

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS DEPARTAMENTO DE GEOLOGIA

TRABALHO DE CONCLUSÃO DE CURSO

CARACTERIZAÇÃO DE APATITAS DA PROVÍNCIA BORBOREMA, NE DO BRASIL, COMO MATERIAIS DE REFERÊNCIA PARA GEOCRONOLOGIA U-Pb VIA LA-ICP-MS

Camila Santos Schuch

MONOGRAFIA nº 280

Ouro Preto, junho de 2018

CARACTERIZAÇÃO DE APATITAS DA PROVÍNCIA BORBOREMA, NE DO BRASIL, COMO MATERIAIS DE REFERÊNCIA PARA GEOCRONOLOGIA U-Pb VIA LA-ICP-MS

FUNDAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO

Reitora

Prof.ª Dr.ª Cláudia Aparecida Marliére de Lima

Vice-Reitor

Prof. Dr. Hermínio Arias Nalini Júnior

Pró-Reitora de Graduação

Prof.^a Dr.^a Tânia Rossi Garbin

ESCOLA DE MINAS

Diretor

Prof. Dr. Issamu Endo

Vice-Diretor

Prof. Dr. José Geraldo Arantes de Azevedo Brito

DEPARTAMENTO DE GEOLOGIA

Chefe

Prof. Dr. Marco Antônio Fonseca

MONOGRAFIA

Nº 280

CARACTERIZAÇÃO DE APATITAS DA PROVÍNCIA BORBOREMA, NE DO BRASIL, COMO MATERIAIS DE REFERÊNCIA PARA GEOCRONOLOGIA U-PB VIA LA-ICP-MS

Camila Santos Schuch

Orientador

Cristiano de Carvalho Lana

Co-Orientador

Ricardo Augusto Scholz Cipriano

Monografia do Trabalho de Conclusão de curso apresentado ao Departamento de Geologia da Escola de Minas da Universidade Federal de Ouro Preto como requisito parcial para avaliação da disciplina Trabalho de Conclusão de Curso – TCC 402, ano 2018/1.

OURO PRETO

2018

Universidade Federal de Ouro Preto – http://www.ufop.br Escola de Minas - http://www.em.ufop.br Departamento de Geologia - http://www.degeo.ufop.br/ Campus Morro do Cruzeiro s/n - Bauxita 35.400-000 Ouro Preto, Minas Gerais Tel. (31) 3559-1600, Fax: (31) 3559-1606

Direitos de tradução e reprodução reservados.

Nenhuma parte desta publicação poderá ser gravada, armazenada em sistemas eletrônicos, fotocopiada ou reproduzida por meios mecânicos ou eletrônicos ou utilizada sem a observância das normas de direito autoral.

Redação e revisão geral: Camila Santos Schuch

Catalogação elaborada pela Biblioteca Prof. Luciano Jacques de Moraes do Sistema de Bibliotecas e Informação - SISBIN - Universidade Federal de Ouro Preto

S384c Schuch, Camila Santos .

Caracterização de apatitas da Provincia Borborema, NE do Brasil, como materiais de referência para geocronologia U-Pb via LA-ICP-MS [manuscrito] / Camila Santos Schuch. - 2018.

91f.:

Orientador: Prof. Dr. Cristiano de Carvalho Lana. Coorientador: Prof. Dr. Ricardo Augusto Scholz Cipriano.

Monografía (Graduação). Universidade Federal de Ouro Preto. Escola de Minas. Departamento de Geologia.

 Fosfatos - Apatita. 2. Espectrometria de massa. 3. Geocronologia. I. Lana, Cristiano de Carvalho. II. Cipriano, Ricardo Augusto Scholz. III. Universidade Federal de Ouro Preto. IV. Titulo.

> CDU: 551.7:553.64 Catalogação: ficha@sisbin.ufop.br

> > http://www.sisbin.ufop.br

Ficha de Aprovação

TRABALHO DE CONCLUSÃO DE CURSO

TÍTULO: Caracterização de Apatitas da Província Borborema, NE do Brasil, como Materiais de Referência para Geocronologia U-Pb via LA-ICP-MS

AUTORA: CAMILA SANTOS SCHUCH

ORIENTADOR: Prof. Dr. Cristiano de Carvalho Lana

Aprovada em: 27 de junho de 2018

BANCA EXAMINADORA:

Prof. Dr. Cristiano de Carvalho Lana

DEGEO/UFOP

MSc. Guilherme de oliveira Gonçalves

Prof. Dr. Leonardo Martins Graça

DEGEO/UFOP mmede, amo

DEGEO/UFOP

Ouro Preto, 27/06/2018

Agradecimentos

Foi necessária muita coragem para enfrentar toda essa jornada de ensino superior novamente. Gostaria de agradecer de todo meu coração ao meus pais, Edmur e Sonja, sem o amor, carinho e apoio de vocês eu não estaria completando mais essa etapa. À minha irmã Nathalia, que mesmo distante sempre esteve presente. Aos meus avós José e Todinha que amo tanto, e aos que não estão mais aqui. À minha família, que sempre me apoiou ao decidir encarar outro curso.

Aos meus amigos de longa data, do CFO ou da Ed.Física, que nunca se ausentaram e sempre me incentivaram. Em especial à Tatiana, Ludy, Lili, Bruna, Mari, Erick e Tereza; vocês são fundamentais para minha felicidade.

Aos amigos de Ouro Preto, da geológica ou da vida, meu muito obrigada. Vocês foram fundamentais para eu não desistir. Guto e Lets, desde o ínicio juntos e para sempre juntos, sem vocês eu não teria conseguido. Aos 13.1 e agregados, em especial ao Wagner, Tite, Debinha, Toninho, Larissa, Lorena, Natália, Leon, Raíssa e Arara, obrigada pelas risadas e finas. Às melhores pessoas para se dividir um teto, Camila, Fernanda e Júlia, e obrigada D.Vera por cuidar tão bem da gente.

Ao professor Cristiano, por me dar a oportunidade de pertencer ao LOPAG, onde aprendi muito sobre geologia e conheci pessoas maravilhosas, especialmente a Ana, Marcha, Léo, Alice, Tako, Francesco e Carmens no plural, vocês me ensinaram que a geologia pode ser divertida. Ao Scholz por todas as amostras que ganhei, inclusive as utilizadas para este trabalho.

À CPRM pela vivência do estágio, em especial ao Chico, Marco Aurélio e Mahyra, com vocês por perto trabalhar fica fácil e leve, aprender é natural, e alegria é uma certeza.

Por fim, agradeço ao Departamento de Geologia, à Escola de Minas, à Universidade Federal de Ouro Preto, à Fundação Gorceix, à FAPEMIG e ao CNPQ por terem me proporcionado um ensino público superior de qualidade durante toda a minha graduação.

SUMÁRIO

AGRADECIMENTOS SUMÁRIO LISTA DE FIGURAS LISTA DE TABELAS RESUMO ABSTRACT 1 INTRODUÇÃO	
1.1 APRESENTAÇÃO	21
1.2 LOCALIZAÇÃO	21
1.3 NATUREZA DO PROBLEMA	
1.4 OBJETIVOS	23
1.5 METODOLOGIA	23
1.5.1 Revisão bibliográfica	23
1.5.2 Preparação das amostras	24
1.5.3 Caracterização química	25
1.5.4 Caracterização isotópica	
1.6 ESTRUTURAÇÃO DO TCC	
 2 CONTEXTO GEOLÓGICO	
3.1 O SISTEMA U-Pb	
3.1.1 Determinação de Idades	
3.1.2 Diagrama Concórdia	
3.2 APATITAS COMO PADRÃO PARA GEOCRONOLOGIA	
3.2.1 Caracterização geral de apatitas	
3.2.2 Apatitas como geocronômetros	40
3.2.3 Materiais de referência em apatitas	43
4 CARACTERIZAÇÃO QUÍMICA5 CARACTERIZAÇÃO ISOTÓPICA	49 53
5.1 GEOCRONOLOGIA U-Pb VIA LA-ICP-MS	53
5.1.1 Apatita Xuxa	53
5.1.2 Materiais de referência mundial	54
5.2 GEOCRONOLOGIA ID-TIMS	59
6 CONCLUSÕES	63
REFERENCIAS BIBLIOGRAFICAS	65 71
	•••••••••••••••••••••••••••••••••••••••

INDÍCE DE FIGURAS

Figura 1.1 - Localização do município de Sumé, estado da Paraíba22
Figura 1.2 - Amostras da apatita Xuxa
Figura 1.3 - Pastilha confeccionada com as diferentes apatitas (apatita Xuxa, do presente estudo, é destacada na imagem, sendo as demais matérias de referência já existentes)25
Figura 1.4 - Configuração típica de LA-MC-ICP-MS com Hélio como gás carreador e analisador de filtro eletrostático ESA
Figura 2.1 - Esquema da Província Borborema e suas principais subdivisões. A área de estudo é marcada pelo ponto negro na região do Domínio Central
Figura 2.2 - Mapa esquemático do Domínio Transversal da Província Borborema32
Figura 2.3 - Mapa geológico simplificado do Terreno Alto Moxotó
Figura 2.4 - Mineralizações de apatitas nos bolsões ocorre tanto no contato entre o complexo e a suíte na forma de grandes cristais (à esquerda), quanto intrudido no complexo como agregados de cristais menores (à direita)
Figura 3.1 - Representação esquemática da série de decaimento do ²³⁸ U e ²³² Th por emissões de partículas alfa e beta
Figura 3.2 - Representação esquemática do diagrama isócrono para ²⁰⁶ Pb/ ²⁰⁴ Pb vs. ²³⁸ U/ ²⁰⁴ Pb, em que a interseção com o eixo y fornece a composição isotópica inicial de Pb
Figura 3.3 - Curva concórdia com os respectivos desvios de comportamento no sistema U- Th-Pb relevantes às datações U-Pb. Setas indicam as modificações sofridas por sistemas afetados por herança, perda de Pb, desequilíbrio e correções de Pb comum
Figura 3.4 - Diagrama P-T dos campos de estabilidade da apatita, sendo também evidenciada a faixa de temperaturas de fechamento para a difusão de Pb (região em cinza)40
Figura 3.5 - Presença de elevados teores de Pb-comum, incorporado por apatitas, leva a variação das idades obtidas (linha verde), sendo necessárias correções dos valores de ²⁰⁴ Pb
Figura 3.6 - Temperaturas de fechamento para diferentes minerais e diferentes métodos. Em azul destaque para as temperaturas de fechamento das apatitas
Figura 4.1 - Imagem BSE de cristal da apatita Xuxa, no qual a monotonicidade de tons de cinza indica homogeneidade composicional e ausência de inclusões
Figura 4.2 - Análise LA-Q-ICP-MS de elementos traço comprova o caráter homogêneo da apatita Xuxa, tendo-se ETRLs enriquecidos em relação aos ETRPs e uma anomalia negativa de Eu (Eu/Eu*) de 0,5350

Figura 5.1 - Diagrama concórdia obtidos via LA-MC-ICP-MS para a apatita Xuxa53
Figura 5.2 - Diagramas concórdia (à direita) e idades médias ponderadas U-Pb (à esquerda) obtidos via LA-MC-ICP-MS para a apatita Durango, alíquota 1
Figura 5.3 - Diagramas concórdia (à direita) e idades médias ponderadas U-Pb (à esquerda) obtidos via LA-MC-ICP-MS para a apatita Durango, alíquota 2
Figura 5.4 - Diagrama concórdia obtido via LA-MC-ICP-MS para a apatita Madagascar, alíquota 1
Figura 5.5 - Diagrama concórdia obtido via LA-MC-ICP-MS para a apatita Madagascar, alíquota 2
Figura 5.6 - Diagrama concórdia obtido via LA-MC-ICP-MS para a apatita McClure Mountain, alíquota 1
Figura 5.7 - Diagrama concórdia obtido via LA-MC-ICP-MS para a apatita McClure Mountain, alíquota 2
Figura 5.8 - Idades ID-TIMS (em amarelo) quando sobrepostas às idades obtidas por ICP-MS (em azul) se apresentam dentro da margem de erro dessas, corroborando, pois, as idades da apatita Xuxa obtidas
Figura 5.9 – Idade média ponderada U-Pb obtida via ID-TIMS para a apatita Durango60

ÍNDICE DE TABELAS

Tabela	4.1 -	- Composição	dos	ETRs	da	apatita	Xuxa	(LA-Q-ICP-MS),	normalizados	por
condrito									••••••	51
Tabela 5	5.1 - 3	Dados U-Pb e	Pb/P	'b das a	náli	ises ID-'	TIMS.			61

Resumo

Técnicas de alta resolução espacial para geocronologia U-Pb, como o Laser Ablation-Inductively Coupled-Mass Spectrometry (LA-ICP-MS) são destrutivas por construção, sendo necessário um constante suprimento de minerais bem caracterizados química e isotopicamente para serem utilizados como materiais de referência. Neste contexto, o presente estudo destinou-se à caracterização de apatitas para geocronologia U-Pb via LA-ICP-MS. As apatitas gemológicas (denominadas Xuxa) utilizadas neste trabalho provém de escarnitos da região de Sumé, no contexto do Terreno Alto Moxotó da Província Borborema, estado da Paraíba, sendo potenciais materiais de referências para datação isotópica. O mineral apresentou-se homogêneo através do imageamento por elétrons retroespalhados, sem indícios de inclusões ou zonamento composicional, em uma escala de 100µm. Análise de elementos menores e traços foram realizadas via LA-Q-ICP-MS. O perfil de ETR indicado um relativo enriquecimento dos ETRLs em relação aos ETRPs, com anomalia de Eu/Eu* levemente negativa (0,53). As idades U-Pb foram obtidas via LA-MC-ICP-MS, utilizando-se 78 pontos de análise e resultando em uma idade concórdia de 573 ± 1 Ma (2s, MSWD = 1,11). Análises via ID-TIMS, obtiveram como idade média ponderada $568,0 \pm 3,1$ Ma (2s, MSWD = 2,2). A datação via LA-MC-ICP-MS de materiais de referência consagrados geraram idades em conformação com as fornecidas pela literatura, validando assim os resultados obtidos para a apatita Xuxa, e possibilitando a utilização da idade resultante da técnica em questão como referência para o sistema isotópico U-Pb.

Palavras chave: Apatita, LA-ICP-MS, Geocronologia, U-Pb.

Abstract

U-Pb geochronology high-spatial resolution techniques, such as Laser Ablation-Inductively Coupled-Mass Spectrometry (LA-ICP-MS), are destructive by nature, requiring a continuous supply of well-characterized minerals, both on their chemical and isotopic aspects, so they are suitable for use as reference material on those techniques. On that matter, this study aimed to characterize apatite for LA-ICP-MS U-Pb geochronology, using as potential material apatites (here named as Xuxa) from skarns that outcrop on the Sumé region, Alto Moxotó Terrane, Borborema Province, in the state of Paraíba, Brazil. BSE imaging showed absence of inclusions and compositional zoning proving homogeneous the analysed fragments at a scale of 100 μ m. Trace elements analyses by LA-Q-ICP-MS revealed enrichment of light REEs in relation to heavy REEs and minor negative Eu/Eu* anomaly (0.53). U-Pb LA-MC-ICP-MS analyses of 78 controlling laser spot points yield a statistically robust age of 573 ± 1 Ma (2s, MSWD = 1.11), while ID-TIMS analyses obtained ages in conformation with the referenced ones, therefore validating the results obtained for Xuxa apatite, allowing the utilization of the resulting age on this technique as reference for the U-Pb isotopic system.

Key words: Apatite, LA-ICP-MS, Geochronology, U-Pb

1.1 APRESENTAÇÃO

As apatitas formam um grupo mineral de ortofosfatos, de composição $Ca_5(PO_4)_3X$, tendo em sua estrutura uma complexa associação de um grande sítio de Ca e de tetraedros de PO₄ em torno de um canal contendo um grande ânion (comumente F, OH e Cl) (Elliott 1994; Harrison *et al.* 2002; Cornejo & Bartorelli 2010; Chew & Spikings 2015). Os minerais pertencentes a esse grupo constituem fase acessória comum em rochas ígneas, pegmatíticas, metamórficas e sedimentares. Estar presente em vários tipos de rocha, aliada à sua capacidade de incorporar elementos que podem ser usados para datação e às raras presenças de processos de metamictização e microinclusões (comuns em zircões e monazitas, também utilizados na datação isotópica), conferem à apatita a potencialidade de ser utilizada como mineral cronômetro (Cao *et al.* 2013).

