
FEDERAL UNIVERSITY OF OURO PRETO

INSTITUTE OF EXACT AND BIOLOGICAL SCIENCES

COMPUTER DEPARTMENT

DIEGO HENRIQUE MARQUES MATOS
Supervisor: Prof. Tiago Garcia de Senna Carneiro
Co-supervisor: Dr. Alber Hamersson Sánchez Ipia

AUTOMATED WORKFLOW FOR CLOUD SEGMENTATION TASKS
USING DEEP LEARNING

Ouro Preto, MG
2022



FEDERAL UNIVERSITY OF OURO PRETO
INSTITUTE OF EXACT AND BIOLOGICAL SCIENCES

COMPUTER DEPARTMENT

DIEGO HENRIQUE MARQUES MATOS

AUTOMATED WORKFLOW FOR CLOUD SEGMENTATION TASKS USING DEEP

LEARNING

Monography presented to the Course of Computer
science from the Federal University of Ouro Preto as
part of the necessary requirements to obtain the degree of
Bachelor of Computer Science.

Supervisor: Prof. Tiago Garcia de Senna Carneiro
Co-supervisor: Dr. Alber Hamersson Sánchez Ipia

Ouro Preto, MG
2022



MINISTÉRIO DA EDUCAÇÃO 
UNIVERSIDADE FEDERAL DE OURO PRETO 

REITORIA 
INSTITUTO DE CIENCIAS EXATAS E BIOLOGICAS 

DEPARTAMENTO DE COMPUTACAO

FOLHA DE APROVAÇÃO

 

 

Diego Henrique Marques Matos

 

AUTOMATED WORKFLOW FOR CLOUD SEGMENTATION TASKS USING DEEP LEARNING

 

 

 

Monografia apresentada ao Curso de Ciência da Computação da Universidade Federal 
de Ouro Preto como requisito parcial para obtenção do �tulo de Bacharel em Ciência da Computação

 

 

 

Aprovada em 13 de Junho de 2022.

 

 

 

Membros da banca

 

 

Tiago Garcia de Senna Carneiro (Orientador) - Doutor - Universidade Federal de Ouro Preto 
Alber Hamersson Sánchez Ipia (Coorientador) - Doutor - Ins�tuto Nacional de Pesquisas Espaciais 

Rodrigo César Pedrosa Silva (Examinador) - Doutor - Universidade Federal de Ouro Preto 
Eduardo José da Silva Luz (Examinador) - Doutor - Universidade Federal de Ouro Preto

 
 
 
 
 

Tiago Garcia de Senna Carneiro, Orientador do trabalho, aprovou a versão final e autorizou seu depósito na Biblioteca Digital de Trabalhos de
Conclusão de Curso da UFOP em 13/06/2022.

 
 

Documento assinado eletronicamente por Tiago Garcia de Senna Carneiro, PROFESSOR DE MAGISTERIO SUPERIOR, em
13/06/2022, às 13:26, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de
outubro de 2015.

A auten�cidade deste documento pode ser conferida no site h�p://sei.ufop.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0 , informando o código verificador 0343413 e o código CRC EB37D630.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.007681/2022-48 SEI nº 0343413

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35400-000 
Telefone: 3135591692   - www.ufop.br

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0


Acknowledgment

I thank Professor Tiago Garcia de Senna Carneiro and Dr. Alber Sanchez Ipia, who
embraced the project and dedicated much of their time and effort to guide me during the execution
of this work. I also thank professors Eduardo José da Silva Luz and Rodrigo Cesar Pedrosa
Silva, who were responsible for introducing me to the area of artificial intelligence and showing
everything it can created, as well as inspiring me to this work to be created and contributing to tips
and solutions for solving the challenges encountered. I want to thank all my friends, especially
those who somehow supported me during my graduation. I thank my girlfriend Andressa, for the
years of teaching, affection and countless advices for the implementation of this work. Finally,
and most importantly, I want to thank my parents who never measured efforts to make my dreams
come true, we know it was never easy, but their support has always been my greatest strength.



Abstract
This work develops an approach that uses deep learning to segment clouds in images from WFI
remote sensor. This work is justified by the fact that the remote sensor WFI does not have a tailor-
made cloud segmentation algorithm, and this diminishes the quality and amount of data available
for analysis. We developed a workflow and an algorithm based on the U-net neural network to
fulfill this gap. The collected results presented are promising according to our evaluation. Issues
like, false positives on segmentation, loss of edges in cropped images and biased dataset were
visually evaluated and managed to segment more clouds, but with some misclassification. These
problems motivated proposals for improvements to be made in future work. Therefore, the open
source and automated workflow for semantic segmentation of remote sensing imagery remains
as the main technological contribution of this work. The proposed workflow was evaluated in
segmenting clouds from several training images larger than 2 gigabytes each, on a computer with
only 8 gigabytes of RAM.

Keywords: Deep learning, Cloud segmentation, Remote sensing, imagery segmentation.
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1 Introduction

For living in a country that holds most of the largest forests in the world, it is a great desire
and privilege to be able to create technologies that help prevent the continuation of deforestation
in the Amazon rainforest. The tool proposed in this work should be able to help quantify and
identify deforestation in the Amazon rainforest. Thus, the code of this project will be kept open
for better replicability and for community contributions. The code can be found at the following:
https://gitlab.com/ufopterralab/projeto-segmentacao-semanticas-cbers-4a-wfi.

Finally, there is a desire to create useful tools using the most advanced technology
concepts. Applying this ideas to geoscience means identifying and quantifying environmental
changes as deforestation and urban growth without need of manual processing. This way, this
work proposes an automate and decoupled workflow for cloud segmentation in remote sensor
images using a deep learning algorithm.

1.1 Motivation

A step to quantify and to identify deforestation in images from remote sensors is iden-
tifying clouds. On average, the cloud cover on earth surface is between 58% (ROSSOW; SCHIF-
FER, 1999) and 66% (ZHANG et al., 2004). When the object of analysis of a remote sensor
image is on earth surface, like forests and cities, then present clouds become obstacles between
the remote sensor and the object, which hinder its observation. Thus, detecting and removing
clouds are essential steps to remote sensor imagery analysis (ZHU; WOODCOCK, 2012).

