origem e evolução. *Revista Brasileira de Geociências*, **34**: 167-174.

Frost B.R. 1975. Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, central cascades, Washington. *Journal of Petrology*, **16**: 272-313.

Gerdes A. & Zeh A. 2006. Combined U-Pb and Hf isotopes LA-(MC)-ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of na Armorican metasediment in Central Germany. *Earth Planet Science Letter*, **249**: 47-61.

Gerdes A. & Zeh A. 2009. Zircon formation versus zircon alteration – New insights from combined U-Pb na Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. *Chemical Geology*, **261**: 230-243.

Grimes C.B., John B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanhoj K., Schwartz J.J. 2007. Trace elemento chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. *Geology*, **35**: 643-646.

Harlov D.E. & Austrheim H. 2013. *Metasomatism and the chemi-cal transformation of rocks*. Lecture notes in Earth System Sciences. Springer-Verlog Berli Heidelberg, 805 p.

Hartmann L.A., Endo I., Suita M.T.F., Santos J.O.S., Frantz J.C., Carneiro M.A., Naughton N.J., Barley M.E. 2006. Provenance and age delimitation of Quadrilátero Ferrífero sandstones based on zircon U-Pb isotopes. *Journal South America Earth Sciences*, **20**: 273–285.

Hartmann L.A., Takehara L., Leite J.A.D, McNaughton N.J., Vasconcellos M.A.Z. 1997. Fracture sealing in zircon as evaluated by eléctron micropobe analyses and back-scattered eléctron imaging. *Chemical Geology*, **141**: 67-72.

Hawthorne F.C., Oberti R., Harlow G.E., Maresch W.V., Martin R.F., Schumacher J.C., Welch M.D. 2012. Nomenclature of the amphibole supergroup. *American Mineralogist*, **97**: 2031-2048.

Herz N. 1970. Gneissic and igneous rocks of the Quadrilátero Ferrífero, Minas Gerais, Brazil. USGS Professional Paper, 58 p.

Herz N. 1978. *Metamorphic rocks of the Quadrilátero Ferrífero, Minas Gerais, Brazil.* USGS Professional Paper, 81 p.

Hutton J. 1795. Theory of the Earth. Edinburgh: William Creech, 2 vols.

Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. 2004. The application of laser ablation inductively coupled plasma mass spectrometry to in situ U-Pb zircon geochronology. *Chemical Geology*, **211**: 47-69.

Jordt-Evangelista H., Alkmim F.F., Marshak S. 1992. Metamorfismo progressivo e a ocorrênica dos 3 polimorfos Al2SiO5 (cianita, andaluzita e sillimanita) na Formação Sabará em Ibirité, Quadrilátero Ferrífero, MG. *Revista da Escola de Minas*, **45**: 157-160.

Jordt-Evangelista H. & Silva M.E. 2005. Rochas metaultrmáficas de Lamim, sul do Quadrilátero Ferrífero, MG: contribuição ao conhecimento do protólito da pedra-sabão. *Revista Escola de Minas*, **58**: 11-20.

Koglin, N. Zeh A., Cabral A.R., Gomes Jr. A.A.S., Neto A.V.C., Brunetto W.J., Galbiatti H. 2014. Depositional age and sediment source of the auriferous Moeda Formation, Quadrilátero Ferrífero of Minas Gerais Brazil: new constraints from U-Pb–Hf isotopes in zircon and xenotime. *Precambrian Research*, **255**: 96–108.

Ladeira E.A. 1980. Metallogenesis of gold at the Morro Velho mine and in the Nova Lima district, Quadrilátero Ferrífero, Minas Gerais, Brazil. PhD Tesis, University Western Ontario, Ontario, 272 p.

Ladeira E. A. & Roeser H.M.P. 1983. Petrography of the Rio das Velhas Greenstone Belt, Quadrilátero Ferrífero, Minas Gerais, Brazil. *Stuttgat: Zentralblatt Geologie Palaeontologie*, **3**/**4**: 430-450.

Ladeira E.A., Roeser H.M.P, Tobschall H.J. 1983. Evolução petrogenética do cinturão de rochas verdes, Rio das Velhas, Quadrilátero Ferrífero, Minas Gerais. *In*: Simpósio de Geologia de Minas Gerais. Belo Horizonte, *Anais*, p. 149-165.

Lana C., Alkmim F.F., Armstrong R., Scholz R., Romano R., Nalini H.A. 2013. The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. *Precambrian Research*, **231**: 157-173.

Leake B.E.1997. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on minerals and mineral names. *The Canadian Mineralogist*, **35**: 219-246.

Le Bas M.J. & Streckeisen A.L. 1991. The IUGS systematics of igneous rocks. *Journal of the Geological Society*, **148**: 825-833.