Para o presente estudo, utilizou-se fragmentos apatita proveniente da Província Borborema, no nordeste do Brasil, região onde ocorrem escarnitos repletos de lentes e bolsões de apatitas apropriadas para a datação U-Pb, em virtude da grande quantidade encontrada e da qualidade de gema. Essas foram caracterizadas quimicamente e isotopicamente, de modo a se estabelecer seu potencial para utilização como material de referência para geocronologia.

O caráter destrutivo de técnicas de alta resolução espacial para geocronologia, como laser ablation-inductively coupled-mass spectrometry (LA-ICP-MS), exige um constante desenvolvimento de novos materiais de referência, principalmente por se tratar de uma técnica que necessita de um menor tempo de análise, aumentando assim a demanda dessas em um menor intervalo de tempo e, consequentemente, consumindo maior quantidade de materiais de referência. O desenvolvimento deste novo material de referência pretende suprir a grande necessidade de consumo dos laboratórios de geocronologia, tendo-se nessas apatitas, então, um novo material de referência para o Laboratório de Geoquímica Isotópica da Universidade Federal de Ouro Preto, permitindo que novas datações U-Pb sejam realizadas utilizando esse material *in house*.

1.2 LOCALIZAÇÃO

A apatita caracterizada neste trabalho é proveniente de escarnitos aflorantes ao sul da região de Sumé (Figura 1.1), no estado da Paraíba, nordeste brasileiro, sendo constituinte da Folha SB.24-Z-D-V-SUMÉ (CPRM, Medeiros 1998). Partindo da cidade de Ouro Preto, tem-se um deslocamento de 1998 km até o município de Sumé, a partir das rodovias BR-356, MG-129, BR-381, BR-116, BR-316, PE-360 e BR-412. A partir de estradas vicinais chega-se então a região de Lagoa dos Piões, onde afloram os escarnitos portadores da apatita no trabalho utilizada.

Figura 1.1 - Localização do município de Sumé, estado da Paraíba (Fonte: Google Maps).

1.3 NATUREZA DO PROBLEMA

O desenvolver do pensamento geológico, desde o seu primórdio, tem por objetivo entender a evolução do planeta Terra, através dos seus processos tectônicos, sedimentares e metamórficos e das relações cronológicas entre eles. Portanto, é de suma importância a datação de eventos geológicos para a utilização no meio científico, sendo a datação absoluta desses via LA-ICP-MS dependente de materiais de referência durante as análises geocronológicas por U-Pb.

A técnica LA-ICP-MS, destrutiva por natureza, consome parte dos minerais utilizados durante as análises, os quais recebem a denominação de materiais de referência primários ou secundários. A contínua utilização desses para correção das análises, controle de qualidade ou calibragem do aparelho, faz com que novos materiais de referência sejam desenvolvidos para suprir as necessidades dos laboratórios de geoquímica isotópica (Liu *et al.* 2011). Os materiais de referência encontrados na literatura ainda deixam grandes lacunas de idades e composições possíveis, sendo que a utilização de um material de referência com essas características próximas ao da amostra analisada evita a ocorrência de problemas relacionados ao "efeito matriz", necessitando-se assim de novos materiais que preencham essas lacunas.

Nesse contexto, o presente trabalho surge com o intuito de suprir a demanda, mais especificamente do Laboratório de Geoquímica Isotópica do Departamento de Geologia da Universidade Federal de Ouro Preto, por materiais de referência bem caracterizados isotopicamente, homogêneos e que possuam as mesmas propriedades químicas e idades aproximadas das amostras desconhecidas.

1.4 OBJETIVOS

O presente estudo destina-se à caracterização de fragmentos de apatitas para utilização como material de referência, primário e/ou secundário, em geocronologia U-Pb via LA-ICP-MS. Esse material será usado para correções analíticas, calibragem de equipamentos ou controle de qualidade das análises realizadas no Departamento de Geologia da Universidade Federal de Ouro Preto. Pretende-se, também, realizar uma ampla distribuição do material para outras instituições parceiras e laboratórios que utilizem técnicas de alta resolução espacial.

De maneira específica e simplificada, o presente trabalho objetiva: a caracterização química da apatita através de imagens BSE e das concentrações de elementos menores e traço através de análises por LA-Q-ICP-MS (*Laser Ablation-Quadrupole-Inductively Coupled-Mass Spectrometry*); e a caracterização isotópica das amostras através de análises por LA-MC-ICP-MS (*Laser Ablation-Multicollector-Inductively Coupled-Mass Spectrometry*) e espectrometria de ionização térmica de massa (*Isotopic Dilution - Thermal Ionization Mass Spectrometer -* ID-TIMS).

1.5 METODOLOGIA

Estabeleceu-se para o presente estudo, a metodologia descrita abaixo, dividida em cinco etapas distintas, realizadas concomitantemente e sistematicamente.

1.5.1 Revisão bibliográfica

Realizou-se um levantamento dos trabalhos referentes à região de estudo quanto aos aspectos litoestratigráficos, tectônicos e estruturais, sendo também feita uma ampla consulta em trabalhos relativos a possíveis metodologias para geocronologia U-Pb pelo método LA-ICP-MS, tanto em apatitas quanto em outros minerais (zircão, monazita, etc.). Estudos nos âmbitos de desenvolvimento

de materiais de referência para geocronologia U-Pb foram pesquisados a fim de se obter informações sobre as metodologias empregadas e técnicas de tratamento dos dados obtidos.

1.5.2 Preparação das amostras

As amostras de apatita utilizadas foram cedidas pelo professor Dr. Ricardo Scholz (DEGEO/UFOP), as quais já se encontravam fragmentadas e foram, para esse estudo, denominadas apatita Xuxa (Figura 1.2). A partir de análise em lupa estereoscópica, foram selecionados os fragmentos mais transparentes, homogêneos, sem iclusões ou zonas de alterações, e que continham uma das faces mais plana, de modo a se ter uma maior área de ablação exposta na pastilha quando pronta. Os fragmentos do estudo provêm de um único cristal de apatita, e constituem um lote de aproximadamente 400 gramas de fragmentos.

Em uma placa de acrílico, coberta por uma fita adesiva dupla face, foram dispostos de maneira aleatória os fragmentos selecionados da apatita do estudo e materiais de referência já existentes (Figura 1.3). No entorno dos fragmentos foi colocado um molde de plástico de 2,5 cm de diâmetro, sendo adicionada em seu interior uma mistura de resina com endurecedor da marca Specifix na proporção de 25:6. Após 12 horas de secagem, a pastilha foi polida em politriz Panambra, modelo DP9, utilizando como abrasivos pasta diamantada e alumina, com granulações de 1 µm e 0,3 µm, respectivamente, expondo-se assim os fragmentos e obtendo-se uma superfície lisa e limpa. Toda a preparação da amostra foi realizada no Laboratório de Preparação de Amostras para Geocronologia (LOPAG), do Departamento de Geologia da Universidade Federal de Ouro Preto.

Figura 1.3 - Pastilha confeccionada com as diferentes apatitas (apatita Xuxa, do presente estudo, é destacada na imagem, sendo as demais matériais de referência já existentes).

1.5.3 Caracterização química

De modo a se desenvolver um material de referência de alta qualidade, é necessário que as composições químicas e isotópicas do mineral em estudo sejam homogêneas, de forma a garantir a representatividade do mesmo qualquer que seja o fragmento utilizado para compor as pastilhas para a análise LA-ICP-MS. As amostras de apatita foram caracterizadas por diferentes métodos de modo a se garantir as especificações necessárias para sua utilização como padrão para geocronologia, sendo esses métodos apresentados abaixo:

1.5.3.1 Imageamento por BSE

Para verificar a homogeneidade composicional da apatita, foi realizado o imageamento das amostras por elétrons retroespalhados (BSE - *backscattered electrons*) para observar variações composicionais internas. Essas imagens indicam variações no número atômico na forma de variações de tons de cinza por pixel analisado. Dessa forma, possíveis variações composicionais internas nos cristais resultarão em variações de tons de cinza, por exemplo, entre núcleo e borda. As análises foram realizadas em microscópio eletrônico de varredura (MEV) do Departamento de Geologia da UFOP, utilizando-se 20 kV de voltagem de aceleração e 20 nA de corrente.

1.5.3.2 LA-Q-ICP-MS

A caracterização dos elementos traços das amostras foi realizada por LA-Q-ICP-MS, sendo as análises realizadas no Laboratório de Geoquímica Ambiental (LGqA) da Universidade Federal de Ouro Preto. O equipamento utilizado foi um Agilent 7700x Q-ICP-MS acoplado a um laser 213 Nd:YAG no estado sólido (New Wave Research UP-213). Os dados foram adquiridos utilizando-se o laser na frequência de 10 Hz, fluência de 10 J/cm2, diâmetro do furo de 30 µm e hélio (He) como gás carreador.

As amostras também foram estudada com o auxílio da luz transmitida acoplada ao laser do LA-ICP-MS (vide 1.5.3.2), a qual permite diferenciar porções não homogêneas e/ou translúcidas. Porções próximas às fraturas devem ser evitadas, uma vez que essas servem como condutos para processos de alteração e, em microáreas adjacentes, podem sofrer processos de difusão de Pb radiogênico (*e.g.* Cherniack 1993).

Para a calibração e controle de qualidade foram utilizados os vidros sintéticos NIST612 e NIST610, respectivamente, tomando-se por base os valores recomendados por Pearce *et al.* (1997). O branco do gás foi medido por 20s seguido por 40s de ablação, sendo as concentrações finais obtidas a partir do software Glitter 4.4.3 (Van Achterbergh *et al.* 2001) e os diagramas plotados no Excel®.

1.5.4 Caracterização isotópica

Estudos foram realizados a partir de uma série de datações, utilizando a técnica LA-MC-ICP-MS e conseguinte comparação com as respectivas idades ID-TIMS, de modo a se assegurar (ou não) a qualidade das idades obtidas.

1.5.4.1 LA-ICP-MS

O laser ablation-inductively coupled-mass spectrometry (LA-ICP-MS) é um tipo de espectrômetro de massa que utiliza plasma como fonte de íons, em um sistema de ultravácuo, sendo a amostra introduzida a partir da injeção dos átomos liberados por ablação a laser (LA) (Sato & Kawashita 2002). Os íons liberados pelo laser são carregados até o plasma e, posteriormente, através de um fluxo de gás de Ar/He, alcançam o analisador de massas, responsável pela separação dos diferentes isótopos, cuja contagem é realizada por um sistema de detecção (Figura 1.4).

Figura 1.4 - Configuração típica de LA-MC-ICP-MS com Hélio como gás carreador e analisador de filtro eletrostático ESA (Vroon *et al.* 2008).

1.5.4.1.1 LA-MC-ICP-MS

Utilizou-se para a datação U-Pb dos fragmentos da apatita o multicoletor setor magnético (MC) ICP-MS, uma técnica relativamente recente, podendo ser utilizada para a medição de composições de isótopos com alta precisão e exatidão, normalmente alcançadas apenas pela técnica ID-TIMS, uma vez que a detecção simultânea real dos isótopos elimina as fontes clássicas de incertezas presentes no quadrupolo (Moldovan *et al.* 2004).

As análises foram realizadas no aparelho Thermo-Finnigan Neptune, acoplado a um laser de 193nm HelEx Photon-Machine, presente no Laboratório de Geoquímica Isotópica da Universidade Federal de Ouro Preto. A ablação foi realizada adotando um diâmetro de furo de 20 µm, uma frequência de 6 Hz e uma intensidade de 6 J/cm².

Como material de referência, utilizou-se três amostras de apatita: Durango como material primário (McDowall *et al.* 2004, Chew *et al.* 2016), Madagascar como material secundário (Thomson *et al.* 2012) e McClure Mountain como material terciário (Schoene & Bowring 2006; Chew *et al.* 2016). A redução dos dados obtidos foi realizada off-line, a partir de uma planilha de Excel® cedida

pelo prof. Axel Gerdes (Gerdes *et al.* 2006,2009; Universidade de Frankfurt), sendo as idades então calculadas usando o Isoplot (Ludwig 2012).

1.5.4.2 Datação U-Pb por ID-TIMS

Com o intuito de validar e reforçar os resultados obtidos pelos outros métodos, foi também realizada a datação U-Pb através do método ID-TIMS (*Isotope Dilution Thermal Ionization Mass Spectrometry*). Esse constitui um espectrômetro de massa, cuja diluição isotópica permite a realização de medições muito precisas de razões isotópicas de elementos que podem ser ionizados termicamente.

O método ID-TIMS apresenta como vantagens, quando comparado aos outros métodos, uma maior estabilidade química e física do ambiente de medição, culminando em medições altamente precisas; a capacidade de ionização e evaporação de amostras a diferentes temperaturas, a partir de um conjunto variado de filamentos; um menor fracionamento de massa; o uso de soluções de um único elemento na eliminação de interferências isobáricas; produção de íons com uma gama restrita de energias, eliminando, pois, a necessidade de filtro de energia; e a transmissão de quase 100% dos íons da fonte até o coletor (Parrish & Noble 2003). Entretanto, a necessidade de ionização dos elementos reduz sua aplicação para o caso dos elementos com baixo potencial de ionização. E, mesmo para os elementos ionizáveis, essa não é igualmente eficiente para todos eles, podendo ser menor que 1%. Além disso, o fracionamento de massa muda continuamente durante as análises, sendo assim necessária uma extensa preparação para a produção de soluções elementarmente puras, a fim de se evitar as interferências isobáricas (Parrish & Noble 2003).

Para o presente trabalho, as análises ID-TIMS foram realizadas no Jack Satterly Geochronology Laboratory (Canadá), sendo obedecidas metodologias de preparo e análises próprias e recomendadas. A técnica foi utilizada com a finalidade de se obter as idades "verdadeiras" aceitas pelo meio científico, por se tratar do método mais preciso em geocronologia.

1.6 ESTRUTURAÇÃO DO TCC

Este trabalho de conclusão de curso foi estruturado em sete capítulos, cujos conteúdos são resumidos a seguir:

Capítulo 1: São apresentados os objetivos e a justificativa do trabalho, a localização da região de estudo e a metodologia utilizada em seu desenvolvimento.

Capítulo 2: Uma síntese da geologia regional e local é explanada, utilizando-se trabalhos já existentes na literatura, sendo também especificada a ocorrência da apatita Xuxa nesse contexto.

Capítulo 3: Abordagem de conceitos acerca do método de datação U-Pb, dos materiais de referência de apatita já existentes e da técnica LA-ICP-MS.

Capítulo 4: Destina-se à apresentação e discussão da caracterização química das amostras de apatita Xuxa.

Capítulo 5: Apresenta os resultados obtidos da caracterização isotópica da apatita Xuxa, bem como aspectos relevantes fruto dessa caracterização.

Capítulo 6: Conclui-se sobre a possibilidade de utilização da apatita Xuxa como material de referência para a técnica LA-ICP-MS.

Referências Bibliográficas: Listagem das fontes utilizadas para estudo e confecção do presente trabalho.

Apêndices: Resultados das análises U-Pb por LA-MC-ICP-MS são expressos para cada uma das amostras analisadas.

Trabalho de Conclusão de Curso, n. 280, 91p. 2018.

CAPÍTULO 2

CONTEXTO GEOLÓGICO

A apatita utilizada no presente estudo se insere no contexto geotectônico do Terreno Alto Moxotó, no Domínio da Zona Transversal da Província Borborema. Esse terreno, ao contrário dos demais presentes na província em questão, não apresenta domínios Neoproterozóicos, sendo constituído apenas por rochas Arqueanas e Paleoproterozóicas (Santos *et al.* 2002).

A Província Borborema, definida por Almeida *et al.* (1977), constitui uma região de cerca de 380 mil km², cujos limites são estabelecidos pelo Cráton São Luís (ao norte), pelas províncias São Francisco (ao sul) e Parnaíba (a oeste), pelas bacias costeiras e pela margem continental brasileira (a leste). Sua evolução tem relação direta com os processos de colagem de terrenos dados pela convergência dos Crátons Amazônico, São Francisco/Congo e São Luís/Oeste Africano, consolidando-se durante o ciclo Brasiliano, no Neoproterozóico (Santos *et al.* 2002).