1.2 Problem Statement

The process of handling data for segmenting remote sensing images is a challenge. When
the algorithm handles remote sensing images some metadata must be preserved. Each scene that
is captured by the remote sensor is geographically referenced. This allows that when the scene
is analysed with a geographic information system (GIS) the subscene will be rendered at the
correct coordinates. There are images from several remote sensors with different characteristics
in the captured scenes. The workflow to build a deep learning model to segment tasks has many
processes in common, even if the input data comes from different sensors. This way, the main
issue that must be resolved in this work is to create a workflow that handles geolocalized images
for a neural network and, finally, to obtain the output images of the neural network to build a
segmented scene. Lastly, the proposed workflow needs to be able to run on a personal machine,
with less computational power, the scenes must be cropped to be loaded in memory in batches at
the training step. This way, even when cropping the scene it is possible to re-built the same scene
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with the subscenes. Thus, the main problem of this case study is to automatically handle the data
to perform a semantic segmentation task.

Semantic segmentation consists of labeling each pixel in the image. This is exemplified
in the Figure 1.1.

Figure 1.1 – Example of semantic segmentation

The original image is inputted into a machine learning model, then the machine learning
model output other images of the same dimensions with the labeled pixels, called "masks".

Therefore, the semantic segmentation problem can be defined as the following: given
an image, for each pixel present in the image, determine to which class the the pixel belongs.
Where i is the quantity of rows of the image, j is the quantity of columns of the image, and k is
the quantity of band of the image. Formally, let I be a remote sensor image so that I = {X ijk |
i=1,...N, j=1,...M, k=1,...L}, the problem is to determine which pixels belong to each class.

1.3 Goals of This Work

The general goal of this work is to develop and evaluate an open source workflow that
receives remote sensor images and their respective masks to build a deep learning model that can
segment images even by using a computer that does not have so powerful hardware.

The specific goals of this work are:

• Build an automated workflow of segmentation tasks that can run on a personal computer.

An automated workflow for deep learning tasks consists of treating the data, in this case
study they are remote sensor images, defining some hyperparameters and training the deep
learning model. Finally, with the model trained, it is sufficient to apply new data to collect
results.
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Machine learning tasks, mainly deep learning tasks, require powerful graphics processing
units (GPU), and when remote sensor images are used, they also require a lot of random
access memory (RAM) (GÉRON, 2019). Powerful machines that handle big data are
inaccessible to everyone, so the proposed workflow configures some parameters so that it
can be implemented on less powerful personal machines.

• Applying concepts of software engineering to build a workflow using component-based
architecture with easy deep learning model configuration (CHAUDRON; LARSSON;
CRNKOVIC, 2005).

The proposed workflow uses a component-based architecture to allow exchanges of the deep
learning model and input images. Also, the workflow should be an easy-to-use framework.
The framework must have default settings and it must be possible to change these settings
through the UI. Finally, the workflow must be decoupled so that more experienced users
can manipulate any section of it and contribute to the developed code.

• Studying deep learning and its applications to remote sensing data.

Machine learning is the science of programming computers so they can learn from data
(GÉRON, 2019). The applications of machine learning are increasing fast in different areas,
like biomedicine (RONNEBERGER; FISCHER; BROX, 2015), agriculture (CHEN et al.,
2020) and remote sensor image analysis (JEPPESEN et al., 2019).

Deep learning is a field of machine learning that learns patterns and uses them to perform
described tasks, such as identifying clouds (JEPPESEN et al., 2019) and simulating hu-
man behavior (XU et al., 2017) as in chatbots. Since 1943, with the first artificial neuron
implemented, (MCCULLOCH; PITTS, 1943) and since 1957, with the Perceptron algo-
rithm (ROSENBLATT, 1958), there were networks built with layer composed by some
connected perceptrons. This architecture is called "Multilayer Perceptron"and is a type of
neural network. Neural networks are models that try simulating the learning from neurons
through artificial neurons. The neural networks are getting better and better, decreasing
the computational costs and increasing the accuracy of the results (POUYANFAR et al.,
2018).

• Conducting a case study applying the deep learning algorithm called U-Net for segmenting
clouds in CBERS 4A WFI remote sensor images.

In this case study, a collection of results obtained from an U-net architecture applied
to CBERS-4A WFI remote images is discussed with the goal of evaluate the proposed
workflow in cloud segmentation tasks. Images from CBERS-4 Wide Field Camera (WFI)
sensor have been chosen because they were designed to monitor Amazon rain forest
(SOUZA et al., 2019) and track back deforestation and forest fires. CBERS-4A is capable
of making revisits in five days to a certain area (EPIPHANIO, 2011). This feature makes it
a good choice for deforestation monitoring tasks.
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Open policies turned it easier to obtain imagery from remote sensing programs. Since 2004,
about 1.600.000 images from CBERS-4 were free distributed to academic institutions,
government agencies and companies. This open data policy was originated by National
Institute for Space Research (INPE) with CBERS program. This fact influenced the USGS
(United States Geological Survey) and ESA (European Space Agency) to provide images
from Landsat and Sentinel programs, respectively (INPE, 2020). Thus, agricultural (MO-
RAN et al., 2002) and environmental studies (SOUZA et al., 2019) were able to use free
remote sensor images in their activities and encourage researchers on these fields.

There are some systems to quantify and identify deforestation using WFI images, like
PRODES and DETER (SOUZA et al., 2019). However, even being one of the first to
disclose its data, CBERS-4A, a satellite designed by Brazil and China, does not have its
own algorithm for cloud semantic segmentation. Currently, INPE uses an algorithm called
Cmask(QIU; ZHU; WOODCOCK, 2020) to segment clouds. Nevertheless, Cmask has
been originatly develop for processing imagens from Landsat remote sensors and it is not
implemented to any remote sensor present in CBERS-4. For this reason, it deliveries few
clouds segmented and make some mistakes. This fact may imply that a large part of images
are being discarded in the processes of forest monitoring.