Ludwig K.R. 2009. *Squid 2.50: a user's manual*. Berkeley Geochronology Centre, Berkeley, California, 95 p.

Ludwing K.R. 2012. *Isoplot 3.75: a geochronological toolkit for Microsoft Excel*. Berkeley Geochronology Centre, Berkeley, California, 87 p.

Machado N. & Carneiro M.A. 1992. U–Pb evidence of late Archean tectono-thermalactivity in the southern São Francisco shield, Brazil. *Canadian Journal Earth Sciences*, **29**: 2341-2346.

Machado N., Schrank A., Noce C.M., Gauthier G. 1996. Ages of detrital zircon from Archean-Paleoproterozoic sequences: Implications for greenstone belt setting and evolution of a Transamazoniam foreland basin in Quadrilatero Ferrífero, southeast Brazil. *Earth and Planetary Science Letters*, **141**: 259-276.

Marshak S. & Alkmim F.F. 1989. Proterozoic contraction/extension tectonics of the southern São Francisco region, Minas Gerais, Brazil: a kinematic model relating Quadrilátero Ferrífero, São Francisco Basin and Cordilheira do Espinhaço. *Tectonics*, **8**: 555-571.

Marshak S., Alkmim F.F., Jordt-Evangelista H. 1992. Proterozoic crustal extension and the generation of dome and keel structure in na granite-greenstone terrrane. *Nature*, **357**: 491-493.

Martin H., Moyen J.F., Guitreau M., Blichert-Toft J., Le Pennec J.-L. 2014. Why Archean TTG can not be generated by MORB melting in subduction zones. *Lithos*, **198**: 1-13.

Medeiros Júnior E.B. & Jordt-Evangelista H. 2010. Petrografia e geoquímica dos granulitos do Complexo Acaiaca, região Centro-Sudeste de Minas Gerais. *Revista Escola de Minas*, **62**: 1-10.

Medeiros Júnior E.B., Jordt-Evangelista H., Queiroga G.N., Schulz B., Marques R.A. 2016. *Electron Microprobe Th-U-Pb Monazite Dating and Metamorphic Evolution of the Acaiaca Granulite Complex, Minas Gerais, Brazil.* Revista Escola das Minas, Ouro Preto, 21–32 p.

Moreira H., Lana C., Nalini H.A. 2016. The detrital zircon record of an Archaean convergent basin in the Southern São Francisco Craton, Brazil. *Precambrian Research*, **275**: 84-99.

Naumann K.F. 1826. Lehrbuch der Mineralogie. Leipzig, Engelman, 209 p.

Noce C.M. 1994. Geocronologia dos eventos de magmatismo, sedimentação e metamorfismo no Quadrilátero Ferrífero, Minas Gerais. PhD Tesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 128 p.

Noce C.M., Ladeira E.A., Pinheiro S.O., Franca C.R., Kattah S. 1992. A sequência vulcanosedimentar do Grupo Nova Lima na região de Piedade do Paraopeba, borda oeste do Quadrilátero Ferrífero, Minas Gerais. *Revista Brasileira de Geociências*, **22**: 175-183.

Noce C., Machad, N., Teixeira W. 1998. U-Pb geochronology of gneisses and granitoids in the Quadrilátero Ferrífero (southern São Francisco Craton): age constraints for Archean and Paleoproterozoic magmatism and metamorphism. *Brazialian Journal of Geology*, **28**: 95–102.

Noce C.M., Pinheiro S.O., Ladeira E.A., Grossi Sad J.H. 1990. Ocorrência de metakomatiítos com textura spnifex no Grupo Nova Lima, oeste do Quadrilátero Ferrífero, MG. *In*: 36° Congresso Brasileiro de Geologia. Natal, *Boletim de Resumos*, p. 215.

Noce C., Zuccheti M., Baltazar O., Armstrong R., Dantas E., Renger F., Lobato L. 2005. Age of felsic volcanism and the role of ancient continental crust in the evolution of the Neoarchean Rio das Velhas Greenstone belt (Quadrilátero Ferrífero, Brazil): U-Pb zircon dating of volcaniclastic graywackes. *Precambrian Research*, **141**: 67–82.

Pellant C. 2002. Rocks and Minerals. Smithsonian Handbooks. Dorling Kindersley, 256 p.

Renger F.E., Noce C.M., Romano A.W., Machado N. 1994. Evolução sedimentar do Supergrupo Minas: 500 Ma de registro geológico no Quadrilátero Ferrífero, Minas Gerais, Brasil. *Geonomos*, **2**: 1-11.

Roeser, H. 1987. Metassomatismo de rochas ultramáficas - a tentativa de uma quantificação. *In*: 1° Congresso Brasileiro de Geoquímica. Porto Alegre, *Anais*, p. 217-232.