A Província é comumente subdividida em cinco subprovíncias (Figura 2.1), a saber: Médio Coreaú, Ceará Central, Rio Grande do Norte, Transversal e Meridional, amalgamadas durante sua consolidação no Ediacariano, estando então separadas por grandes zonas de cisalhamento (Almeida *et al.* 1977, 1981; Santos e Medeiros 1999; Santos *et al.* 2000; Brito Neves *et al.* 2000).

Figura 2.1 - Esquema da Província Borborema e suas principais subdivisões. A área de estudo é marcada pelo ponto negro na região do Domínio Central (Modificada de Bizzi *et al.* 2003).

O Domínio da Zona Transversal (Figura 2.2), no qual esse trabalho se insere, é caracterizado por terrenos justapostos pelos eventos Cariris Velhos (1000-850 Ma) e Brasiliano (600–540 Ma), situando-se entre os lineamentos Patos e Pernambuco e apresentando *trend* estrutural preferencial na direção ENE-WSW (Santos 1996; Santos & Medeiros 1999; Brito Neves 2000; Santos *et al.* 2002).

Figura 2.2 - Mapa esquemático do Domínio Transversal da Província Borborema (Nascimento 2013, adaptado de Brito Neves *et al* 2005)

Parte integrante desse domínio, e região de proveniência das apatitas nesse trabalho caracterizadas, o Terreno Alto Moxotó (TAM) é, pelos diferentes autores que o estudaram (*e.g.* Santos 1977, 1995; Lima *et al.* 1985; Santos e Medeiros 1999; Santos *et al.* 2004; e Miranda 2011), subdividido em Complexo Floresta, Suíte Malhada Vermelha, Complexo Lagoa das Contendas, Complexo Sertânia, Complexo Sumé, Suíte Camalaú e Complexo Caroalina (Figura 2.3).

Figura 2.3 - Mapa geológico simplificado do Terreno Alto Moxotó (Santos et al. 2002).

Dar-se-á, nesse trabalho, maior destaque ao Complexo Floresta e à Suíte Olho D'água do Cunha, a qual intrude esse complexo. Essas unidades litodêmicas apresentam as mineralizações de apatita, relacionadas à formação de escarnitos na região de Sumé (Einaudi *et al*.1981; Einaudi & Burt 1982; Meinert 1992; Santos *et al*. 2008; Nascimento 2013).

O Complexo Floresta é constituído por ortognaisses de composição granítica, tonalítica e granodiorítica, tendo como principal fase máfica o mineral hornblenda e, possuindo também, porções migmatizadas dobradas e flebíticas (em veios), contendo expressivas mobilizações quartzo-feldspáticas. Concentrações significativas de apatitas podem vir a ocorrer nos gnaisses desse complexo, especialmente naqueles de composição granodiorítica (Santos 1977; Santos *et al.* 2012). Intrudindo esse complexo, temos a Suíte Olho d'Água do Cunha, constituída por uma associação de metassienitos e metapiroxenitos, na qual também são encontrados escarnitos (Nascimento 2013).

Escarnitos são rochas metamórficas oriundas da metassomatização derivada do metamorfismo de contato entre rochas cálcio-silicáticas e magmas, esses geralmente félsicos/graníticos (Bucker & Grapes 2011). Na região de estudo, segundo trabalhos de Nascimento (2013), esses ocorrem na forma de camadas descontínuas, decimétricas a métricas, hospedadas nos ortognaisses do Complexo Floresta, estando também presentes no contato entre o complexo e a suíte que o intrude (Figura 2.4). A ocorrência das mineralizações de apatita se dá em duas diferentes fases: grandes cristais (os quais, segundo Beurlen (1965), podem atingir até 20 cm) ou em agregados de cristais granulares relativamente menores.

Figura 2.4 - Mineralizações de apatitas nos bolsões ocorre tanto no contato entre o complexo e a suíte na forma de grandes cristais (à esquerda), quanto intrudido no complexo como agregados de cristais menores (à direita) (Modificada de Nascimento 2013).

Nascimento (2013) caracteriza esses escarnitos como apresentando coloração esverdeada, textura granoblástica média à grossa, estruturas maciça e bandada e composição mineralógica, por ordem de abundância, de actinolita (60-70%), apatita (10-15%), epidoto (5-8%), diopsídio (3-5%), carbonatos (~1%), titanita (~1%), escapolita (~1%) e minerais opacos (<1%). A autora ressalta ainda o caráter fraturado e fortemente alterado dos afloramentos. Esse estudo petrográfico evidencia um substrato de rochas máficas, uma vez encontradas flogopita, anfibólio, ortopiroxênio e pseudomorfos de olivina serpentinizada.

A ocorrência das apatitas propriamente ditas na região de Sumé é conhecida desde 1944, sendo que o processo de lavra do mineral nunca foi além de semigarimpagem subterrânea. Essas ocorrem sob a forma de bolsões e lentes quase monominerálicas, hospedadas em lentes maiores de escarnitos, podendo atingir tamanhos de até 2 metros de comprimento (Beurlen 1965).

Estudos de Nascimento (2013), evidenciaram que ambos, as apatitas e os escarnitos, apresentam curvas de distribuição ETR com padrão semelhante aos dos ETR normalizados com o condrito, sendo assim enriquecidas em Elementos Terras Raras Leves (ETRLs) em relação aos Elementos Terras Raras Pesados (ETRPs) e apresentando uma suave anomalia negativa de Eu com (Eu/Eu*) entre 0,71 e 0,72. Além disso, o caráter máfico dos escarnitos estudados indica uma filiação máfica para as mineralizações de apatita, inicialmente associada a um magmatismo alcalino. Apatitas provenientes dos escarnitos encaixados no Complexo Floresta foram datados via ID-TIMS e resultaram em uma idade média ponderada de 557± 1,3 Ma, indicando que os fluidos formadores da mineralização estão ligados ao Ciclo Orogenético Brasiliano.
O presente capítulo abordará aspectos gerais sobre geocronologia pelo método U-Pb, uma caracterização da apatita enquanto material de referência para geocronologia, sendo também caracterizados os materiais de referência utilizados nas análises para a caracterização da apatita em estudo, bem como são abordados outros exemplos de apatita de utilização mundial.

3.1 O SISTEMA U-Pb

A abundância de minerais com alta concentração de urânio (U), presente na maioria dos tipos de rocha, somada à resistência de alguns desses minerais ao intemperismo físico e/ou químico, favorece a utilização do sistema U-Pb para geocronologia.

Dentre os minerais utilizados com essa finalidade, o zircão aparece com grande destaque (Hanchar & Hoskin 2003), sendo a aplicação do método também possível a partir dos minerais monazita, apatita, xenotima, titanita, rutilo, badeleíta, alanita e perovskita, os quais fornecem um espectro de aplicações geocronológicas e termocronológicas nos diferentes sistemas geodinâmicos (*e.g.*, Corfu 1988, von Blanckenburg 1992, Heaman & LeCheminant 1993, Corfu *et al.* 1994, Rubatto 2002, Oberli *et al.* 2004, Gregory *et al.* 2007, Storey *et al.* 2007).

O elemento chumbo (Pb) apresenta quatro isótopos estáveis naturais: ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb e ²⁰⁸Pb, tendo os três últimos um componente radiogênico oriundo do decaimento independente dos isótopos instáveis ²³⁸U, ²³⁵U e ²³²Th, respectivamente.

Esses dois isótopos (pais) de urânio (²³⁸U e ²³⁵U) apresentam, respectivamente, meias-vidas de 4,4 Ga e de 700 Ma, enquanto que o tório (²³²Th) tem meia-vida de 14 Ga. Esse decaimento se dá por sucessivas reações (decaimentos alfa e beta, Figura 3.1), numa complexa sequência de isótopos (filhos) intermediários, esses também de natureza instável (Faure 1986).

Figura 3.1 - Representação esquemática da série de decaimento do ²³⁸U e ²³²Th por emissões de partículas alfa e beta.

O decaimento desses para os isótopos estáveis finais é, simplificadamente, expresso pelas reações:

²³⁸U
$$\longrightarrow$$
 ²⁰⁶Pb + 8 α + 6 β - + 47,7 MeV
²³⁵U \longrightarrow ²⁰⁷Pb + 7 α + 4 β - + 45,2 MeV
²³²Th \longrightarrow ²⁰⁸Pb + 6 α + 4 β - + 39,8 MeV

Faz-se necessário, então, para a utilização desses como geocronômetros (de modo que as idades U-Pb correspondam a idade de cristalização do mineral), que as atividades das séries de isótopos-filho intermediários estejam em equilíbrio secular - o produto da abundância de um isótopo e sua constante de decaimento são iguais entre todos os isótopos-filho intermediários e o isótopo-pai - o que ocorre após a passagem de cinco meias-vidas (Krane 1987). ²³⁴U (na cadeia de decaimento do ²³⁵U) e ²³⁰Th (na cadeia de decaimento do ²³⁸U) têm meia-vida de, respectivamente, 247 mil e 76 mil anos, necessitando, pois, de cerca de 1 Ma para atingir o equilíbrio secular. Já os produtos intermediários da cadeia de decaimento do ²³²Th possuem meias-vidas curtas, sendo então o equilíbrio secular alcançado através da cadeia em aproximadamente 30 anos (Gonçalves 2005).

É fator crucial, entretanto, a noção de que o equilíbrio secular não deve ser considerado instantâneo ao longo do tempo geológico, uma vez que a partição de elementos durante o crescimento mineral ocasiona uma incorporação (ou exclusão) preferencial dos isótopos intermediários, resultando no excesso (ou déficit) do produto-filho (Faure 1986; Schoene 2013).

3.1.1 Determinação de Idades

Uma vez assumindo-se o equilíbrio secular dos isótopos em questão no momento de fechamento do sistema (Faure 1986), tem-se as seguintes equações para obtenção das idades nos três sistemas de decaimento:

$$\begin{pmatrix} \frac{206}{204} Pb \\ \hline 204 Pb \end{pmatrix} = \begin{pmatrix} \frac{206}{204} Pb \\ \hline 204 Pb \end{pmatrix}_0 + \begin{pmatrix} \frac{238}{204} Pb \\ \hline 204 Pb \end{pmatrix} (e^{\lambda_{238}t} - 1)$$
$$\begin{pmatrix} \frac{207}{204} Pb \\ \hline 204 Pb \end{pmatrix} = \begin{pmatrix} \frac{207}{204} Pb \\ \hline 204 Pb \end{pmatrix}_0 + \begin{pmatrix} \frac{235}{204} Pb \\ \hline 204 Pb \end{pmatrix} (e^{\lambda_{235}t} - 1)$$
$$\begin{pmatrix} \frac{208}{204} Pb \\ \hline 204 Pb \end{pmatrix} = \begin{pmatrix} \frac{208}{204} Pb \\ \hline 204 Pb \end{pmatrix}_0 + \begin{pmatrix} \frac{232}{204} Pb \\ \hline 204 Pb \end{pmatrix} (e^{\lambda_{232}t} - 1)$$

sendo que: o índice 0 segue a razão entre a composição isotópica de Pb no fechamento do sistema (por exemplo, na cristalização de um mineral); t é o tempo decorrido desde esse fechamento; e λ_{238} , λ_{235} e λ_{232} são as constantes de decaimento de ²³⁸U, ²³⁵U e ²³²Th, sendo, respectivamente, iguais a 1,55125x10⁻⁴, 9,8585x10⁻⁴ e 4,9475x10⁻⁵.

Nota-se, nas três equações dadas, a normalização dos isótopos-pais a partir do ²⁰⁴Pb, isótopo estável do elemento-filho. Essa normalização traz como benefícios a maior acurácia dos resultados obtidos, uma vez que a medição da razão com esse isótopo-filho é de mais fácil realização do que a determinação da quantidade do isótopo radiogênico em questão, visto que essa é função da concentração, por vezes imprecisa, da solução com traçador ou mineral de referência usado na análise (Faure 1986).

Dessa forma, uma vez conhecida a composição isotópica de Pb inicial (em t = 0), ou ainda se sua contribuição puder ser desprezada ou se outras fontes de Pb comum forem contabilizadas, pode-se determinar uma idade modelo para o sistema desejado. Pode-se, ainda, a partir de uma série de análises de minerais e rochas, ser gerada uma disposição linear no diagrama isócrono (*isochron*) (por exemplo, 206 Pb/ 204 Pb vs. 238 U/ 204 Pb, na Figura 3.2), de modo que a inclinação da curva obtida é igual a ($e^{\lambda t} - 1$), sendo a interseção dessa com o eixo y, então, o valor da composição isotópica inicial de Pb (Holmes 1946, Stacey & Kramers 1975).

Figura 3.2 - Representação esquemática do diagrama isócrono para ${}^{206}Pb/{}^{204}Pb$ vs. ${}^{238}U/{}^{204}Pb$, em que a interseção com o eixo y fornece a composição isotópica inicial de Pb.

3.1.2 Diagrama Concórdia

O fenômeno da perda ou ganho de Pb, U e Th ou de isótopos intermediários das respectivas séries de decaimento, segundo Geraldes (2010), é responsável pelas idades discordantes obtidas ao se utilizar, separadamente, as razões ²⁰⁶Pb/²³⁸U, ²⁰⁷Pb/ ²³⁵U e ²⁰⁸Pb/²³²Th.

Surgiu então o conceito de 'Curva concórdia' (Figura 3.3), proposto por Ahrens (1955) e Wetherill (1956), a qual representa o lugar geométrico dos pontos de idades concordantes obtidas pelas razões dos geocronômetros ²⁰⁶Pb/²³⁸U e ²⁰⁷Pb/ ²³⁵U, de modo que, a princípio, qualquer abertura ou perturbação no sistema possa ser reconhecida e devidamente corrigida.

Tem-se, pois, que a perda de Pb (ou ganho de U) ocasiona a plotagem do dado em questão fora da curva desejada, segundo uma linha (a qual recebe a nomenclatura de reta discórdia) cujo intercepto inferior com a curva concórdia determina a idade de perturbação do sistema (Schoene 2013). Essa curva discórdia, como exposto em Vasconcelos (2015), pode ser construída pela plotagem dos resultados analíticos de diversos grãos de um mesmo mineral, desde que esses apresentem diferentes proporções de Pb perdido.

Outros fatores que culminam no afastamento da curva concórdia são a herança presente em alguns minerais, mais especificamente nos casos em que o protólito é consumido de forma incompleta durante os processos de formação da rocha, de modo que a fase restítica retém Pb-filho; e a mistura de materiais com diferentes idades, podendo assim gerar arranjos discordantes (Williams *et al.* 1984,

Gonçalves 2015). São necessárias, pois, correções, de modo a se obter dados acurados e representativos, como a correção do Pb comum proposta por Andersen (2002), a partir das diferentes razões ²⁰⁶Pb/²³⁸U, ²⁰⁷Pb/ ²³⁵U e ²⁰⁸Pb/²³²Th.

Figura 3.3 - Curva concórdia com os respectivos desvios de comportamento no sistema U-Th-Pb relevantes às datações U-Pb. Setas indicam as modificações sofridas por sistemas afetados por herança, perda de Pb, desequilíbrio e correções de Pb comum. (Gonçalves 2015, modificada de Harrison *et al.* 2002)

3.2 APATITAS COMO PADRÃO PARA GEOCRONOLOGIA

3.2.1 Caracterização geral de apatitas

Apatitas constituem um grupo de ortofosfatos, de composição geral $Ca_5(PO_4)_3X$, em que X é, geralmente, ocupado pelos íons fluoreto (F⁻), hidroxila (OH⁻) e cloreto (Cl⁻), formando, respectivamente, fluorapatita, hidroxiapatita e cloroapatita (Elliott 1994; Harrison *et al.* 2002; Cornejo & Bartorelli 2010; Chew & Spikings 2015). O nome do mineral provém do grego *apatan* (= enganar), devido aos seus cristais hexagonais serem muitas vezes confundidos com outros minerais, especialmente o berilo (Cornejo & Bartorelli 2010).