Cloud segmentation algorithms needs to account for the fact that there are some remote
sensors with more spectral bands than others. The Landsat 8 and Sentinel-2 have 11 and 13
spectral bands in their images, respectively ((MARKHAM; STOREY; MORFITT, 2015)
(LOUIS et al., 2016)).Differently, CBERS-4 WFI have just four spectral bands (Red, Blue,
Green and near infra-red).

The neural network called U-net (RONNEBERGER; FISCHER; BROX, 2015), that was
initially created to segment cell organelles is taking the state of art from CNN (Convolutional
Neural Network) in segmenting tasks. There are some works in cloud segmentation field
that have used this architecture and obtained satisfactory results (ZHENG; LIU; WANG,
2020)(FRANCIS; SIDIROPOULOS; MULLER, 2019)(JEPPESEN et al., 2019).

1.4 Work Structure

The rest of this work is organized as follows. Section 2 describes two different branches
of the state-of-the-art semantic cloud segmentation and related work. Section 3 presents the
entire methodology, including each step of the proposed workflow, justifying the way they were
prepared. Section 4 shows the results of the presented tool applied to a cloud segmentation task.
Finally, section 5 presents the conclusion and future work to complement the tool.
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2 Related Work

With the advancement of machine learning, more and more tasks reliant on "human intel-
ligence"are being replaced or aided by an intelligent computational model. On work (ALYAFEAI;
GHOUTI, 2020) was proposed an automated workflow to classify images of cervical cancer.
The proposed workflow was divided into four steps: acquire the images; pre-process the images;
extract image features; and classify the images. The workflow presented in this article can be
generically used for segmentation tasks in remote sensor images. However, using it in for remote
sensing images requires to adapt it for dealing with large images (> 2 GB) since it has been
originally developed for processing images from microscope.

The work we are conducting is in the interface of two fields of science: Artificial Intelli-
gence and Geoinformatics. For this reason, in the reviewed literature some terms are written in
different ways but they have the same meaning. Semantic segmentation is a well-known term
used in the field of artificial intelligence. It’s equivalent in the field of Geoinformatics is the term
"pixel classification"(ZHU; WOODCOCK, 2012; FOGA et al., 2017; LOUIS et al., 2016). Thus,
some works presented in this section may use one of these two terms.

Cloud segmentation could be divided into two big categories: physical - based algorithms
and machine learning algorithms. The physical based algorithms use rules based on physical
properties, like, for example, the relative angle of sensors to clouds and the angle from the sun,
to extract a potential cloud layer and a potential cloud shadow layer (FOGA et al., 2017). This
approach also has some disadvantages. First, there are several different remote sensors, with their
own spectral bands and resolutions. As a consequence, their physical characteristics are inherent
to each sensor and the algorithms can rarely be generalized to more than one sensor. Second,
the physical algorithms execute the same calculus analysis for each image, therefore, there are
associated computational costs, which turns the semantic segmentation task longer to execute.

The next paragraphs have the purpose of present the state-of-the-art papers on deep
learning and physical based algorithms for cloud segmentation.

Starting with physical based algorithms, Fmask is one of the most used algorithms to
segment clouds in Landsat TM images (ZHU; WOODCOCK, 2012). Currently, it is common to
use it for benchmarking other algorithms. The evidence of this is that it was employed to evaluate
another implementation of Fmask, called CFMask, comparing its performance with "Automated
Cloud Cover Assessment"(ACCA) system (FOGA et al., 2017). Other physical based algorithm
is the sen2cor, that can classify clouds using just physical data presented in each spectral band
(LOUIS et al., 2016). This algorithm was created for Sentinel-2 Level-1C products. These Cmask,
Fmask, and sen2cor algorithms evidence the relationship between physical based algorithms and
remote sensor, in a way that the major part of algorithms difficultly will be adapt to different
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sensors.

The success of deep learning applications in object recognition and semantic segmentation
has excited scientists and increased the adherence of these techniques to problems with remote
sensing images. Although the segmentation problem, or pixel classification, is an well studied
problem, it remains very challenging. Considering the huge amount of remote sensor data and
the complexity of the data, the machine learning methods are of great benefit to researchers and
professionals actuating in Geosciences (YUAN; SHI; GU, 2021).

The machine learning area is wide, and comprises a series of different algorithms capable
of solving various problems, like object detection, patterns on time series, natural language
processing and more (JEPPESEN et al., 2019) (FRANCIS; SIDIROPOULOS; MULLER, 2019).

Machine learning models could be developed in a supervised, unsupervised, reinforce-
ment, or semi-supervised manner. Fully Convolutional Neural Networks (FCNN) are supervised
models (LONG; SHELHAMER; DARRELL, 2015) , that is, it is necessary to provide a ground-
truth input to the algorithm in order to teach it the desired outputs. After training the model with
the provided inputs, it should be capable of correctly classifying each new given input on the
test step. With the results of those classifications, it would be possible to compute user defined
metrics to determine how good the algorithm performs in the classification problem, allowing
the comparison with the results of other works (LI et al., 2019).

The Fmask (ZHU; WOODCOCK, 2012) and MSCFF (LI et al., 2019) algorithms were
used to remove thick clouds and cloud shadows from sensor images present in Sentinel-2 (ZHANG
et al., 2020). The first step was making the cloud masks using the cited algorithms in multi-
temporal imagery. Then, the imagery is combined to analyze the similarity to recover the cloud-
free areas in one patched image. The biggest problem found in state-of-the-art cloud removal is
the missing values on the reconstructed images, like spectral reflectance from differences between
multi-temporal images, but the proposed algorithm rounds this problem. Usually the algorithms
use images from only one remote sensor because each remote sensor has its own band with
different spectral information. Nevertheless, the MSCFF architecture can handle both Landsat 8
and Sentinel-2 satellites multi-temporal/single imagery of small/large scenes. This shows that
besides the difficulties some algorithms can be generic and can be adapt to different sensors.