Roeser H., Roeser U., Schulz-Dobrick B., Tobschall H.J. 1987. Pedra-sabão: uma rocha metassomática. *In*: 4° Simpósio de Geologia de Minas Gerais. Belo Horizonte, *Anais*, p. 286-311.

Roeser U., Roeser H., Muller G., Tobschall H.J. 1980. Petrogênese dos esteatitos do sudeste do Quadrilátero Ferrífero. *In*: 31° Congresso Brasileiro de Geologia. Santa Catarina, *Anais*, p. 340-345.

Romano R., Lana C., Alkmim F.F., Stevens G.S., Armstrong R. 2013. Stabilizationofthe southern portion of the São Francisco Craton, SE Brazil, through a long-lived period of potassic magmatism. *Precambrian Research*, **224**: 143-159.

Schorscher J.H.D. 1992. Arcabouço petrográfico e evolução crustal de terrenos pré-cambrianos do sudeste de Minas Gerais: Quadrilátero Ferrífero, Espinhaço Meridional e domínios granitognáissicos adjacentes. Tese de Livre Docência, Instituto de Geociências, Universidade de São Paulo, São Paulo, 94 p.

Strieder A.J. 1992. Serpentinização e metassomatismo em rochas ultramáficas discussão das características e recomendações para o tratamento geoquímico. *Revista Brasileira de Geociências*, **22**: 329-337.

Turner S., Rushmer T., Reagan M., Moyen J.F. 2014. Heading down early on? Startof subduction on Earth. *Geology*, **42**: 139-142.

Whitney D.L. & Evans B.W. 2010. Abbreviation for names of rock-forming minerals. *American Mineralogist*, **95**: 185-187.

Winter J.D. 2014. Principles of Igneous and Metamorphic Petrology. Pearson, 745 p.

Zharikov V.A., Pertsev N.N., Rusinov V.L., Callegari E., Fettes D.J. 2007. Metasomatism and metasomatic rocks. *In*: Recommendations by the IUGS Subcommission on the systematics of metamorphic rocks. *Web version* 01.02.07, 17 p.

APÊNDICE A

49° Congresso Brasileiro de Geologia 20 a 24 de agosto de 2018 Rio de Janeiro

METASOMATIC EVOLUTION OF BARROCA CHLORITITES, QUADRILÁTERO FERRÍFERO

Queiroga, G.N.1; Batista, J.P.F.1; Hartmann, L.A.2; Lana, C.C.1; Jordt-Evangelista, H.1; Santos, J.O.S.3; Castro, M.P.1; Alkmim, A.R.1 ¹Universidade Federal de Ouro Preto; ²Universidade Federal do Rio Grande do Sul; ³University of Western Australia

ABSTRACT: Blackwall alteration is caused by metamorphic reactions assisted by fluids which promote chemical changes in rocks. Blackwall forms in contact zones between rocks of contrasting compositions, such as granite and peridotite, and is constituted predominantly by chlorite, biotite and amphibole. A blackwall chloritite in the Barroca Quarry, Mariana district, Minas Gerais, allows the study of geological and temporal evolution of Quadrilátero Ferrífero. The chlorite-rich metasomatite was formed in the contact between an ultramafic granofels (carbonate-Mg-chlorite-talc) of the Rio das Velhas Supergroup and a tonalite xenolith of the Santa Bárbara Complex. Both petrography and electron microprobe analyses (JEOL JXA-8230) of two chloritite samples (AM-01, AM-02), were performed at the Laboratory of Microscopy and Microanalysis, Universidade Federal de Ouro Preto (DEGEO-UFOP). Sample AM-01 was collected close to the felsic xenolith and AM-02 more distant towards the metaultramafic rock. AM-01 shows decussate microstructure with low-amphibolite-facies Al-rich mineral assemblage of Mg-chlorite + phlogopite + talc \pm plagioclase. Subhedral plagioclase crystals are zoned, with Na content increasing toward the rim, probably a remnant mineral from the felsic rock. Na alternative is feldspar generation during the metasomatic process with an inherited oligoclase core and a metasomatic rim. AM-02 is also an amphibolite facies chloritite with higher contentes of Mg and Ca; mineral assemblage is Mg-hornblende + Mg-chlorite + phlogopite + talc \pm plagioclase. Zircon is a common accessory in both samples. U-Pb and Lu-Hf isotopic determinations and trace element chemistry of zircon from both metasomatic rocks were made at the geochronological laboratories of DEGEO-UFOP and University of Western Australia. Grains are anhedral to subhedral, up to 100 µm in size and show hydrothermal influence. AM-01 shows EHf values between -5.08 and +1.15 while EHf values for AM-02 range from -6.48 to -4.35, typical of continental crust. The binary diagram U vs. Yb corroborates this continental origin. The U-Pb SHRIMP analyses in non-hydrothermal zircon crystals of both samples showed alignment, with an upper intercept at 2813 ± 6 Ma (AM-01; n = 9, MSWD = 4.0) and 2807 ± 7 Ma (AM-02; n = 9, MSWD = 4.3). The lower intercept is 513 ± 29 Ma (AM-01) and 480 ± 20 Ma (AM-02). The dataset evidences the origin of the blackwall from the Archean tonalitexenolith with the metasomatic contribution of chemical elements from the metaultramafic rock. The lower intercept of the discordia diagram at 480-510 Ma indicates a hydrothermal process in the Cambrian-Ordovician. The