Os minerais pertencentes a esse grupo são uma fase acessória comum em rochas ígneas, pegmatíticas, metamórficas e sedimentares (Cao *et al.* 2013). As apatitas ocorrem em rochas ígneas máficas e félsicas; são formadas nas rochas metamórficas de composição pelítica, carbonática, basáltica e ultramáfica em quase todos os graus metamórficos (Figura 3.4) (Chamberlain & Bowring 2000); e estão presente em sedimentos clásticos, tanto como grãos detríticos como autigênicos; além

de se precipitarem a partir de fluídos hidrotermais (Chamberlain & Bowring 2000; Chew & Spikings 2015).

Figura 3.4 - Diagrama P-T dos campos de estabilidade da apatita, sendo também evidenciada a faixa de temperaturas de fechamento para a difusão de Pb (região em cinza). (Chamberlain & Bowring 2000).

3.2.2 Apatitas como geocronômetros

Estudos detalhados de geocronologia U-Pb de minerais acessórios (zircão, monazita, titanita, apatita, xenotima), juntamente com análises de alta resolução espacial de elementos principais e traço, são pré-requisitos essenciais para a compreensão de processos tectonometamórficos e/ou ígneos (Jung & Hellebrand 2007). Embora o zircão seja o mineral mais utilizado para datação U-Pb, a apatita também pode ser utilizada para fornecer um espectro geocronológico em todos os tipos ambientes (Shoenne 2014), pois está presente em rochas ígneas, metamórficas (em vários graus metamórficos), sedimentares e pegmatíticas.

Apatitas têm uma alta afinidade por elementos terras raras (ETRs), bem como para muitos outros íons metálicos, tendo em sua estrutura cristalina várias substituições de íons, como por exemplo Sr, Mn, Mg e Pb (Chamberlain & Bowring 2000). Dessa maneira, a presença de apatitas em todos os ambientes pode influenciar sua assinatura de elementos traço e a sua evolução e, como resultado, a apatita pode ser um registrador sensível da química do elemento traço do sistema de rocha no momento da sua cristalização (Rakovan & Reeder 1996; Belousova *et al.* 2001). Os elementos terras-raras (ETRs) e o urânio (U) ocupam posições do íon Ca²⁺ na estrutura cristalina da apatita, podendo perfazer até 10% de sua massa total (Puchelt & Emmermann 1976; Chamberlain & Bowring 2000). U

e Pb como substituições estruturais, juntamente com a relativa abundância de U, são indicativos de que o sistema U-Pb reflete o crescimento, a recristalização e as propriedades de difusão do mineral, excluindo, assim, a influência de microinclusões comuns em zircões e monazitas (Chamberlain & Bowring 2000; Jung & Hellebrand 2007).

A apatita, em rochas ígneas félsicas, apresenta baixa a moderada abundância de U (5-150 ppm) e Pb (3-135 ppm). Já em pegmatitos, as concentrações de U são maiores (75-1224 ppm). As apatitas hidrotermais e autigênicas exibem uma grande variação nas concentrações de U (3-2227 ppm), refletindo as composições do fluído percolante (Chamberlain & Bowring 2000). Devido ao seu conteúdo de U limitado, apatitas metamíticas são raras, ao contrário dos zircões (Harrison *et al.* 2002).

Tem-se, pois, nesse grupo de ortofosfatos, a possibilidade de obtenção de uma ampla gama de idades, permitindo assim uma maior investigação e entendimento dos processos que operam (ou operaram) desde a superfície da Terra até a crosta inferior. Apatitas possuem várias janelas de temperatura de fechamento isotópico para diferentes métodos: Lu-Hf (675-750°C); U-Pb (350-550°C); traço de fissão (60-110°C); (U-Th)/He (40-80°C) (Chamberlain & Bowring 2000).

A faixa de temperatura para o sistema U-Pb (350-500°C) confere a apatita um grande potencial de utilização como geocronômetro para médias temperaturas, podendo substituir o sistema ⁴⁰Ar/³⁹Ar a partir de hornblenda nos casos em que essa é ausente (Harrison 1982; Chamberlain & Bowring 2000; Thomson *et al.* 2002).

Entretanto, Stockli *et al.* (2017) salienta que, devido ao fato da apatita incorporar quantidades significativas de Pb comum (não-radiogênico) e apresentar apenas quantidades ínfimas de U e Th (frações de ppm), a aplicação do mineral como geotermômetro é por vezes limitada. Deve-se, então, promover as correções necessárias à obtenção de idades acuradas e verídicas, corrigindo assim os valores de ²⁰⁴Pb presentes (Figura 3.5), através de diferentes metodologias, as quais, de modo geral, utilizam a técnica LA-ICP-MS e trabalham com as razões entre os diferentes isótopos desse elemento (*e.g.* Ludwig 1998; Williams 1998; Anderson 2002; Chew *et al.* 2014).

Figura 3.5 - Presença de elevados teores de Pb-comum, incorporado por apatitas, leva a variação das idades obtidas (linha verde), sendo necessárias correções dos valores de ²⁰⁴Pb.

O sistema U-Pb pode ser utilizado para investigar histórias térmicas, tectônicas e magmáticas da crosta mais profunda (Chew & Spikings 2015). O reconhecimento de que qualquer idade radiométrica representa o tempo no qual o sistema correspondente foi resfriado, com valores abaixo de um limiar para permitir a acumulação de produtos, remete ao conceito de temperatura de fechamento (Figura 3.6) (Guralnik *et al.* 2013).

Figura 3.6 - Temperaturas de fechamento para diferentes minerais e diferentes métodos. Em azul destaque para as temperaturas de fechamento das apatitas (Chew & Spikings 2015).

Várias técnicas podem ser utilizadas para o sistema U-Pb, como por exemplo o ID-TIMS e o SIMS, sendo atualmente o LA-ICP-MS sido amplamente utilizado, principalmente devido a sua facilidade em datar minerais *in situ* (Schoene 2014).

3.2.3 Materiais de referência em apatitas

Um material de referência de alta qualidade deve ter como características: homogeneidade de suas composições químicas e isotópicas, garantindo, dessa forma, a representatividade do mesmo qualquer que seja o fragmento utilizado nas análises; ter estrutura cristalina intacta, sendo ausentes processos de metamitização para que não ocorram perda de Pb, tendo-se assim um sistema U-Th-Pb fechado; apresentar baixos teores de Pb comum e moderada concentração de U (tal configuração é comum em zircão, sendo necessárias correções como as propostas por Andersen (2002) para a apatita); ter um tamanho adequado para repetidas ablações; e estar presente em uma quantidade suficiente para uma ampla distribuição (Pidgeon 1997; Kennedy 2000; Nasdala *et al.* 2008; Sláma *et al.* 2008; Li *et al.* 2013; Zi *et al.* 2015). Alguns dos padrões de apatita de caráter mundial são explanados abaixo, sendo três desses (apatitas Durango, Madagascar e McClure Mountain) utilizados na caracterização da apatita Xuxa.

3.2.3.1 Apatita Durango

A apatita Durango, uma fluorapatita de distinta coloração amarelo-limão, é amplamente distribuída como material de referência para geocronologia, mineralogia e geoquímica. Essa ocorre na mina Cerro de Mercado (mina de ferro a céu aberto, localizada na porção norte da cidade de Durango, México) (Young *et al.* 1969).

Tem-se, nessa mina, a formação *in situ* concomitante de minério de ferro e de apatita, juntamente com a intrusão do Complexo Chapadera, esse de natureza félsica e pequeno porte. A ocorrência das apatitas propriamente ditas se dá em veios e fraturas confinados na parte inferior do depósito de minério, sendo os cristais de brilho e clareza marcantes e por vezes grosseiros (Young *et al.* 1969; Swanson 1974; Lyons 1975).

McDowell e Keizer (1977), a partir da relação ⁴⁰Ar/⁴⁰K, obtiveram idades entre 29 e 33 Ma para as rochas que cobrem toda a seção vulcânica de Durango, sendo as idades citadas ou apresentadas computadas com as constantes de decaimento de Steiger & Jaeger (1977). As constantes de decaimento dos sistemas isotópicos K-Ar e U-Pb, bem como suas incertezas, têm sido objeto de vários trabalhos recentes (*e.g.* Renne *et al.* 1998; Min *et al.* 2000; Begemann *et al.* 2001).

McDowell *et al.* (2004), a partir da análise 40 Ar- 39 Ar de sanidina-anortositos, estabeleceram como idade referência 31,44 ± 0,18 Ma (2s) para a apatita Durango via traço de fissão. Essa idade se encontra em conformidade com idades (U-Th)/He de 31,02 ± 0,2 Ma (1s) (McDowell *et al.* 2004)

obtidas também nas apatitas dessa região (através do método LA-ICP-MS), sendo a razão média U/Th de 0,054 (cálculo a partir de 30 cristais de apatita).

Tal característica, somada à sua abundância e aspectos cristalográficos, bem como ao fato desse mineral ter sofrido soterramento incipiente desde sua cristalização, conferem a apatita Durango a característica de material de referência de alta qualidade para geocronologia.

3.2.3.2 Apatita Madagascar

As apatitas Madagascar apresentam colorações verde e azul características, apresentando grande valor econômico de mercado devido ao seu caráter de gema, sendo essas geralmente provenientes de pegmatitos carbonatíticos do Cambriano Superior (Pan-Africano) (Thomson *et al.* 2012).

De modo a caracterizar essas apatitas, dois cristais do mineral, esses de padrão "1st Mine Discovery" (qualidade gema) e com aproximadamente 1 cm, foram datados pelo método U-Pb ID-TIMS, obtendo, respectivamente, idades U-Pb de $485,0 \pm 1,7$ Ma (2s) e $474,2 \pm 0,4$ Ma (2s). Essas idades foram obtidas após correções de Pb comum, segundo metodologias apropriadas (*e.g.* Schärer 1984; Amelin & Zaitsev 2002). Os cristais de apatita analisados apresentam razão Th/U de aproximadamente 26 para análises ID-TIMS e razões entre 15 e 30 nas análises LA-ICP-MS (Thomson *et al.* 2012).

3.2.3.3 Apatita McClure Mountain

O Complexo McClure Mountain compreende uma série de intrusões ígneas de caráter ultramáfico a alcalino de baixo teor em Si, aflorantes nas Wet Mountains da região do Colorado, EUA. Esse apresenta como litotipos principais olivina-gabros, piroxenitos, anortositos e dunitos, os quais são intrudidos por massivos corpos de hornblenda-biotita sienito e de nefelina-sienitos (Parker & Hildebrand 1963; Shawe & Parker 1967). Uma série de diques e veios carbonatíticos, lamprofíricos e quartzo-barita-toríticos cortam essas unidades mais antigas (Olson *et al.* 1977).

O litotipo foco de estudo consiste em um hornblenda-biotita sienito, o qual tem como mineralogia principal K-feldspato, plagioclásio, hornblenda, biotita e clinopiroxênio, além de apatitas e titanitas, as quais perfazem uma porcentagem considerável do total da rocha. Ocorrem ainda, em menor proporção, nefelina, magnetita, ilmenita, zircão, baddeleyita, zirconolita, calcita, sulfetos de ferro e produtos de alteração como sericita e clorita (Alexander *et al.* 1978).

As apatitas ocorrem como cristais euédricos de diâmetro entre 50-200 µm, estando presentes em todas as fases principais da rocha, sendo tal indicativo de formação rápida durante a fase líquida. Essas são majoritariamente homogêneas, podendo, entretanto, apresentar zonamento concêntrico. Sete frações de apatita, cada qual contendo entre quatro e sete grãos de hábito subédrico a euédrico e de caráter transparente, homogêneo e livre de inclusões foram analisadas pelo método U-Pb via ID-TIMS, sendo obtidas, após correções de Pb-comum, idades de $523,51 \pm 1,47$ Ma (2s, MSWD=2,1). (Schowene & Bowring 2006).

Tem-se ainda, como valores de referência para essas apatitas, estudos de Samson & Alexander (1987) pelo método Ar-K (idades de 520,4 \pm 3,4 Ma); de Renne *et al.* (1998) através da fusão total ⁴⁰Ar/³⁹Ar (idades de 523,1 \pm 5,2 Ma); e ainda estudos de Spell & McDougall (2003), também pela fusão total ⁴⁰Ar/³⁹Ar (idades de 523,3 \pm 1,8 Ma).

Faz-se de extrema importância salientar, entretanto, as considerações de Schowene & Bowring (2006) quanto a não-homogeneidade das apatitas McClure Mountain (*e.g.* estudos de Baksi *et al.* 1996; Kunk *et al.* 1994; Kunk & Miller 2002), sendo assim necessárias correções de modo a se garantir a confiabilidade e acurácia dos resultados obtidos a partir desse material de referência. A mesma tem, todavia, ampla utilização como material de referência U-Pb para apatitas pelo método LA-ICP-MS (*e.g.* Thomson *et al.* 2012; Chew *et al.* 2014).

3.2.3.4 Apatita Emerald Lake

Coulson *et al.* (2002) apresentam um detalhado estudo químico e petrológico e químico do plúton Emerald Lake (Cretáceo Médio), o qual aflora na porção norte Cordilheira Canadense, no território Yukon. Esse plúton compreende uma série de pulsos magmáticos que produziram um forte zonamento petrológico, sendo presentes augita-sienitos, hornblenda-quartzo-sienitos e monzonitos, bem como biotita-granitos. Apatitas ocorrem como mineral acessório em todos os litotipos desse plúton.

Dados geocronológicos U-Pb e 40 Ar/ 39 Ar obtidos nos estudos de Coulson *et al.* (2002) indicam como idade mais antiga a idade obtida de 94,5 ± 0,2 Ma (U–Pb, a partir de cristal de zircão de um sienito), enquanto que a mais jovem é de 92,2 ± 0,9 Ma (U-Pb, a partir de grãos de titanita de um granito). Para a apatita Emerald Lake, é convencionada a idade da titanita de 92,2 ± 0,9 Ma(2s) (Chew *et al.* 2014).

3.2.3.5 Apatita (do carbonatito) Kovdor

O maciço Kovdor engloba uma área de aproximadamente 40 km², sendo integrante da Província Alcalina Kola, de idade Paleozoica, Província essa que compreende mais de vinte e quatro complexos intrusivos de idade Devoniana (Kramm *et al.* 1993). Esse maciço, de grande importância econômica, é um complexo alcalino-ultrabásico que exibe uma variação composicional ampla de rochas magmáticas e metassomáticas.

Desse complexo, dois litotipos – carbonatitos e foscoritos – foram objeto de estudos geocronológicos em diversos sistemas isotópicos (U–Pb, Th–Pb and Rb–Sr), a partir de várias fases

minerais (zircões, apatitas, baddeleyitas e flogopitas) (Amelin & Zaitsev 2002). Apatitas de seis amostras de foscorito e de três amostras de carbonatito foram caracterizadas por Amelin & Zaitsev (2002), as quais apresentaram teores de U e Th variando entre 0,2 e 3,6 ppm e entre 62 e 150 ppm, respectivamente.

A partir de calcitas empobrecidas em U, essas coexistentes nas amostras analisadas, determinou-se a composição isotópica inicial de Pb para essas apatitas. A isócrona Pb/U forneceu uma idade de $380,6 \pm 2,6$ Ma (MSWD=38), enquanto que a regressão linear a partir da análise dessas apatitas obteve valores entre $377,5 \pm 3,5$ Ma (MSWD=27) (Amelin & Zaitsev 2002). Chew *et al.* (2010) utilizam esse segundo valor como idade referência em seus estudos. Belousova *et al.* (2002), ao analisar mais de 700 cristais de apatita oriundos de diferentes tipos de rocha, encontrou nas apatitas provenientes do carbonato de Kovdor os maiores teores de Th, os quais chegavam a ultrapassar 2000 ppm.

3.2.3.6 Apatita Mineville

Os gnaisses de Lyon Mountain (depósitos de Fe-ETR do tipo Kiruna, no condado de Essex, estado de Nova Iorque, EUA) apresentam magnetita, hematita, apatita, Ce-stillwellita, edienita fluoretada, ferroactinolita, titanita, zircão e allanita nos principais corpos mineralizados (Lupulescu & Pyle, 2005), sendo esses gnaisses interpretados por Foose e McLelland (1995) como uma suíte tardi- a pós-tectônica em relação a Orogenia Ottowaniana. Outros autores (Whitney & Olmsted 1988; Whitney 1996) defendem um protólito vulcânico pré-tectônico para tais depósitos.