In the literature, a neural network architecture was proposed that allows the input of
remote sensing images of different dimensions, the model is called CloudFCN (FRANCIS;
SIDIROPOULOS; MULLER, 2019). The mechanism of receive different input images is very
useful to allow entering data from more than one remote sensor, thus making the model more
generic. Using the Biome dataset (FOGA et al., 2017) the model showed an accuracy of 82.81%
for RGB scenes and 91.00% with all spectral information versus CFmask (FOGA et al., 2017)
with 65.69% using all spectral bands available. The lack of spectral bands, using only RGB bands,
made difficult to the model to predict some cases of snow, sand (when it is used remote sensor of
high resolution) and other objects that present high albedo (a metric that measures the quantity
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of solar radiation reflected from the object versus the total incident energy). The mechanism that
allows the entry of different dimensions is very interesting and expected in a workflow that aims
to be generic and modular.

It is common to find architectures based on U-Net when the field of machine learning
problem is semantic segmentation. When the goal of case study is cloud segmentation in remote
sensor imagery, then U-Net architectures are also commonly used. A new approach to detecting
clouds even with hardly distinguishable scenery was created (JEPPESEN et al., 2019). The model
is a neural network built from U-Net and got meaningful results. The "Biome"and "Sparcs"datasets
(FOGA et al., 2017) were used to evaluate the model divided into three situations. First, the
model was trained with the Biome dataset and evaluated with Sparcs, and vice versa. Second, the
groundtruth masks were generated by the Fmask algorithm. Finally, the model was trained and
tested on the same dataset using image-based cross-validation, where the training data are the
groundtruth cloud masks. The model improves the FMask even when using just RGB bands in
all the three cited cases of evaluation. This case study shows that, even with images extracted
from a remote sensor with small spectral bands, like CBERS-4 WFI, a deep learning model can
produce trustworthy cloud masks.

Currently, the algorithms for semantic segmentation on remote sensing images mainly
use deep learning strategies (YUAN; SHI; GU, 2021). This occurs because in the last decade,
more and more deep learning algorithms have demonstrated much superior performance in tasks
as object identification and semantic segmentation.The major part of the deep learning models
presented in this section were based on U-Net, therefore, it seems to be the direction that the
state-of-the-art is going.



8

3 Dataset

Building a dataset for cloud semantic segmentation is a challenge. When groundtruth
masks are used to segment a cat, for example, it will be observed whether each pixel of image
belongs or not to the cat. Clouds are different, the center of a cloud can be dense, with high albedo,
and borders of cloud can have transparent gradient that makes it difficult to classify whether that
pixel is a cloud or not (DOWLING; RADKE, 1990).

Just to facilitate the work, in this proof of concept,we used the Cmask algorithm to
automatically produce a dataset of segmented images. This strategy allow us to focus on the
deep learning algorithm development. Later, a larger dataset will be segmented manually. The
current dataset is composed by 4 images from WFI remote sensor, that were divided into smaller
images, as shown in the figure 3.1, of 256x256x4 pixels, totalizing more than 10.760 images with
its respective masks. As masks were obtained by applying the Cmask algorithm (QIU; ZHU;
WOODCOCK, 2020) to each image, these masks have errors associated to them and do not
correctly represent the ground truth.

Figure 3.1 – Demonstration of the image cropping step. On the left the raw scene, in the center
the raw scene with the subscenes in red, on the right the resulting subscene.

Each image from CBERS-4 WFI remote sensor has four spectral bands, Red, Blue, Green
and near infra-red. The red, blue and green (RGB) bands, in cloud semantic segmenting task, are
responsible to detect the albedo level, and the infrared is known by being absorbed by vegetation
(ZHANG; XIAO, 2014).
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4 Methodology

This chapter details each step present in the developed workflow, Figure 4.1. The workflow
was divided into two main components: model calibration and production model. Workflow steps
are decoupled from each other. These steps are called in two Jupyter notebook files. Each notebook
implements the main control flow of each component, one for model calibration and another for
the production model. The notebook files act as an interface for the user, in which he/she may
script the workflow in Python programming language (VANROSSUM, 1995), configuring and
connecting steps. Each section of this chapter explains only one workflow step.

Figure 4.1 – Developed workflow

Each step is implemented as a Python function based on the Keras (KETKAR, 2017)
library that provides features to deep learning model development. The GDAL (WARMERDAM,
2008) and NumPy (OLIPHANT, 2006) libraries have been combined to handle remote sensing
images without losing the coordinates and "no data values"metadata.

Images from remote sensor have some pixel values called "no data". The "no data va-
lue"pixels are a mechanism to fill the matrix representing the images in places where no data
have been collected by the remote sensor. When the image is collected by the remote sensor,
the position and angle of the remote sensor vary in relation to earth, thus the image seems to
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be rotated and the edge of images is filled with empty pixels. This mechanism is crucial, for
example, to overlay an image over a map in the correct position without hiding areas where no
data have been collected.

Figure 4.2 – Screenshot of the image generated by a remote sensor overlapped on a map on the
INPE website

In Figure 4.2, it can be seen a remote sensor image superimposed on the map. The image
rotation results from the satellite position and angle and the image displacement reveals pixels of
"no data"value.

4.1 Model Calibration

The model calibration workflow component consists of several steps: pre-processing
remote sensor imagery (normalization and crop), configure and train a deep learning model, and
compute metrics to evaluate the trained model.

4.1.1 Handling Dataset

The first step in handling the dataset is to build a directory hierarchy. The directory folders
are divided into the following: original scene folder, to be filled with the original scenes (with
all bands); normalized scene folder, to be filled with the respective normalized scenes; cropped
production folder, to be filled with subscenes from the normalized scenes; cropped production
mask folder, to be filled with output masks estimated by the model for each subscene.

In sequence, each scene goes through a Min-Max normalization step, which uses a linear
operation to transform the pixel’s values (SARANYA; MANIKANDAN, 2013). Here, the original
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pixels values ranging from 0 to 10.000 are mapped to new values between 0 and 1. The purpose
of the normalization step is to transform the image in a way that each image presents a similar
distribution of its pixels, and this helps in the conversion of the neural network.

In the next step, the normalized scene will be cropped based on subscene dimensions
parameter and separated between the training, validation and test groups. Before starting the
training step, the proportion of subscenes in each group must be included. The groups need to
be randomly formed to avoid biased data (GÉRON, 2019). Usually the proportion of groups is
70% for the training group, 15% for validation and 15% for the test, but these values may change
depending on the dataset size.