hydrothermal pulses provide support for *in situ* (chemical dating) Early Paleozoic U-Pb-Th monazite data that were recently reported for pelitic schists from the upper units of Quadrilátero Ferrífero located east and southeast of Ouro Preto. The metasomatic chloritites are the repository of significant information about the evolution of the Quadrilátero in the Archean (approximately 2810 Ma) and in the Cambrian-Ordovician. Decoding of timing and geological environment can be done by the methods described herein.

KEYWORDS: BLACKWALL, METASOMATISM, MINERAL CHEMISTRY, GEOCHRONOLOGY.

APÊNDICE B

Encontro de Saberes 2018 - Universidade Federal de Ouro Preto

06 a 08 de novembro de 2018

Ouro Preto

CARACTERIZAÇÃO PETROLÓGICA E GEOCRONOLÓGICA DOS CLORITITOS METASSOMÁTICOS DO QUADRILÁTERO FERRÍFERO, MG

Batista, J.P.F.; Queiroga, G.N.; Medeiros Jr. E.B. Universidade Federal de Ouro Preto

RESUMO: Alteração de blackwall é o resultado de reações metamórficas de desiguilíbrio por ação de fluidos metassomáticos, que promovem a mudança de composição química da rocha, ou de parte dela, no estado sólido. No leste do Quadrilátero Ferrífero, Pedreira Barroca, Mariana, ocorre um cloritito de blackwall no contato do talco granofels do Supergrupo Rio das Velhas com um xenólito tonalítico do Complexo Santa Bárbara. Nos Laboratórios DEGEO-UFOP foram realizadas a análise química em microssonda eletrônica e o estudo petrográfico de duas amostras (AM-01 e AM-02), a primeira coletada próxima ao xenólito félsico e a segunda afastada deste, o que permitiu compreender as contribuições dos litotipos envolvidos. A amostra AM-01 mostra a assembleia mineral: Mg-clorita flogopita \pm talco \pm plagioclásio, de fácies anfibolito, e amostra AM-02, de mesma fácies, a assembleia: Mg-hornblenda Mg-clorita flogopita \pm talco \pm plagioclásio. Zircão é o mineral acessório comum em ambas as amostras e seu exame geocronológico (U-Pb e Lu-Hf) e de elementos traços foram realizados nos Laboratórios do DEGEO-UFOP e da University Western Australia em grãos límpidos. As análises isotópicas Lu-Hf, com EHf entre -5,08 e 1,15 para AM-01, e entre -6,48 e -4,35 para AM-02, e os dados de elementos traço apontam a natureza crustal dos grãos de zircão. As análises U-Pb SHRIMP em cristais de zircão das duas amostras alinham na mesma regressão, com intercepto superior em 2812.7 \pm 6.0 Ma (para a amostra AM-01) e 2807.2 \pm 7.4 Ma (para a amostra AM-02), e inferior em 513 \pm 29 Ma (amostra AM-01) e 480 \pm 20 Ma (amostra AM-02). O conjunto de dados obtidos evidencia, claramente, que o blackwall se desenvolveu sobre o xenólito tonalítico de idade arqueana, com aporte de elementos químicos cedidos pela rocha metaultramáfica. O alinhamento (regressão) das razões isotópicas com intercepto inferior na faixa de 480-510 Ma indica a ocorrência de prováveis pulsos de fluxo hidrotermal no Cambriano-Ordoviciano.

PALAVRAS-CHAVE: CLORITITO, GEOCRONOLOGIA, FLUIDOS METASSOMÁTICOS, QUADRILÁTERO FERRÍFERO.

Ouro Preto, 20 de dezembro de 2018

Declaro para os devidos fins que todas as correções sugeridas pela banca examinadora do trabalho intitulado "Caracterização Petrológica e Geocronológica dos Clorititos Metassomáticos e Rochas Associadas do Leste do Quadrilátero Ferrífero, MG" foram realizadas pelo aluno João Paulo Faria Batista.

Atenciosamente,

Gláveia N. Dringa Gláveia Nascimento Queiroga

Presidente da Banca