Idades aproximadas de 1048 e 1035 Ma foram respectivamente obtidas, por determinações U-Pb, em zircões provenientes para porções desse gnaisse que apresentavam pouca ou nenhuma deformação, enquanto que zircões de pegmatitos na região aflorantes forneceram idades U-Pb de aproximadamente 1035 Ma (McLelland & Foose 1996). Ambos os resultados permitem estabelecer a idade aproximada de 1040 Ma para o fim da deformação regional Ottawaniana.

A análise U-Pb de variedade de granadas e titanitas da região fornece idades entre 1030-990 Ma, enquanto que rutilos apresentam idades de 900 Ma, sendo todas essas interpretadas como idades metamórficas (Mezger *et al.* 1991).

Dada a alta temperatura de fechamento da apatita Mineville (650°C, com taxa de rotação de 1,5°C/Ma, segundo Mezger *et al.* 1991), é bem provável que essa registre o resfriamento logo após o pico térmico da Orogenia Ottawaniana. Dessa forma, a idade U-Pb para essa apatita apresenta uma distribuição consideravelmente ampla, sendo a idade de referência utilizada por Chew *et al.* (2010) de 1040-990 Ma.

3.2.3.7 Apatita Mud Tank

Fenocristais de apatita ocorrem no carbonatito Mud Tank, esses aflorantes na região de Strangways Range, norte da Austrália (Black & Gulson 1978, Currie *et al.* 1992).

Black & Gulson (1978), a partir de cinco análises TIMS (quatro das quais se encontram bastante concordantes), obtiveram uma idade U-Pb de 732 ± 5 Ma para cristais de zircão, com concentrações de U variantes entre 6 e 36 ppm. Já as análises de elementos traços (por LA-ICP-MS) de Jackson *et al.* (2004) obtiveram valores entre 11 e 131 ppm para o elemento, bem como uma idade LA-ICP-MS de $732 \pm 1,4$ Ma (95% de confiança) para a razão 206 Pb/ 238 U. Tem-se também idades Rb-Sr para esse litotipo de 735 \pm 75Ma (Black & Gulson 1978), bem como idades Rb-Sr, a partir de biotitas, entre 319 e 349 Ma, idades essas interpretadas como relativas a Orogenia Alice Springs (Haines *et al.* 2001).

Idades por traço de fissão para apatitas polidas foram de 298 ± 23 Ma, as quais sugerem um rápido resfriamento desse mineral após findada a orogenia, apresentando essas teores de U aproximados de 3,2 ppm (Green *et al.* 2006). Tem-se, pois, convencionada para a apatita Mud Tank a idade de 349 Ma, idade essa proveniente dos estudos de Haines *et al.* (2001) em cristais de biotita.

3.2.3.8 Apatita Otter Lake (Yates Mine)

Localizada na porção norte do Domínio Bancroft, na Província Greenville, a região de Otter Lake (Québec) tem como rochas aflorantes principais mármores, gnaisses, anfibolitos e escarnitos. Esses litotipos foram metamorfizados em fácies anfibolito-superior, com temperaturas médias de 650 a 700°C e pressões variantes entre 6,5 e 7 kbar, em resposta às fases Ottowaniana e Elzeviriana da Orogenia Greenville (Kretz *et al.* 1999).

Cristais de apatita dessa região, em geral, apresentam coloração verde-escura a marrom, constituindo longos prismas hexagonais de terminações piramidais, estando contidos em uma matriz calcítica de coloração rosa-salmão, a qual sofreu alteração hidrotermal.

Esses foram datados pelos métodos Lu/Hf e 207 Pb/ 206 Pb por Barfod *et al.* (2005). Três frações da apatita Otter Lake geraram uma isócrona Lu-Hf (de cristal único) de 1042 ± 16 Ma (MSWD=1.0). Já análises combinadas de apatitas e titanitas dessa mesma região fornecem idades Lu–Hf mais precisas de 1031 ± 6 Ma (MSWD=1.7). Chew *et al.* (2010) estabelecem como idade de referência 913 ± 7 Ma (MSWD=0.24), obtida por determinações 207 Pb/ 206 Pb, sendo as concentrações de Pb, Th e U estimadas por ICP-MS de, respectivamente, 74, 722 e 92 ppm (Barfod *et al.* 2005).

3.2.3.9 Apatita Slyudyanka

O Complexo Slyudyanka compreende uma sequência supracrustal de fácies granulito, aflorando na costa sudoeste do lago Baikal. Esse complexo é dominantemente formado por fosforitos metamorfizados e ricos em sílica e carbonato, sendo esses compostos por apatitas (1-2 até 60% de seu peso total), quartzo, diopsídio, calcita, forsterita e dolomita, ocorrendo também tremolita (retrometamórfica) (Reznitskii *et al.* 1998).

Isócronas ²⁰⁷Pb/²⁰⁶Pb, obtidas nos estudos de Reznitskii *et al.* (1998), fornecem idades de 465 \pm 3 Ma (MSWD = 5.5) para apatitas e de 456 \pm 18 Ma (MSWD = 1.3) para a rocha total, idades essas referentes ao metamorfismo de alto grau ocorrido na região. A paragênese apatita-flogopita-calcita, através de isócrona Rb-Sr, fornece idades de 460 \pm 7 Ma (Reznitskii *et al.* 1999). Idades U-Pb obtidas a partir de zircões fornecem idades de 71 \pm 1 Ma (Salnikova *et al.* 1998) e 447 \pm 2Ma (Reznitskii *et al.* 2000), provenientes, respectivamente, de sienitos/monzonitos e de pegmatitos pós-flogopíticos.

Tendo-se em vista a alta temperatura de fechamento da apatita Slyudyanka, adota-se como referência a idade de 460 Ma (idade do pico metamórfico), sendo as concentrações de Th e U, respectivamente, de 111,4 e 61,4 ppm (Chew *et al.* 2010; Dempster *et al.* 2003).

CAPÍTULO 4

CARACTERIZAÇÃO QUÍMICA

Estudos da homogeneidade dos fragmentos do cristal foram realizados de modo a determinar a potencialidade da apatita Xuxa como material de referência. Uma vez selecionados os fragmentos do cristal mais transparentes e homogêneos e preparada a pastilha com os padrões juntamente à apatita Xuxa, realizou-se, em microscópio eletrônico de varredura (MEV), o imageamento por BSE desses fragmentos, bem como a análise da composição química desses pelo método LA-Q-ICP-MS (vide seções 1.5.3.1 e 1.5.3.2 para detalhamento dessas metodologias).

O imageamento por BSE (Figura 4.1) apresentou fragmento com monotonicidade de tons de cinza, a qual indica uma possível homogeneidade do fragmento de apatita em questão em termos de sua composição química, bem como evidencia a ausência de inclusões minerais ou zoneamento composicional nesse fragmento. Assim como mencionado anteriormente, um material de referência de alta qualidade deve ter como característica a homogeneidade de suas composições químicas garantindo que qualquer fragmento utilizado seja representativo (Pidgeon 1997; Kennedy 2000; Nasdala *et al.* 2008; Sláma *et al.* 2008; Li *et al.* 2013; Zi *et al.* 2015).

Figura 4.1 - Imagem BSE de cristal da apatita Xuxa, no qual a monotonicidade de tons de cinza indica homogeneidade composicional e ausência de inclusões.

Análises via LA-Q-ICP-MS foram também realizadas para estudo da homogeneidade do cristal de apatita, utilizando para tal a composição mineral de elementos menores e traço (Figura 4.2), sendo os resultados quantitativos dessas análises apresentados na Tabela 4.1.

A sobreposição das concentrações desses elementos analisados, a qual ocorre em diferentes pontos analisados no fragmento, corrobora o caráter homogêneo da apatita Xuxa, assim como os baixos valores de desvio padrão relativo (RSD < 5%). Uma vez feita a normalização por condrito (McDonough & Sun 1995), tem-se um forte enriquecimento dos elementos terras-raras leves (ETRLs) em relação aos terras-raras pesados (ETRPs), ocorrendo uma leve anomalia negativa de Eu (Eu/Eu* = 0,53), valor calculado através da equação Eu/Eu* = $\frac{[Eu]}{\sqrt{([Sm] \times [Gd])}}$.

Esses valores se encontram de acordo com os obtidos por Nascimento (2013), a partir de apatitas e escarnitos, os quais, após a normalização com o condrito, apresentaram curvas de distribuição enriquecidas em ETRLs em relação aos ETRPs, assim como uma anomalia negativa de Eu. Somente para o elemento Lu, uma pequena variação é possível de ser observada, condizendo com um desvio padrão relativo maior que os demais elementos (RSD = 7%).

Figura 4.2 - Análise LA-Q-ICP-MS de elementos traço comprova o caráter homogêneo da apatita Xuxa, tendose ETRLs enriquecidos em relação aos ETRPs e uma anomalia negativa de Eu (Eu/Eu*) de 0,53.

Pontos	La ¹³⁹	Ce ¹⁴⁰	Pr ¹⁴¹	Nd ¹⁴³	Sm ¹⁴⁷	Eu ¹⁵¹	Gd ¹⁵⁷	Tb ¹⁵⁹	Dy ¹⁶³	Ho ¹⁶⁵	Er ¹⁶⁶	Tm ¹⁶⁹	Yb ¹⁷⁴	Lu ¹⁷⁵	Eu/Eu*
1	5180	4818	3615	2675	1061	384	488	298	213	165	135	108	105	85	
2	5201	4923	3645	2688	1057	386	499	275	210	167	136	118	95	84	
3	5022	4656	3526	2604	1017	375	500	275	205	162	137	112	98	81	
4	5018	4768	3553	2675	1037	380	503	276	213	159	132	116	98	89	
5	5146	4831	3649	2682	1059	386	507	286	222	158	142	115	105	84	
6	5512	5119	3823	2827	1124	404	516	302	219	171	148	113	104	103	
7	5415	5001	3758	2739	1051	391	526	301	214	163	146	114	103	90	
8	5340	4979	3670	2690	1066	384	517	282	206	164	130	110	102	89	
9	5344	4999	3717	2716	1039	387	501	288	221	162	138	116	96	91	
10	5408	5008	3776	2764	1106	390	515	280	208	162	137	115	103	90	
MÉDIA	5270	4951	3659	2689	1058	386	505	284	213	163	137	114	102	89	0.53
SD	170	139	96	60	32	7.5	11	11	5.8	3.8	5.6	3.1	3.8	6.2	
% RSD	3.2	2.8	2.6	2.2	3.0	2.0	2.2	3.8	2.7	2.3	4.1	2.7	3.8	7.0	

Tabela 4.1 - Composição dos ETRs da apatita Xuxa (LA-Q-ICP-MS), normalizados por condrito.

CAPÍTULO 5

CARACTERIZAÇÃO ISOTÓPICA

De modo a se estabelecer a existência (ou não) de possíveis variações laterais da composição isotópica e da homogeneidade da apatita Xuxa, realizou-se datações pelo método LA-MC-ICP-MS de cristais dessa e de materiais de referência, sendo a idade obtida para essa comparada com a "idade verdadeira" dada por ID-TIMS.

5.1 GEOCRONOLOGIA U-Pb VIA LA-ICP-MS

5.1.1 Apatita Xuxa

Análises via LA-MC-ICP-MS da apatita em estudo foram realizadas no Laboratório de Geoquímica Isotópica da UFOP, sendo feitas várias sessões analíticas, as quais totalizaram 78 pontos distintos (vide Apêndice), a partir dos quais se obteve uma idade concórdia de 573 ± 1 Ma (2s, MSWD = 1,11) (Figura 5.1).

Figura 5.1 - Diagrama concórdia obtidos via LA-MC-ICP-MS para a apatita Xuxa.

São perceptíveis variações das incertezas dos dados gerados para a apatita Xuxa, incertezas essas ligadas às diferentes seções analíticas realizadas. Apesar do valor absoluto de leitura nos elementos apresentar variações, a proporção entre eles se manteve constante, não influenciando as razões entre os isótopos analisados, que mantiveram os desvios padrões relativos abaixo de 2%. Dessa forma, mesmo em seções analíticas distintas, a idade concórdia pode ser reproduzida, fato esse que demonstra a reprodutibilidade das idades obtidas.

O MSWD é um desvio médio ponderado, sendo para a geocronologia um indicador de qualidade. Valores próximos a 1 conferem um bom resultado analítico. O MSDW = 1,11 demonstra a qualidade das análises referentes à apatita Xuxa, estando os valores utilizados para a geração da idade concórdia com concordância entre 98 e 102 por cento, tendo sido descartados apenas 2 pontos com valores inadequados. Essa pequena quantidade de resultados inadequados também reforça a qualidade da apatita Xuxa.

5.1.2 Materiais de referência mundial

De modo a calibrar e validar os resultados obtidos para a apatita Xuxa, utilizou-se como materiais de referência primários e secundários as já consagradas apatitas Durango, McClure Mountain e Madagascar, sendo, para cada uma delas, analisadas duas alíquotas, cujos resultados das análises se encontram no Apêndice.

5.1.2.1 Apatita Durango

Para o material de referência primário Durango, de idade média certificada de $31,4 \pm 0,2$ Ma (McDowell *et al.* 2004), obteve-se idades médias ponderadas e sub-concordantes de $31,7 \pm 0,2$ Ma (2s, MSWD = 2,7) para alíquota 1 (193 pontos analisados, Figura 5.2) e de $32,4 \pm 0,3$ Ma (2s, MSWD = 1,4) para a alíquota 2 (45 pontos analisados, Figura 5.3), os quais se encontram em conformidade com o valor presente na literatura de McDowell *et al.* (2004), uma vez considerada a margem de erro associada.

Ao se utilizar a apatita Durango como material de referência primário, de modo a funcionar como calibrador do equipamento, todos os resultados dos materiais de referência secundários e terciários, bem como da apatita Xuxa, tiveram suas idades corrigidas em função dos dados obtidos para a apatita Durango, uma vez tendo-se estabelecida a variação entre a idade obtida e a já certificada para essa. É importante ressaltar, além disso, que as pequenas variações composicionais presentes na apatita Durango resultaram em uma idade média, e não concórdia, assim como exposto por McDowell *et al.* (2004).

Figura 5.2 - Diagramas concórdia (à direita) e idades médias ponderadas U-Pb (à esquerda) obtidos via LA-MC-ICP-MS para a apatita Durango, alíquota 1.

Figura 5.3 - Diagramas concórdia (à direita) e idades médias ponderadas U-Pb (à esquerda) obtidos via LA-MC-ICP-MS para a apatita Durango, alíquota 2.

5.1.2.2 Apatita Madagascar

Foram obtidas, para esse material de referência secundário, as idades concórdia de 474 ± 1 Ma (2s, MSWD=0,036) (alíquota 1, 70 pontos, Figura 5.4) e de 473 ± 1 Ma (2s, MDWD=0,55) (alíquota 2, 30 pontos, Figura 5.5). Uma vez que a idade certificada desse material de referência, determinada por Thomson *et al.* (2012), é de $474,2 \pm 0,4$ Ma, tem-se, quando consideradas as margens de erro associadas, uma concordância entre os valores obtidos.

Uma vez sendo realizadas as correções de idade, tendo como base as realizadas para a apatita Durango (vide seção X.Y), tem-se, para a apatita Madagascar, idades em conformação com a de referência, uma vez considerados os erros associados, sendo por tal validados os resultados obtidos para a apatita Xuxa. Os devios padrões relativos (RSD) das razões isotópicas e das idades obtidas através dessas, permaneceram abaixo de 1% e 3% respectivamente, assim como para a apatita Xuxa.

Figura 5.4 - Diagrama concórdia obtido via LA-MC-ICP-MS para a apatita Madagascar, alíquota 1.

Figura 5.5 - Diagrama concórdia obtido via LA-MC-ICP-MS para a apatita Madagascar, alíquota 2.

5.1.2.3 Apatita McClure Mountain

Esse material de referência apresenta idade certificada de $523,51 \pm 1,47$ Ma (Schowene & Bowring 2006), sendo nas análises obtidas a idade concórdia de 525 ± 2 Ma (2s, MSWD=0,016), a partir de 11 pontos da alíquota 1 (Figura 5.6), e a idade concórdia de 529 ± 2 Ma (2s, MSWD=1,6) para 14 pontos da alíquota 2 (Figura 5.7).