4.1.2 Training Step

In the learning stage, the model must receive subscenes as input. The set of subscenes is
called batches. To load the batches and not use all the machine’s memory, a mechanism called
"generator"was built to iterate among the images, loading a batch and, after training, reallocating
memory to a new batch. In this way, the generator expects the batch size hyperparameter as the
input.

4.1.2.1 Deep Learning Model

Although the workflow is modular and can coupled to different deep learning models, only
one neural network model was used in this work to implement this step. The chosen neural network
has an U-net architecture (RONNEBERGER; FISCHER; BROX, 2015) due to its performance and
presence in the state-of-the-art. Semantic segmentation is a particular field of computer vision, and
the most employed deep learning technique on state-of-the-art is precisely the FCNN, which were
firstly developed to the Biomedical Science field, with the U-net architecture(RONNEBERGER;
FISCHER; BROX, 2015). This neural network is called U-net because its architecture has the
shape of the character "U"as can be seen in the Figure 4.3. An U-net can extract characteristics
from an image and transform these characteristics in an one-dimension vector. Its architecture
is built in two parts. The former is called encoder, and the latter decoder. The encoder step
consists of applying convolutional operations followed by a maxpool downsampling to encode
the input image into feature representations at multiple different levels. The decoder step consists
of reconstructing the image through upsampling and concatenation at each layer level using the
features learned in the encoder step. The enconder-decoder strategy is what makes U-nets to
perform well in the segmentation task, extracting and mapping characteristics from an image.

As the tensor representing the subscene has several dimensions depending on the available
memory and the number of bands of the remote sensor, in this case each tensor is a image with
(256 pixels x 256 pixels x 4 bands), we have chosen a U-net implementation from GitHub
with configurable input dimensions (ZAK, 2021), so that, the resulting workflow can also be
configured.
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Figure 4.3 – U-net Architecture: The fist half of its architecture is the encoder, the second half is
the decoder.

4.1.2.2 Metrics

After configure the U-net dimensions, we defined other hyperparameters for configuring
the neural network and implemented some metrics to evaluate its performance. This section
explains these details.

The Keras library contains many metrics available to interpret the confidence of a neural
network output, except the F1-Score metric. This section will explain the most important ones,
but the workflow allows the user to defined its own metric.

Starting by some well-known metric, the accuracy, with "TP"be true positives, "TN"be
true negatives, "FP"be false positives and "FN"be false negatives, its equations are presented as
follows:

Accuracy = TP + TN
TP + TN + FP + FN

(4.1)

Accuracy is the proximity of a result to its actual reference value. Thus, the higher the
level of accuracy, the closer to the reference or real value is the result found. The accuracy
considers only the correctly predicted values without distinguishing whether false negatives or
false positives are worse for the case study.

In addition of available metrics on Keras library, it was implemented one more metric
that can be used in the project, the F1-Score. F1-Score is composed using other two well-known
metrics: precision and recall.

The Precision can be written as follows:

Precision = TP
TP + FP

(4.2)

When the result presents several false positives, or few true positives, this increases the
denominator and makes the precision small. The Precision has a heavier weight to predicted false
positives, this way, when this metric is used, the goal should be to improve the correct predictions
by minimizing the false positive cases and increasing the cases of true positives.
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The Recall can be wrote as follow:

Recall = TP
TP + FN

(4.3)

The recall measures the model’s ability to detect true positives. The higher the recall, the
more positive samples are detected. The recall metric, unlike Precision, has a heavier weight to
false negative predictions, that is, when this metric is used, the goal should be to improve the
predictions by avoiding false negative cases.

Finally, the F1-Score consists of the harmonic mean of Precision and Recall, as in the
following equation:

F1 = 2 ∗ Precision × Recall
Precision + Recall

(4.4)

That is, differently from accuracy, the F1-Score being a harmonic mean gives much more
weight to low values. Thus, this metric is high just if both recall and precision are high. Therefore,
it is a stable metric to compute the confidence level of a deep learning model.

Finally, it is expected that the user defines a loss function in order to finish the neural
network model configuration. A loss function is used to optimize the parameter values in a neural
network model. Loss functions map a set of parameter values for the network onto a scalar value
that indicates how well those parameters accomplish the task that the network is intended to do.
There are several loss functions already implemented in Keras library and all of them are allowed
to be used as input at this step.

4.1.3 Test Step

At the test step, all the subscenes on test folder will be loaded and used as input to
the trained model. These images have never been seen by the model. It is important to avoid
biased metrics and to see how the model handles new inputs. After the model consumes the
input images and output their respective estimated cloud masks, the groundtruth masks will be
compared to them. The metrics configured in the previous step are then computed to each pair
estimated-groundtruth masks and are stored in a table. Finally, the general average of each metric
is calculate from this table.

4.2 Production Model

The production model workflow component should have a pre-trained model. This com-
ponent is responsible for cutting a new scene into small subscenes, using them as inputs to a
trained model, and for reconstructing the output mask with the same size of the entire original
scene.
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4.2.1 Handling Data

The first step in handling the dataset is to build a directory hierarchy. The directory folders
are divided into the following: production scene folder, to be filled with the original scenes;
normalized scene folder, to be filled with the respective normalized scenes; cropped production
folder, to be filled with subscenes from the normalized scenes; cropped production mask folder,
to be filled with output masks estimated by the model for each subscene; segmented mask folder,
to be filled with the entire reconstructed mask. If there several scenes in the input dataset, then
the production model will create a entire directory hierarchy for each scene.

4.2.2 Segmentation Step

The next step after building the directory hierarchy is to normalize and to crop the scenes,
a process that is identical to the step "Handling Dataset"in the Model Calibration component.

In the next step, the subscenes are inputted into the pre-trained neural network and the
outputs are collected to reconstruct the entire segmented mask.