A apatita McClure, após corrigidas as flutuações de idade conforme exposto anteriormente, apresentou desvios padrões relativos (RSD) menores que 1,5% para as razões isotópicas, e abaixo de 3,5% para as idades. Os valores obtidos para a apatita McClure Mountain também validam as idades obtidas para a apatita Xuxa, visto que a idade obtida para ela se encontra dentro da margem estabelecida na literatura.

Figura 5.6 - Diagrama concórdia obtido via LA-MC-ICP-MS para a apatita McClure Mountain, alíquota 1.

Figura 5.7 - Diagrama concórdia obtido via LA-MC-ICP-MS para a apatita McClure Mountain, alíquota 2.

5.2 GEOCRONOLOGIA ID-TIMS

De modo a se obter a "idade verdadeira" da apatita Xuxa, realizou-se análises U-Pb por ID-TIMS de amostra dessa no Jack Satterly Geochronology Laboratory (Canadá). A partir de cinco alíquotas da apatita, obteve-se as idades sub-concordantes de 579,07 \pm 0,80 Ma, 575,05 \pm 0,74 Ma, 570,12 \pm 2,36 Ma, 568,15 \pm 1,75 Ma e 573,26 \pm 1,35Ma, estando todos os dados contidos na Tabela 5.1.

Essas idades ID-TIMS foram então sobrepostas às idades previamente obtidas pelo método LA-MC-ICP-MS (Figura 5.8), tendo-se, uma vez considerados os intervalos e incertezas associados a ambas as análises, as idades LA-MC-ICP-MS estão em concordância com as obtidas via ID-TIMS. Uma vez associados a uma técnica de maior precisão, os resultados ID-TIMS obtidos corroboram a acurácia dos resultados obtidos por LA-MC-ICP-MS.

Figura 5.8 - Idades ID-TIMS (em amarelo) quando sobrepostas às idades obtidas por ICP-MS (em azul) se apresentam dentro da margem de erro dessas, corroborando, pois, as idades da apatita Xuxa obtidas.

A partir de três dos cinco dados sub-concordantes, obteve-se a idade média ponderada de $568,0 \pm 3,1$ Ma (2s, MSWD = 2,2; Figura 5.9), idade essa então definida como idade U-Pb referência para a apatita Xuxa via ID-TIMS. Tem-se a variação apresentada pelas duas outras alíquotas descartadas provavelmente relacionada à realização da análise dessas em seção analítica distinta.

Figura 5.9 – Idade média ponderada U-Pb obtida via ID-TIMS para a apatita Durango.

Fragmento	Peso	U	Th/U	Pb _T /PbC	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²³⁵ U	2 s	206 238 1	2 s	²⁰⁷ Pb/ ²⁰⁶ Pb	2 s	Erro	²⁰⁶ Pb/ ²³⁸ U	2 s	²⁰⁷ Pb/ ²³⁵ U
	(mg)	(ppm)			medido	medido		(abs)	Pb/ U	(abs)		(abs)	Corr.	Idade (Ma)	(abs)	Idade (Ma)
X1	0.58	97	na	15.5	535	47.7	0.80499	0.01557	0.09399	0.00014	0.06212	0.00120	0.008	579.1	0.8	599.6
X2	0.40	77	23.5	62.8	552	48.3	0.78982	0.01493	0.09330	0.00012	0.06139	0.00116	0.002	575.1	0.7	591.1
X3	0.28	97	23.6	74.6	573	49.5	0.77917	0.01481	0.09247	0.00040	0.06092	0.00101	0.226	570.1	2.4	585.0
X4	0.20	101	23.8	65.3	528	47.1	0.78445	0.01599	0.09213	0.00030	0.06111	0.00113	0.146	568.1	1.8	588.0
X5	0.30	96	23.9	60.6	645	53.8	0.77257	0.01300	0.09198	0.00023	0.06175	0.00124	0.142	567.3	1.3	581.2
MÉDIA		97	24	62.8	552	48.3	0.78445		0.09247		0.06139		0.142	570.1		588
SD							0.01229		0.00085		0.00048			5		7
% RSD							1.57		0.92		0.79			0.9		1.2

2 s

(abs)

8.8

8.5

8.5

9.1

7.5

Tabela 5.1 - Dados U-Pb e Pb/Pb das análises ID-TIMS

Notas: * Th/U a partir da razão radiogênica 208 Pb/ 206 Pb e da idade 207 Pb/ 206 Pb (*na* não é válido)

* Pb_T/PbC expressa a relação entre o Pb total e o Pb comum em análises

* Pb/Pb corrigido para fracionamento e Pb comum no pico

* Pb/U corrigido para fracionamento, Pb comum no pico, branco e Pb comum inicial (Stacey and Kramers 1975).

* Composição isotópica de Pb em laboratório: ²⁰⁶Pb/²⁰⁴Pb: 18.221; ²⁰⁷Pb/²⁰⁴Pb: 15.612; ²⁰⁸Pb/²⁰⁴Pb: 39.360, 2s com margem de erro de 1%).

* Correlação de erros é a correlação entre os coeficientes X e Y dos erros na curva concórdia

A apatita Xuxa, a qual apresenta cristais de qualidade gemológica, tamanho e quantidades consideráveis, possui caráter homogêneo, evidenciado a partir de fragmentos de cristal caracterizados no imageamento BSE e por análise de elementos traços com RSD abaixo de 5% (via LA-Q-ICP-MS), sendo observados um enriquecimento de ETRs leves em relação aos pesados e uma anomalia negativa de Eu (Eu/Eu*) de 0,53. Essa apatita apresenta também razões e idades U-Pb concordantes, as quais, juntamente com suas demais características (qualidade gema, tamanho, homogeneidade), constituem critérios necessários à utilização dessa como material de referência. Idades ID-TIMS foram obtidas a partir de cinco alíquotas, tendo-se idade média ponderada U-Pb referência de 568,0 \pm 3,1 Ma (2s, MSWD = 2,2).

A análise de materiais de referência já consagrados (apatitas Durango, Madagascar e McClure Mountain), através de U-Pb por LA-MC-ICP-MS, corrigiram e validaram a idade concórdia de 573 ± 1 Ma obtida para a apatita Xuxa por esse método. Dessa forma, tem-se a apatita Xuxa com um forte potencial para utilização como material de referência primário e/ou secundário em análises U-Pb via LA-ICP-MS, uma vez tendo sido realizado um contingente considerável de análises e ter sido demonstrado seu caráter de padrão apropriado para normalização e/ou controle de qualidade de análises de sistemas isotópicos U-Pb.

Entretanto, uma maior caracterização da apatita Xuxa (por exemplo, utilizando LA-(SF, Q)-ICP-MS) promoveria uma maior confiabilidade para sua utilização como material de referência. Dessa forma, é recomendada a caracterização de cada cristal da apatita Xuxa previamente a sua utilização como material de referência, evitando-se assim possíveis erros associados a variações nas características químicas e isotópicas dessa.

Trabalho de Conclusão de Curso, n. 280, 91p. 2018.

Ahrens L.H. 1955. Implications of the Rhodesia age pattern. Geochimica et Cosmochimica Acta, 8:1-5.

Alexander, J.E.C., Mickelson, G.M., Lanphere, M.A., 1978. MMhb-1: a new 40Ar–39Ar dating standard. In: Zartman, R.E. (Ed.), Short Papers of the Fourth International Conference, Geochronology, Cosmochronology, and Isotope Geology, 1978. US Geological Survey, Open-File report, pp. 6–8.

Almeida, F.F.M., Hasui Y., Brito Neves B.B., Fuck R.A. 1981. Brazilian Structural Provinces: An Introduction. *Earth-Science Reviews*, **17**:1-29.

Amelin Y.V. & Zaitsev A.N. 2002. Precise geochronology of phoscorites and carbonatites: the critical role of U-series disequilibrium in age interpretations. *Geochim. Cosmochim. Acta*, **66**: 2399-2419

Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. *Chemical Geology*, **192**: 59–79.

Barfod G.H., Krogstad E.J., Frei R., Albarede F., 2005. Lu–Hf and PbSL geochronology of apatites from Proterozoic terranes: A first look at Lu–Hf isotopic closure in metamorphic apatite. *Geochimica et Cosmochimica Acta*, **69** (7): 1847–1859.

Baksi A.K., Archibald D.A., Farrar E. 1996. Intercalibration of 40Ar/39Ar dating standards. *Chem Geol* 129:307–324

Begemann F., Ludwig K.R., Lugmair G.W., Min K., Nyquist L.E., Patchett P.J., Renne P.R., Shih C.-Y., Villa I.M., Walker R.J. 2001. Call for an improved set of decay constants for geochronological use. *Geochim. Cosmochim. Acta*, **65**: 111 – 121.

Belousova E.A., Griffin W.L., O'Reilly S.Y., Fisher N.I. 2002. Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. *Journal of Geochemical Exploration*, **76**: 45–69

Belousova E.A., Walters S., Griffin W. L., O'Reilly S.Y. 2001. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. *Australian Journal of Earth Sciences*, **48**: 603–619

Beurlen H. 1965. Estudo Geológico numa área do Município de Sumé - Paraíba. Relatório de Graduação, Departamento de Geologia, Universidade Federal de Pernambuco, Recife. Inédito, 66 p.

Black L.P., Gulson B.L. 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. *BMR J.Aust. Geol.Geophys.*, **3**: 227-232.

Brito Neves B.B., Van Schmus W.R., Kozuch M., Santos E.J., Petronilho L. 2005. A Zona Tectônica de Teixeira Terra Nova – ZTTTN – Fundamentos da Geologia Regional e Isotópica. *Revista do Instituto de Geociências -da USP Sér. Cient.*, 5(1): 57-80.

Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic History of the Borborema Province. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (Ed.). Tectonic evolution of South America. Rio de Janeiro: [s.n.], p.151-182.

Bucher K., Grapes R. 2011. Petrogenesis of Metamorphic rocks. Springer, Berlin, 8th ed. 428p.

Cao M.J., Zhou Q.F., Qin K.Z., Tang D.M., Evans N.J. 2013. The tetrad effect and geochemistry of apatite from the Altay Koktokay NO. 3 pegmatite, Xinjiang, China: implications for pegmatite petrogenesis. *Miner Petrol.* **107**:985-1005.

Chamberlain K.R., Bowring S.A. 2000. Apatite–Feldspar U–Pb thermochronometer: A reliable, mid-range (450 °C), diffusion-controlled system. *Chemical Geology*, **172** (1–2): 173–200.

Cherniak D.J., Lanford W.A., Ryerson F.J. 1991. Lead diffusion in apatite and zircon using ionimplantation and Rutherford backscattering techniques. *Geochimica et Cosmochimica Act*, **55** (6): 1663–1673.

Cherniak D.J. 1993. Lead Diffusion in Titanite and Preliminary-Results on the Effects of Radiation-Damage on Pb Transport. Chemical Geology, 110:177-194. Chew D.M., Babechuk M.G., Cogné N., Mark C., O'Sullivan G.J., Henrichs I.A., Doepke D., McKenna C.A. 2016. (LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chemical Geology, 435:35-48.

Chew D.M., Spikings R.A. 2015. Geochronology and thermochronology using apatite: time and temperature, lower crust to surface. Elements. 11:189-194.

Chew D.M., Donelick R.A., Donelick M.B., Kamber B.S., Stock M.J., 2014a. Apatite chlorine concentration measurements by LA-ICP-MS. *Geostand. Geoanal. Res.*, **38**(1): 23–35.

Chew D.M., Sylvester P.J., Tubrett M.N. 2010. U–Pb and Th–Pb dating of apatite by LA-ICPMS. *Chemical Geology*, **280**: 200–216

Corfu F., Heaman L.M., Rogers G. 1994. Polymetamorphic evolution of the Lewisian complex, NW Scotland, as recorded by U–Pb isotopic compositions of zircon, titanite and rutile. *Contrib. Mineral. Petrol.*, **117**: 215-228.

Corfu F. 1988. Differential response of U–Pb systems in coexisting accessory minerals, Winnepeg River Subprovince, Canadian Shield: Implications for Archean crustal growth and stabilization. *Contrib. Mineral. Petrol.*, **98**: 312-325.

Cornejo C., Bartorelli A. 2010. Minerais e Pedras Preciosas do Brasil. São Paulo, Solaris, 704 p.

Coulson I.M., Villeneuve M.E., Dipple G.M., Duncan R.A., Russell J.K., Moetenses J.K. 2002. Timescale of assembly and thermal history of a composite felsic pluton: constraints from the Emerald Lake area, northern Canadian Cordillera, Yukon. *Journal of Volcanology and Geothermal Research*, **114**:331-356.

Currie K.L., Knutson J., Temby P.A. 1992. The Mud Tank carbonatite complex, central Australia—an example of metasomatism at midcrustal levels. *Contrib. Mineral. Petrol.*, **109**: 326-339.

Dempster T.J., Jolivet M., Tubrett M.N., Braithwaite C.J.R. 2003. Magmatic zoning in apatite: A monitor of porosity and permeability change in granites. Contributions to Mineralogy and Petrology, 145 (5): 568–577.

Einaudi M.T., Meinert L.D., Newberry R.J. 1981, Skarn deposits. Economic Geology 75: 317-391.

Einaudi M.T., Burt D.M. 1982, Introduction: terminology, classification, and composition of skarn deposits. Economic Geology, 77: 745-754.

Elliott J.C. 1994. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam, Elsevier, 389 p.

Faure G., (2nd Ed) 1986. Principles of Isotope Geology. John Wiley and Sons, New York, 608p.

Foose M.P., McLelland J.M. 1995. Proterozoic low-Ti iron-oxide deposits in New York and New Jersey: Relation to Fe-oxide (Cu–U–Au-rare earth element) deposits an tectonic implications. *Geology*, **23** (7): 665–668.

Gonçalves G.O. 2015. Desenvolvimento de Padrão para Geocronologia U-Pb e Traçador Isotópico Sm-Nd em Monazita por LA-ICP-MS, Orógeno Araçuaí, Leste Do Brasil. Departamento de Geologia, Universidade Federal de Ouro Preto, Ouro Preto, Dissertação de Mestrado, 159p.

Green P.F., Crowhurst P.V., Duddy I.R., Japsen T., Holford S.P. 2006. Conflicting (U– Th)/He and fission track ages in apatite: Enhanced He retention, not anomalous annealing behaviour. Earth and Planetary Science Letters, 250 (3–4):407–427.

Gregory C.J., Rubatto D., Allen C.M., Williams I.S., Hermann J., Ireland T. 2007. Allanite microgeochronology: A LA-ICP-MS and SHRIMP U–Th–Pb study. *Chem. Geol.*, **245**: 162-182

Guralnik B., Jain M., Herman F., Paris R.B., Harrison T.M., Murray A.S., Valla P.G., Rhodes E.J. 2013. Effective closure temerature in leaky and-or saturating thermochronometers. *Earth and Planetary Science Letters*, **384**: 209-218.

Haines P.W., Hand M., Sandiford M., 2001. Palaeozoic synorogenic sedimentation in central and northern Australia: A review of distribution and timing with implications for the evolution of intracontinental orogens. *Australian Journal of Earth Sciences*, **48** (6): 911–928.

Hanchar J.M., Hoskin P.W.O. 2003. Zircon. Reviews in Mineralogy and Geochemistry. Mineralogical Society of America, 53, Washington, DC, 500 p.

Harrison T.M., Catlos E.J., Montel J.M. 2002. U-Th-Pb dating of phosphate minerals. Phosphates: *Geochemical, Geobiological, and Materials Importance*, **48**:523-558.

Heaman L.M., LeCheminant A.N. 1993. Paragenesis and U–Pb systematics of baddeleyite (ZrO2). Chem. Geol., 110: 95-126.

Holmes A. 1946. An estimate of the age of the Earth. Nature, 157: 680-684.

Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A., 2004. The application of laser ablationinductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. *Chemical Geology*, **211**:47-69.

Jung S., Hellebrand E. 2007. Textural, geochronological and chemical constraints from polygenetic titanite and monogenetic apatite from a mid-crustal shear zone: Ans integrated EPMA, SIMS, and TIMS study. *Chemical Geology*, **204**: 88-107.