The process of reconstructing the segmented mask is called "mosaicing". A mosaic is
a combination or merge of two or more images, the function uses the coordinates metadata
present on a tif file to correctly locate each subscene in the geographical space. The process was
implemented using the "WARP"function present on GDAL library.
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5 Results

This chapter mentions the materials used to assess the workflow. Then, the parameters
chosen for workflow calibration are shown and justified. Finally, the performance metrics resulting
from the workflow execution are shown and discussed.

5.1 Materials

The workflow was entirely develop in the Python language and it was executed on a
2.60GHz Intel Core i7-9750H machine, with 8 gigabytes of RAM in the Windows 10 operating
system. The main libraries used were: Keras, for model implementation; GDAL, to manipulate
the georeferenced images; and NumPy, to handle tensors.

The workflow was developed to provide loosely coupled steps, allowing users to customize
or replace each of them. In this way, users can customize the workflow to deal with datasets from
different remote sensors. Users can also replace workflows steps by overwriting the functions
that implement them.

In the case study conducted to evaluate the workflow, a dataset composed by images from
CBERS-4 WFI remote sensor was used. These images have four spectral bands, Red, Blue, Green
and near infra-red. The red, blue and green (RGB) bands, in cloud semantic segmenting task, are
responsible for detecting albedo level, and infrared region is known to be absorbed by vegetation
(ZHANG; XIAO, 2014).

Each scene presented in the training step, must have a groundtruth mask. The masks used
in the case study were extracted by Cmask algorithm (FOGA et al., 2017).

5.2 Hyperparameters

The workflow must be able to run on a personal machine with little computational power,
the "subscene dimension"hyperparameter is given fixed height and width values and the number
of spectral bands so that the original scene is cut into smaller scenes that can be loaded into a
small memory space. In the case study, each subscene was defined to have a size of 256x256x4
pixels, being 256 pixels in width and height and 4 layers for red, green, blue, and near infrared
spectral bands. The generator mechanism implemented in this work allowed the pipeline to work
using several images up to 2 gigabytes in size, even with a machine with only 8 gigabytes of
RAM.

The next hyperparameters to be chosen are the loss function, the optimizer and the
performance metrics. To choose the loss parameter the scope of problems must be analyzed.
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Here, each existent pixel should be classified into two classes: "cloud"or "background."This is a
classic case of binary classification, where one image can have its pixels belong or not to a class.
To this scope of problem, the binary cross-entropy, which is based on Bernoulli’s formula, is
suitable (RUBY; YENDAPALLI, 2020).

loss = 1/n ·
i=1∑

y

yi · log(ŷi) + (1 − yi) · log(1 − ŷi) (5.1)

The optimizer parameter is a responsible function for minimizing the loss (GÉRON,
2019). Adam optimizer is one of the most popular and famous gradient descent optimization
algorithms. It is a method that computes adaptive learning rates for each parameter. It stores both
the decaying average of the past gradients, similar to momentum and the decaying average of the
past squared gradients, similar to RMS-Prop and Adadelta. Thus, it combines the advantages of
both methods (KINGMA; BA, 2014).

Finally, as the case study has no weight distinction for false positives and false negatives,
we choose the F1-score metric to monitor the model learning.

As a next step, it is necessary to configure one more hyperparameter for the early stop
function. A mechanism was built to interrupt the model training early. The function responsible
for this mechanism works as follows:

First, a hyperparameter called "patience"is entered. This hyperparameter is used as a
threshold for the maximum number of iterations the model can perform without improving the
learning metric. If the number of interactions without improvements surpasses the patience value,
the model will stop the training and their weights will be saved on the basis of the interaction
that performed better. This mechanism helps to decrease the time spent with models that do not
show improvement and it also helps save the model in its best iteration. To the study case the
patience was defined as a threshold of five interactions.

Finishing the model configuration step, there is a last hyperparameter that is also res-
ponsible for being a threshold of interactions, but this threshold, called "epochs,"represents the
maximum number of interactions. The training step will never exceed the number of epochs.
For the case study, the epochs were defined as a value of twenty-five interactions. The complete
setting data can be seen at the Table 5.1.

5.2.1 Performance metrics

The performance metrics presented in this section were extracted from the workflow
execution using the materials and hyperparameters mentioned above.

The first information that will be generated is the history graph represented on the Figure
5.1. It shows the metrics in each interaction during the training step. In this way, it is possible
to see the F1-score and loss in each epoch. It is possible to observe that, during the training,
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Hyperparameter KNN
Dimension 256
Bands 4
Loss Function Binary cross-entrophy
Optmizer Adam
Metric F1-score
Patience 5
Epochs 25

Table 5.1 – List of hyperparameters

the model improves at each interaction (Training F1-score) and that it shows an asymptotic
behavior after fifteen interactions. However, the model performance is not always confirmed by
the validation metrics (Validation F1-Score).

Figure 5.1 – Evolution of model along the training step

Bellow, Figure 5.2 shows some masks from the test subscenes. The input subscenes
appear in the left column, the input masks in middle column, and the predicted mask in the
right column. Each pixel of predicted masks has color that indicates the confidence level of the
model in the prediction. In the input images, the density clouds range from black to white. Light
grays register more presence of cloud. In the input mask, yellow means cloud and purple means
no-cloud.
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Figure 5.2 – Some input data with the respective predicted mask for the U-net model

As can be seen, the resulting masks present a color gradient between the background
color (purple) and the cloud color (yellow), according to confidence level of the model in the
classification. To make a binary mask, another hyperparameter must be defined, a confidence-level
threshold. If the threshold is set to, for example, 0.97, then only pixels for which the model is 97%
confident that they are cloud will be colored in yellow. Everything else will be colored in purple.
Therefore, it is important to find a threshold value that best avoids wrong coloring. We avoid to
arbitrarily choose a threshold value in our case study, preserving the level of confidence analysis.
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Figure 5.3 – Some input data with the respective predicted mask that present a case of false
positive cloudy pixels.

As can be seen in the Figure 5.3, exposed soil has high reflectance level (albedo) in
comparison with vegetation, then the algorithm can get confused whether this object is a cloud
or not.

The next step is to assess how the workflow works in a production scenario. After
entering the scene in the workflow, the entire scene will be segmented and its output mask will
be reconstructed and saved in the "Merged Files"directory.

Figure 5.4 – Raw Scene. Figure 5.5 – Mosaic mask.

Figure 5.5 shows a raw image from CBERS-4A dataset on the left, which the deep learning
model has never seen. On the right side, it shows the mosaic of the output-segmented masks. It
can be seen that the mosaic image does not have a defined threshold for pixel confidence levels.
In this way, the pixel values are a gradient of values between 0 and 1. By applying a threshold, it
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is possible to select only pixels where the model has been segmented with high confidence. In
the Figure 5.6 no threshold was set, and the Figure 5.7 a 97% confidence limit was used.
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Figure 5.6 – Mosaic mask. Figure 5.7 – Mosaic mask with threshold.

These two last Figures show the importance of defining a threshold for classifying pixels.
This process is called threshold tuning and it requires to balance the recall-precision trade-off
(BUCKLAND; GEY, 1994). There are strategies to define a threshold in segmentation masks,
but they are not addressed in this study.
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6 Final Considerations

This work developed and evaluated a workflow for semantic segmentation of remote sensor
images. The proposed workflow handles the dataset automatically, requiring only hyperparameter
inputs. The workflow is distributed as a free and open source software, under the LGPL GNU
license. Its source code can be found in the repository: https://gitlab.com/ufopterralab/projeto-
segmentacao-semanticas-cbers-4a-wfi.

The workflow can be configured for a more powerful machine (increasing sub-scene size
and batch size) or running on a personal computer, with less computing power. Even with only 8
gigabytes of RAM the workflow was able of training a deep learning model with several images
of more than 2 gigabytes each one. The choice of a threshold was not included in the scope of
this project, but was left open for future work.

The initial idea of building this workflow was to improve semantic segmentation for the
CBERS-4A remote sensor, but in the process of building the dataset and workflow, it became
clear that the workflow itself could be a project that would help scientists working with semantic
segmentation of remote sensor images, requiring only the hyperparameterization of the model to
obtain an initial result.

In the process of building the case study dataset, was identified a scientific and technolo-
gical gap in cloud removal algorithms for the CBERS-4A WFI remote sensor. Today the INPE
works with the Cmask algorithm and it does not perform well for CBERS-4A data. Additionally,
a groundtruth dataset is missing for this remote sensor, limiting the attempts to implement and
evaluate other machine learning models to segment could in CBERS-4A WFI imagery. This way,
there are possible continuations of this work, as they are listed below:

• Develop a CBERS-4A WFI dataset with groundtruth masks.

• Develop a CBERS-4A WFI dataset with one more class, e. g., including "cloud shadows".

• Develop a function to select a confidence threshold to apply to the mosaic output mask.

• Develop a mechanism to avoid the loss of pixels in the step of cropping the sub scenes.

• Develop a mechanism to ignore pixels that have "no-data"values.



23

References

ALYAFEAI, Z.; GHOUTI, L. A fully-automated deep learning pipeline for cervical cancer
classification. Expert Systems with Applications, Elsevier, v. 141, p. 112951, 2020.

BUCKLAND, M.; GEY, F. The relationship between recall and precision. Journal of the
American society for information science, Wiley Online Library, v. 45, n. 1, p. 12–19, 1994.

CHAUDRON, M.; LARSSON, S.; CRNKOVIC, I. Component-based development process and
component lifecycle. Journal of Computing and Information Technology, Fakultet elektrotehnike
i računarstva Sveučilišta u Zagrebu, v. 13, n. 4, p. 321–327, 2005.

CHEN, H.; CHEN, A.; XU, L.; XIE, H.; QIAO, H.; LIN, Q.; CAI, K. A deep learning cnn
architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation
resources. Agricultural Water Management, Elsevier, v. 240, p. 106303, 2020.

DOWLING, D. R.; RADKE, L. F. A summary of the physical properties of cirrus clouds.
Journal of Applied Meteorology and Climatology, v. 29, n. 9, p. 970–978, 1990.

EPIPHANIO, J. C. N. Cbers-3/4: características e potencialidades. In: Proceedings of the
Brazilian Remote Sensing Symposium, Curitiba, Brazil. [S.l.: s.n.], 2011. v. 30, p. 90099016.

FOGA, S.; SCARAMUZZA, P. L.; GUO, S.; ZHU, Z.; JR, R. D. D.; BECKMANN, T.;
SCHMIDT, G. L.; DWYER, J. L.; HUGHES, M. J.; LAUE, B. Cloud detection algorithm
comparison and validation for operational landsat data products. Remote sensing of environment,
Elsevier, v. 194, p. 379–390, 2017.

FRANCIS, A.; SIDIROPOULOS, P.; MULLER, J.-P. Cloudfcn: Accurate and robust cloud
detection for satellite imagery with deep learning. Remote Sensing, Multidisciplinary Digital
Publishing Institute, v. 11, n. 19, p. 2312, 2019.

GÉRON, A. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts,
tools, and techniques to build intelligent systems. [S.l.]: O’Reilly Media, 2019.

INPE. Satélite sino-brasileiro CBERS-4 completa seis anos em órbita. 2020. Disponível em:
<http://www.inpe.br/noticias/noticia.php?Cod_Noticia=5624>.

JEPPESEN, J. H.; JACOBSEN, R. H.; INCEOGLU, F.; TOFTEGAARD, T. S. A cloud detection
algorithm for satellite imagery based on deep learning. Remote sensing of environment, Elsevier,
v. 229, p. 247–259, 2019.

KETKAR, N. Introduction to keras. In: Deep learning with Python. [S.l.]: Springer, 2017. p.
97–111.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

LI, Z.; SHEN, H.; CHENG, Q.; LIU, Y.; YOU, S.; HE, Z. Deep learning based cloud detection
for medium and high resolution remote sensing images of different sensors. ISPRS Journal of
Photogrammetry and Remote Sensing, Elsevier, v. 150, p. 197–212, 2019.

http://www.inpe.br/noticias/noticia.php?Cod_Noticia=5624


References 24

LONG, J.; SHELHAMER, E.; DARRELL, T. Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2015. p. 3431–3440.