Kramm U., Kogarko L.N., Kononova V.A., Vartiainen H. 1993. The Kola Alkaline Province of the CIS and Finland: Precise Rb–Sr Ages define 380–360 Ma age range for all magmatism. Lithos, 30 (1): 33–44.

Kennedy A.K. 2000. The search for new zircon standards for SIMS. In: J.D. Woodhead, J.M. Hergt, W.P. Noble (eds.). Beyond 2000: New Frontiers in Isotope Geoscience. Lorne, Abstracts and Proceedings, 109-111

Kretz R., Campbell J.L., Hoffman E.L., Hartree R., Teesdale W.J. 1999. Approaches to equilibrium in the distribution of trace elements among the principal minerals in a high-grade metamorphic terrane. Journal of Metamorphic Geology, 17 (1): 41–59.

Kunk M.J., Miller A.P. 2002. Completion of NIST calibration of argon spikes, and plans for interlaboratory calibration of MMhb-2. Geol Soc Amer Abs w Prog 34:340

Kunk M.J., Dalrymple G.B., Snee L.W. 1994. Progress on the preparation of the proposed 40Ar/39Ar standard MMhb-1, plans for its calibration, and interlaboratory calibration of argon facilities. USGS Circ. In: Abstracts of the 8th international conference on geochronology, cosmochronology and isotope geology, 1107:183

Li X.H., Tang G.Q., Gong B., Yang Y.H., Hou K.J., Hu Z.C., Li Q.L., Liu Y., Li W.X. 2013. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chinese Science Bulletin, 58:4647-4654.

Liu Z.C., Wu F.Y., Guo C.L., Zhao Z.F., Yang J.H., Sun J.F. 2011. In situ U-Pb dating of xenotime by laser ablation (LA)-ICP-MS. *Chinese Sci Bull*, **56**(27):2948-2956.

Lima M.I.C., Gava A., Fernandes P.E.C.A., Pires J.L., Siga JR.O. 1985. Projeto ferro titanado de Floresta. Minérios de Pernambuco/Radambrasil, vol. I, Geologia, 314 p.

Ludwig K.R. 2012. Isoplot Version 3.75: a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, CA

Ludwig K.R., 1998. On the treatment of concordant uranium-lead ages. Geochimica et Cosmochimica Acta, 62 (4): 665–676.

Lupulescu M.V., Pyle J.M., 2005. The Fe P REE deposit at Mineville, Essex Co., NY: manifestations of Precambrian and Mesozoic fluid infiltration events. GSA Northeastern Section 40th Annual Meeting (March 14–16, 2005): *Geological Society of America Abstracts with Programs*, **37**: 4.

Lyons Jr., J.I. 1975. Volcanogenic iron ore of Cerro de Mercado and its setting within the Chupaderos Caldera, Durango, Mexico [M.A. thesis]: Austin, Univ. Texas. 119 pp.

McDonough W.F., Sun S. 1995. The composition of the Earth. Chemical Geology, 120:223-253.

McDowell F.W., McIntosh W.C., Farley K.A. 2005. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chemical Geology, 214:249-263.

McDowell F.W., Keizer R. 1977. Timing of mid-tertiary volcanism in the Sierra Madre Occidental between Durango City and Mazatla'n, Mexico. Geol. Soc. Amer. Bull. 88: 1479–1486.

McLelland J.M., Foose M.P. 1996. Proterozoic low-Ti iron-oxide deposits in New York and New Jersey: Relation to Fe-oxide (Cu–U–Au-rare earth element) deposits and tectonic implications. Reply. Geology, 24 (5): 476–477.

Medeiros V.C. 2000. Carta Geológica – Folha Sumé (SB.24-Z-D-V-SUMÉ), escala 1:100.000. Recife, Superintendência Regional de Recife, CPRM.

Meinert L. D. 1992. Skarn zonation and fluid evolution in the Groundhog Mine, Central Mining District, New Mexico. Economic Geology, 82: 523-545.

Mezger K., Rawnsley C.M., Bohlen S.R., Hanson G.N. 1991. U–Pb garnet, sphene, monazite, and rutile Ages: Implications for the duration of high-grade metamorphism and cooling histories, Adirondack Mountains, New York. Journal *of Geology*, **99** (3): 415–428.

Min K.W., Mundil R., Renne P.R., Ludwig K.R. 2000. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U-Pb analysis of a 1.1-Ga rhyolite. *Geochim. Cosmochim. Acta*, **64**: 73–98.

Miranda A.W.A. 2011. Evolução estrutural das zonas de cisalhamento dúcteis na porção centro-leste do Domínio da Zona Transversal na Província Borborema. PhD Thesis. Universidade Estadual do Rio de Janeiro, Rio de Janeiro. 206 pp.

Moldovan M., Krupp E.M., Holliday A.E., Donard O.F.X. 2004. High resolution sector field ICP-MS and multicollector ICP-MS as tools for trace metal speciation in environmental studies: a review. *J. Anal. Atom. Spectrom.*, **19**: 815-822.

Nascimento G.H. 2013. Estudo geocronológico dos skarns mineralizados em apatita da região de Sumé (PB). MS Dissertation, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, 71 p.

Nasdala L., Hofmeister W., Norberg N., Mattinson J.M., Corfu F., Dörr W., Kamo S.L., Kennedy A.K., Kronz A., Reiners P.W., Frei D., Košler J., Wan Y., Götze J., Häger T., Kröner A. & Valley J.W., 2008. Zircon M257 – a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. *Geostandards and Geoanalytical Research*, **32**:247–265.

Oberli F., Meier M., Berger A., Rosenberg C.L., Gieré R. 2004. U–Th–Pb and 230Th/238U disequilibrium isotope systematics: Precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. *Geochim. Cosmochim. Acta*, **68**: 2543-2560.

Olson J.C., Marvin R.F., Parker R.L., Mehnert H.H. 1977. Age and tectonic setting of lower Paleozoic alkalic and mafic rocks, carbonatites and thorium veins in south-central Colorado. US Geol. Surv. J. Res., 5(6): 673–687.

Parker R.L., Hildebrand F.A. 1963. Preliminary report on alkalic intrusive rocks in the northern Wet Mountains, Colorado. US Geol. Surv. Prof. Pap., **450**: 8–10.

Parrish R.R., Noble S.R. 2003. Zircon U-Th-Pb Geochronology by Isotope Dilution - Thermal Ionization Mass Spectrometry (ID-TIMS). In: Hanchar J.M., Hoskin P.W.O. (eds.) Zircon. Reviews in Mineralogy and Geochemistry. Mineralogical Society of America, 53, Washington, DC, p.: 243-275.

Pearce N., Perkins W., Westgate J., Gorton M., Jackson S., Neal C., Chenery S. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. *Geostandards Newsletters*, **21**:115-144.

Pidgeon R.T. 1997. Zirkon in Edelsteinqualität: Seine Verwendung als Standardmaterial in der geologischen Zeitbestimmung mit Ionensonden. Zeitschrift der Deutschen Gemmologischen Gesellschaft, **46:**21-28.

Puchelt H., Emmermann R. 1976. Bearing of rare earth patterns of apatites from igneous and metamorphic rocks. *Earth and Planetary Science Letters*, **31**: 279-286

Rakovan J., Reeder R.J. 1996. Intracrystalline rare earth element distributions in apatite: Surface structural influences on incorporation during growth. *Geochimica et Cosmochimica Acta*, **60**(22): 4435-4445.

Renne P.R., Swisher C.C., Deino A.L., Karner D.B., Owens T.L., DePaolo D.J. 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. *Chem. Geol.*, **145**(1): 117–152.

Reznitskii L.Z., Kotov A., Salnikova E., Vasil'ev E. P., Yakovleva S.Z., Kovach, V.P., Fedoseenko A.M. 2000. The age and time span of the origin of phlogopite and lazurite deposits in the southwestern Baikal area: U–Pb geochronology. *Petrology*, **8** (1): 66–76.

Reznitskii L.Z., Fefelov N.N., Vasil'ev E.P., Zarudneva N.V., Nekrasova E.A. 1998. Isotopic composition of lead from metaphosphorites and problem of the Slyudyanka Group age, the southern Baikal, Western Khamar Daban region. *Lithology and Mineral Resources*, **33** (5): 432–441.

Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism. *Chem. Geol.*, **184**: 123-138.

Salnikova E.B., Sergeev S.A., Kotov A.B., Yakovleva S.Z. Steiger R.H. Reznitskiy L.Z. Vasil'ev E.P. 1998. U–Pb zircon dating of granulite metamorphism in the Sludyanskiy Complex, eastern Siberia. *Gondwana Research*, **1**(2): 195–205.

Samson S.D., Alexander E.C. 1987. Calibration of the interlaboratory 40Ar-39Ar dating standard, Mmhb-1. *Chem. Geol.*, **66**(1-2): 27-34.

Santos E.J., Santos L.C.M.L., Carmona L.C.M., Nascimento G.H., Brito M.F.L., Lima H.M. 2012. *Magmatismo Anorogênico Pré-Cariris Velhos da Região de Sumé e Camalaú (PB) e seu Significado na Evolução da Província Borborema*. Relatório final do CNPq, Processo nº 480997/2008 0, Recife. 32 p.

Santos E.J., Souza Neto J.A., Carmona L.C.M., Lira Santos L.C.M. 2008. Uma Síntese dos Eventos Tectono-magmáticos Pré-Cariris Velhos no Terreno Alto Moxotó, Província Borborema, e seu significado tectônico. In: XVII Congresso Brasileiro de Geologia. Curitiba: Sociedade Brasileira de Geologia.

Santos E. J., Nutman A. P., Brito Neves B. B. 2004. Idades SHRIMP U-Pb do Complexo Sertânia: Implicações sobre a evolução tectônica da Zona Transversal, Província Borborema. Geologia USP - Série Científica, **4**:1-12

Santos E.J., Ferreira C.A., Silva Jr J.M.F. 2002. *Mapa geológico e de recursos minerais do Estado da Paraíba, escala 1:500.000*. Texto explicativo. Recife, Superintendência Regional do Recife, CPRM, 231p.

Santos E.J., Brito Neves B.B., Van Schmus W.R., Oliveira R.G. & Medeiros V.C. 2000. An overall view on the displaced terrane arrangement of the Borborema Province, NE Brazil. In: *International Geological Congress, 31th*, Rio de Janeiro, Brazil, General Symposia, Tectonic Evolution of South American Platform, p. 5-9, 1 cd-rom.

Santos E.J., Medeiros V. C. 1999. Constraints from granitic plutonism on Proterozopic crustal growth of the Transverse Zone, Borborema Province, NE Brazil. *Revista Brasileira de Geociências*, **29**: 73-84.

Santos E.J. 1996. Ensaio preliminar sobre Terrenos e Tectônica acrescionária na Província Borborema. *In: Cong. Bras. Geologia, Salvador. Anais*, **6**:.47-50.

Santos E.J. 1995. O complexo granítico Lagoas das Pedras: Acresção e colisão na região de Floresta (Pernambuco), Província Borborema. PhD Tesis. USP/IG. São Paulo, 219p.

Santos E.J. 1977. O modelo de evolução precambriana da regiãode Arcoverde, Pernambuco. *In: VIII Simp. Geol. Nordeste, Atas, Núcleo Noredeste Soc. Bras. Geol.*, bol. 6, p. 225-245.

Sato K., Kawashita K. 2002. Espectrometria de Massas em Geologia Isotópica. *Geologia USP, Série Científica*, 2:57-77.

Schärer U. 1984. The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya. *Earth and Planetary Science Letters*, **67**:191-204.

Schoene B. 2014. U-Th-Pb geochronology. In: Rudnick R. (ed.) Treatise on Geochemistry. Elsevier, 2, Oxford, UK, p.: 341-378.

Schoene B., Bowring S.A. 2006. U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. *Contrib Mineral Petrol*, **151**:615-630.

Shawe D.R., Parker R.L. 1967. Mafic-ultramafic layered intrusion at Iron Mountain, Fremont County, Colorado. U.S. Geol. Surv. Bull., **1251**-A: 1–20.

Slamà J., Kosler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N. & Whitehouse M.J. 2008. Plešovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis. *Chemical Geology*, **249**:1-35

Spell T.L., McDougall I. 2003. Characterization and calibration of 40Ar/39Ar dating standards. *Chem. Geol.*, **198**(3–4): 189–211.

Stacey J.S., Kramers J.D. 1975. Approximate of terrestrial lead isotope variation by a two-stage model. *Earth Planet Science Letters*, **26**:207-221.

Steiger R., Jäger E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geo and cosmochronology. *Earth Planet. Sci. Lett.*, **36**: 359–362.

Stockli D., Boyd P., Galster F. 2017. Intra-grain common Pb correction in apatite by LA-ICP-MS depth profiling and implications for detrital apatite U-Pb dating. *Abstract Geophysical research Abstracts*, **19**.

Storey C.D., Smith M.P., Jeffries T.E. 2007. In situ LA-ICP-MS U–Pb dating of metavolcanics of Norrbotten, Sweden: Records of extended geological histories in complex titanite grains. *Chem. Geol.*, **240**: 163-181

Swanson E.R. 1974. *Petrology and volcanic stratigraphy of the Durango area, Durango, Mexico* [M.A. thesis]: Austin, Univ. Texas. 139 p.

Thomson S.N., Gehrels G.E., Ruiz J. 2012. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS. *Geochemistry Geophysics Geosystems*, **13**(1):1-23.

Van Achterbergh E., Ryan C.G., Jackson S.E., Griffin W.L. 2001. Data reduction software for LA-ICP-MS: appendix. *In:* Assoc. Canada (MAC) Short Course Series, 29, p. 239.

Vasconcelos A.D. 2015. Desenvolvimento de material de referência para geocronologia U-Pb e traçados isotópico Sm-Nd em xenotima-(Y) por LA-ICP-MS. MS Dissertation, Departamento de Geologia, Universidade Federal de Ouro Preto, Ouro Preto, 138p.

Von Blanckenburg F. 1992. Combined high-precision chronometry and geochemical tracing using accessory minerals: Applied to the Central-Alpine Bergell intrusion (central Europe). *Chem. Geol.*, **100**: 19-40.

Vroon P.Z., Wagt V.d., Koornneef J.M., Davies G.R. 2008. Problems in obtaining precise and accurate Sr isotope analysis from geological material using laser ablation MC-ICPMS. *Anal Bioanal Chem*, **390**: 465-476.

Wetherill G.W. 1956. Discordant Uranium-Lead ages. EOS, Transactions American Geophysical Union, 37:320-326.

Whitney P.R., Olmsted J.F. 1988. Geochemistry and origin of albite gneisses, northeastern Adirondack Mountains, New York. *Contributions to Mineralogy and Petrology*, **99** (4): 476–484.

Whitney P.R. 1996. Proterozoic low-Ti iron oxide deposits in New York and New Jersey: Relation to Fe-oxide (Cu–U–Au-rare earth element) deposits and tectonic implications: Comment. *Geology*, **24** (4): 382–383.

Williams I.S. 1998. U–Th–Pb geochronology by ion microprobe. *In*: McKibben M.A., Shanks W.C. III, Ridley W.I. (eds.) *Applications of Microanalytical Techniques to Understanding Mineralizing Porcesses*. *Reviews in Economic Geology*. Society of Economic Geologists, 7, Littleton, CO, 1-35.

Williams I.S., Compston W., Black L.P., Ireland T.R., Foster J.J. 1984. Unsupported radiogenic Pb in zircon: A cause of anomalously high Pb–Pb, U–Pb and Th–Pb ages. *Contrib. Mineral. Petrol.*, **88**: 322-327

Young E., Myers A., Munson E., Conklin N. 1969. Mineralogy and geochemistry of fluorapatite from Cerro de Mercado, Durango, Mexico. U.S. Geol. Surv. Prof. Pap., 650: 84–93.