LOUIS, J.; DEBAECKER, V.; PFLUG, B.; MAIN-KNORN, M.; BIENIARZ, J.; MUELLER-
WILM, U.; CADAU, E.; GASCON, F. Sentinel-2 sen2cor: L2a processor for users. In:
SPACEBOOKS ONLINE. Proceedings Living Planet Symposium 2016. [S.l.], 2016. p. 1–8.

MARKHAM, B.; STOREY, J.; MORFITT, R. Landsat-8 sensor characterization and calibration.
[S.l.]: Multidisciplinary Digital Publishing Institute, 2015.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, Springer, v. 5, n. 4, p. 115–133, 1943.

MORAN, M. S.; HYMER, D. C.; QI, J.; KERR, Y. Comparison of ers-2 sar and landsat tm
imagery for monitoring agricultural crop and soil conditions. Remote Sensing of Environment,
Elsevier, v. 79, n. 2-3, p. 243–252, 2002.

OLIPHANT, T. E. A guide to NumPy. [S.l.]: Trelgol Publishing USA, 2006. v. 1.

POUYANFAR, S.; SADIQ, S.; YAN, Y.; TIAN, H.; TAO, Y.; REYES, M. P.; SHYU, M.-L.;
CHEN, S.-C.; IYENGAR, S. S. A survey on deep learning: Algorithms, techniques, and
applications. ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 51, n. 5, p. 1–36,
2018.

QIU, S.; ZHU, Z.; WOODCOCK, C. E. Cirrus clouds that adversely affect landsat 8 images:
what are they and how to detect them? Remote Sensing of Environment, Elsevier, v. 246, p.
111884, 2020.

RONNEBERGER, O.; FISCHER, P.; BROX, T. U-net: Convolutional networks for biomedical
image segmentation. In: SPRINGER. International Conference on Medical image computing
and computer-assisted intervention. [S.l.], 2015. p. 234–241.

ROSENBLATT, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, American Psychological Association, v. 65, n. 6,
p. 386, 1958.

ROSSOW, W. B.; SCHIFFER, R. A. Advances in understanding clouds from isccp. Bulletin
of the American Meteorological Society, American Meteorological Society, v. 80, n. 11, p.
2261–2288, 1999.

RUBY, U.; YENDAPALLI, V. Binary cross entropy with deep learning technique for image
classification. International Journal of Advanced Trends in Computer Science and Engineering,
v. 9, n. 10, 2020.

SARANYA, C.; MANIKANDAN, G. A study on normalization techniques for privacy
preserving data mining. International Journal of Engineering and Technology (IJET), Citeseer,
v. 5, n. 3, p. 2701–2704, 2013.

SOUZA, A.; MONTEIRO, A. M. V.; RENNÓ, C. D.; ALMEIDA, C. A.; VALERIANO, D.
d. M.; MORELLI, F.; VINHAS, L.; MAURANO, L. E. P.; ADAMI, M.; ESCADA, M. I. S. et al.
Metodologia utilizada nos projetos prodes e deter. INPE: São José dos Campos, Brazil, 2019.



References 25

VANROSSUM, G. Python reference manual. Department of Computer Science [CS], CWI, n. R
9525, 1995.

WARMERDAM, F. The geospatial data abstraction library. In: Open source approaches in
spatial data handling. [S.l.]: Springer, 2008. p. 87–104.

XU, A.; LIU, Z.; GUO, Y.; SINHA, V.; AKKIRAJU, R. A new chatbot for customer service
on social media. In: Proceedings of the 2017 CHI conference on human factors in computing
systems. [S.l.: s.n.], 2017. p. 3506–3510.

YUAN, X.; SHI, J.; GU, L. A review of deep learning methods for semantic segmentation of
remote sensing imagery. Expert Systems with Applications, Elsevier, v. 169, p. 114417, 2021.

ZAK, K. keras-unet. [S.l.]: GitHub, 2021. <https://github.com/karolzak/keras-unet>.

ZHANG, Q.; XIAO, C. Cloud detection of rgb color aerial photographs by progressive
refinement scheme. IEEE Transactions on Geoscience and Remote Sensing, IEEE, v. 52, n. 11, p.
7264–7275, 2014.

ZHANG, Q.; YUAN, Q.; LI, J.; LI, Z.; SHEN, H.; ZHANG, L. Thick cloud and cloud shadow
removal in multitemporal imagery using progressively spatio-temporal patch group deep learning.
ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, v. 162, p. 148–160, 2020.

ZHANG, Y.; ROSSOW, W. B.; LACIS, A. A.; OINAS, V.; MISHCHENKO, M. I. Calculation of
radiative fluxes from the surface to top of atmosphere based on isccp and other global data sets:
Refinements of the radiative transfer model and the input data. Journal of Geophysical Research:
Atmospheres, Wiley Online Library, v. 109, n. D19, 2004.

ZHENG, J.; LIU, X.-Y.; WANG, X. Single image cloud removal using u-net and generative
adversarial networks. IEEE Transactions on Geoscience and Remote Sensing, IEEE, 2020.

ZHU, Z.; WOODCOCK, C. E. Object-based cloud and cloud shadow detection in landsat
imagery. Remote sensing of environment, Elsevier, v. 118, p. 83–94, 2012.

https://github.com/karolzak/keras-unet

	482ce44cac375b39acd20ed96e56e918e4d199d3ac44fba63e0d34607e6a9163.pdf
	9f28be177fb1d6e75b21471ae47a15cb694865121ac48466e02c201db6e0f777.pdf
	482ce44cac375b39acd20ed96e56e918e4d199d3ac44fba63e0d34607e6a9163.pdf
	Abstract
	List of Figures
	List of Algorithms
	List of Abbreviations and Acronyms
	Contents
	Introduction
	Motivation
	Problem Statement
	Goals of This Work
	Work Structure

	Related Work
	Dataset
	Methodology
	Model Calibration
	Handling Dataset
	Training Step
	Deep Learning Model
	Metrics

	Test Step

	Production Model
	Handling Data
	Segmentation Step


	Results
	Materials
	Hyperparameters
	Performance metrics 


	Final Considerations
	References