Zi J.W., Rasmussen B., Muhling J.R., Fletcher I.R., Thorne A.M., Johnson S.P., Cutten H.N., Dunkley D.J., Korhonen F.J. 2015. In situ U–Pb geochronology of xenotime and monazite from the Abrapolymetallic deposit in the Capricorn Orogen, Australia: Dating hydrothermal mineralization and fluid flow in a long-lived crustal structure. *Precambrian Research*, **260**:91–112.
APÊNDICE(S)

Resultados das análises U-Pb por LA-MC-ICP-MS

					F	Resultad	los LA-MC-	ICP-MS	S - Apa	tita Xuxa						
Ι	Dep.Geo	logia, UF	FOP			Dado	os para o plo	t				Idade	s			
Identificação	²⁰⁷ Pb	U	Th/II	²⁰⁶ PbC	²⁰⁷ Pb/ ²³⁵	2s	²⁰⁶ Pb/ ²³⁸	2s	Pho	²⁰⁷ Pb/ ²⁰⁶ P	2s	²⁰⁶ Pb/ ²³⁸	2s	²⁰⁷ Pb/ ²³⁵	2s	% conc
Identificação	(cps)	(ppm)	111/0	(%)	U	%	U	%	MIU	b	abs	U	abs	U	abs	
Xuxa001	2798	124	5.78	3.89	0.7485	3.57	0.0925	0.72	0.20	557	76	570	4	567	16	102.4
Xuxa002	3691	94	5.90	6.41	0.7576	4.64	0.0933	1.11	0.24	562	98	575	6	573	21	102.3
Xuxa003	2038	94	5.45	2.81	0.7569	3.00	0.0933	0.81	0.27	562	63	575	4	572	13	102.2
Xuxa004	3166	169	4.96	3.59	0.7492	3.34	0.0925	0.55	0.16	558	72	570	3	568	15	102.1
Xuxa005	2665	104	5.57	3.22	0.7421	3.25	0.0917	0.99	0.30	555	68	566	5	564	14	101.9
Xuxa006	5406	99	5.42	4.36	0.7554	7.67	0.0930	6.74	0.88	563	80	573	37	571	34	101.9
Xuxa007	2263	115	5.60	3.10	0.7602	3.36	0.0935	1.21	0.36	566	68	576	7	574	15	101.8
Xuxa008	2550	96	5.59	2.25	0.7506	2.85	0.0925	1.18	0.42	561	56	571	6	569	12	101.7
Xuxa009	4661	98	5.94	6.00	0.7571	4.46	0.0932	1.07	0.24	565	94	574	6	572	20	101.6
Xuxa010	2096	102	5.39	2.42	0.7601	2.75	0.0934	0.62	0.23	567	58	576	3	574	12	101.5
Xuxa011	2905	127	5.80	4.25	0.7635	3.83	0.0938	1.05	0.27	569	80	578	6	576	17	101.5
Xuxa012	2770	100	5.58	2.78	0.7550	2.91	0.0929	0.62	0.21	564	62	573	3	571	13	101.5
Xuxa013	1901	89	5.57	2.64	0.7600	3.03	0.0934	0.93	0.31	568	63	576	5	574	13	101.4
Xuxa014	3789	133	4.85	5.97	0.7532	4.53	0.0927	1.39	0.31	565	94	571	8	570	20	101.1
Xuxa015	9280	96	5.54	4.56	0.7558	5.10	0.0929	3.50	0.69	567	81	573	19	572	23	101.0
Xuxa016	3673	84	6.03	5.37	0.7341	3.98	0.0908	0.79	0.20	554	85	560	4	559	17	101.0
Xuxa017	2784	234	4.39	4.14	0.7506	3.69	0.0924	0.78	0.21	564	79	570	4	569	16	101.0
Xuxa018	3476	169	4.97	4.35	0.7625	3.75	0.0936	0.65	0.17	571	80	577	4	575	17	101.0
Xuxa019	3241	275	4.82	3.52	0.7678	3.43	0.0941	0.82	0.24	574	73	580	5	579	15	100.9

Xuxa020	3322	284	4.80	3.44	0.7649	3.35	0.0938	0.73	0.22	573	71	578	4	577	15	100.8	
Xuxa021	4060	144	4.84	5.90	0.7656	4.52	0.0938	1.39	0.31	574	93	578	8	577	20	100.8	
Xuxa022	2491	307	4.66	0.41	0.7572	1.55	0.0930	0.48	0.31	569	32	573	3	572	7	100.7	
Xuxa023	2773	113	5.68	3.96	0.7622	3.60	0.0935	0.72	0.20	572	77	576	4	575	16	100.7	
Xuxa024	4057	85	6.12	6.49	0.7554	4.48	0.0928	0.80	0.18	569	96	572	4	571	20	100.6	
Xuxa025	3969	139	4.77	5.72	0.7563	4.38	0.0929	1.36	0.31	569	90	572	7	572	19	100.5	
Xuxa026	2518	141	5.04	2.10	0.7546	2.72	0.0927	0.79	0.29	569	57	571	4	571	12	100.5	
Xuxa027	9514	91	5.73	5.33	0.7561	5.38	0.0928	3.51	0.65	571	89	572	19	572	24	100.2	
Xuxa028	5794	91	5.60	5.91	0.7582	7.98	0.0930	6.73	0.84	572	93	573	37	573	36	100.1	
Xuxa029	5580	97	5.46	4.86	0.7628	7.76	0.0934	6.71	0.86	576	85	576	37	576	35	100.0	
Xuxa030	1730	76	5.30	4.02	0.7540	3.69	0.0925	0.87	0.24	571	78	571	5	571	16	100.0	
Xuxa031	5798	90	5.57	5.85	0.7527	7.96	0.0924	6.73	0.85	570	93	570	37	570	35	100.0	
Xuxa032	3452	169	4.98	4.38	0.7554	3.79	0.0927	0.66	0.18	572	81	571	4	571	17	99.9	
Xuxa033	3399	282	4.84	3.47	0.7623	3.28	0.0933	0.66	0.20	576	70	575	4	575	15	99.8	
Xuxa034	4128	255	4.93	4.72	0.7549	3.85	0.0926	0.84	0.22	572	82	571	5	571	17	99.8	
Xuxa035	4070	143	4.83	5.82	0.7665	4.44	0.0937	1.37	0.31	579	92	577	8	578	20	99.7	
Xuxa036	3829	228	4.99	4.97	0.7538	4.06	0.0925	0.97	0.24	572	86	570	5	570	18	99.7	
Xuxa037	5404	106	5.57	4.45	0.7606	5.96	0.0931	4.69	0.79	576	80	574	26	574	26	99.7	
Xuxa038	4214	251	5.01	5.29	0.7397	4.16	0.0911	0.82	0.20	564	89	562	4	562	18	99.6	
Xuxa039	3859	83	6.07	6.18	0.7666	4.46	0.0937	0.81	0.18	580	95	577	4	578	20	99.6	
Xuxa040	2682	98	5.57	3.07	0.7589	3.11	0.0929	0.75	0.24	575	66	573	4	573	14	99.6	
Xuxa041	4783	89	6.01	6.96	0.7644	4.60	0.0935	0.83	0.18	579	98	576	5	577	20	99.5	
Xuxa042	5668	106	5.61	4.76	0.7641	6.00	0.0934	4.62	0.77	579	83	576	25	576	27	99.3	
Xuxa043	5465	102	5.69	4.81	0.7624	6.00	0.0932	4.61	0.77	579	83	575	25	575	27	99.2	
Xuxa044	2408	182	5.15	1.98	0.7551	2.27	0.0925	0.53	0.23	575	48	570	3	571	10	99.2	
Xuxa045	4491	100	5.97	6.45	0.7632	4.95	0.0933	1.43	0.29	580	103	575	8	576	22	99.2	
Xuxa046	2871	113	5.53	4.37	0.7569	3.93	0.0926	1.35	0.34	577	80	571	7	572	17	99.0	
Xuxa047	6009	96	5.47	5.54	0.7656	7.94	0.0935	6.78	0.85	582	90	576	37	577	36	99.0	I

																	-
Xuxa048	9843	95	5.71	5.54	0.7554	5.49	0.0925	3.51	0.64	576	92	570	19	571	24	99.0	
Xuxa049	2772	101	5.71	3.35	0.7577	3.27	0.0927	0.65	0.20	578	70	571	4	573	14	98.9	
Xuxa050	2682	196	5.10	2.56	0.7600	2.84	0.0929	0.61	0.22	579	60	573	3	574	13	98.9	
Xuxa051	3309	83	5.82	6.53	0.7548	4.66	0.0924	1.00	0.22	577	99	570	5	571	21	98.8	
Xuxa052	3193	242	4.40	5.03	0.7555	4.04	0.0924	0.81	0.20	577	86	570	4	571	18	98.8	
Xuxa053	2735	101	5.79	5.49	0.7600	4.30	0.0929	0.83	0.19	580	92	573	5	574	19	98.7	
Xuxa054	3412	255	4.35	4.96	0.7589	3.94	0.0928	0.84	0.21	579	84	572	5	573	17	98.7	
Xuxa055	3070	95	5.75	4.42	0.7690	3.87	0.0937	0.73	0.19	586	83	577	4	579	17	98.6	
Xuxa056	1970	86	5.53	3.28	0.7512	3.37	0.0920	0.98	0.29	576	70	567	5	569	15	98.6	l
Xuxa057	7592	238	4.84	3.33	0.7617	3.53	0.0930	1.55	0.44	582	69	573	9	575	16	98.5	l
Xuxa058	7592	238	4.84	3.33	0.7617	3.53	0.0930	1.55	0.44	582	69	573	9	575	16	98.5	
Xuxa059	5347	102	5.58	4.60	0.7707	5.95	0.0938	4.62	0.78	588	81	578	26	580	27	98.4	
Xuxa060	2988	94	5.84	4.23	0.7663	3.76	0.0934	0.94	0.25	585	79	576	5	578	17	98.4	
Xuxa061	1896	94	5.62	3.60	0.7651	3.55	0.0933	1.09	0.31	585	73	575	6	577	16	98.3	
Xuxa062	3099	104	5.69	3.99	0.7612	3.48	0.0929	0.80	0.23	583	74	573	4	575	15	98.3	
Xuxa063	5514	99	5.62	5.21	0.7703	6.17	0.0938	4.67	0.76	588	88	578	26	580	28	98.3	
Xuxa064	3589	93	6.02	6.49	0.7725	4.65	0.0940	1.26	0.27	589	97	579	7	581	21	98.3	
Xuxa065	4692	99	6.15	7.59	0.7690	5.25	0.0937	1.29	0.25	587	110	577	7	579	23	98.2	
Xuxa066	1919	87	5.47	2.88	0.7652	3.04	0.0933	0.82	0.27	585	63	575	5	577	13	98.2	
Xuxa067	2993	101	5.70	4.20	0.7687	3.77	0.0936	0.98	0.26	588	79	577	5	579	17	98.2	
Xuxa068	4819	84	6.13	6.74	0.7624	4.67	0.0930	0.80	0.17	584	100	573	4	575	21	98.1	
Xuxa069	2510	181	5.18	2.47	0.7618	2.73	0.0929	0.62	0.23	584	58	573	3	575	12	98.0	
Xuxa070	5440	98	5.48	4.66	0.7597	7.68	0.0927	6.69	0.87	583	82	571	37	574	34	98.0	
Xuxa071	4109	120	6.04	6.37	0.7684	4.51	0.0935	0.92	0.20	589	96	576	5	579	20	97.9	
Xuxa072	3054	95	5.82	4.31	0.7669	3.87	0.0934	0.80	0.21	588	82	576	4	578	17	97.9	
Xuxa073	3072	118	5.56	4.14	0.7619	3.65	0.0929	1.10	0.30	585	76	573	6	575	16	97.9	
Xuxa074	5649	90	5.45	5.46	0.7712	7.92	0.0938	6.77	0.85	591	89	578	38	580	36	97.8	l

Xuxa075	4197	121	6.04	7.10	0.7689	5.08	0.0935	1.07	0.21	590	108	576	6	579	23	97.8
Xuxa076	2913	152	5.18	4.45	0.7548	3.70	0.0922	0.77	0.21	581	79	568	4	571	16	97.8
Xuxa077	3091	101	5.76	4.63	0.7681	3.93	0.0934	0.82	0.21	590	83	576	5	579	17	97.6
Xuxa078	4439	93	6.04	7.15	0.7743	4.72	0.0940	0.87	0.18	594	101	579	5	582	21	97.5
MÉDIA	3432	102	5.57	4.45	0.7601		0.0930		0.24	576		573		574		99.6
SD					0.0073		0.0006			9		4		4		
% RSD					1.0		0.7			1.6		0.6		0.7		

				Re	sultados LA	-MC	-ICP-MS - A	patita	Durar	ngo (Alíquota	a 1)					
De	p.Geol	ogia, UFO	P			Dado	s para o plot	t				Idades				
Identificação	²⁰⁷ Pb (cps)	U (ppm)	Th/U	²⁰⁶ Pb _C (%)	²⁰⁷ Pb/ ²³⁵ U	2s %	²⁰⁶ Pb/ ²³⁸ U	2s %	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s abs	²⁰⁶ Pb/ ²³⁸ U	2s abs	²⁰⁷ Pb/ ²³⁵ U	2s abs	% conc
Durango1-001	59	12	3.72	3.5	0.0313	9.2	0.0049	8.41	0.92	11	88	32	3	31	3	290.4
Durango1-002	81	11	3.74	0.8	0.0330	2.4	0.0052	1.75	0.74	18	38	33	1	33	1	183.0
Durango1-003	24	12	3.74	3.7	0.0332	5.7	0.0051	4.72	0.83	65	77	33	2	33	2	50.1
Durango1-004	19	13	3.77	2.9	0.0324	6.8	0.0050	5.80	0.86	70	84	32	2	32	2	45.7
Durango1-005	19	13	3.77	2.9	0.0324	6.8	0.0050	5.80	0.86	70	84	32	2	32	2	45.7
Durango1-006	24	11	3.76	4.6	0.0338	5.6	0.0052	4.21	0.75	73	89	33	1	34	2	45.5
Durango1-007	23	12	3.93	7.3	0.0342	8.0	0.0052	6.11	0.76	86	123	33	2	34	3	39.1
Durango1-008	19	12	3.76	0.7	0.0331	6.1	0.0050	5.98	0.97	85	34	32	2	33	2	38.1
Durango1-009	19	12	3.76	0.7	0.0331	6.1	0.0050	5.98	0.97	85	34	32	2	33	2	38.1
Durango1-010	36	13	3.88	6.0	0.0330	7.7	0.0050	6.24	0.82	92	105	32	2	33	2	35.1
Durango1-011	36	13	3.88	6.0	0.0330	7.7	0.0050	6.24	0.82	92	105	32	2	33	2	35.1
Durango1-012	30	12	3.73	9.3	0.0309	8.9	0.0047	7.06	0.79	93	128	30	2	31	3	32.2
Durango1-013	20	12	3.72	8.8	0.0356	9.8	0.0054	7.90	0.81	109	137	34	3	36	3	31.5
Durango1-014	29	12	3.78	7.2	0.0339	6.6	0.0051	4.59	0.69	106	113	33	2	34	2	31.0
Durango1-015	24	13	3.80	5.7	0.0318	7.9	0.0048	6.68	0.85	104	97	31	2	32	2	29.6
Durango1-016	35	13	3.72	9.9	0.0347	6.7	0.0052	3.88	0.58	120	130	33	1	35	2	27.9
Durango1-017	32	13	3.70	8.2	0.0323	7.8	0.0048	5.99	0.77	120	118	31	2	32	2	26.0
Durango1-018	34	12	3.76	10.3	0.0334	7.0	0.0050	4.35	0.62	131	129	32	1	33	2	24.4
Durango1-019	29	11	3.78	6.2	0.0341	6.7	0.0051	4.88	0.73	134	109	33	2	34	2	24.3
Durango1-020	32	13	3.80	9.4	0.0347	7.4	0.0052	4.88	0.66	139	131	33	2	35	3	23.9
Durango1-021	31	12	3.82	8.1	0.0317	7.9	0.0047	6.00	0.76	130	122	30	2	32	2	23.5
Durango1-022	42	12	3.83	9.4	0.0356	7.3	0.0053	4.59	0.63	148	134	34	2	35	3	22.8
Durango1-023	34	11	3.82	10.9	0.0335	8.3	0.0050	6.04	0.73	140	134	32	2	33	3	22.8

Durango1-024	28	12	3.80	9.0	0.0335	6.5	0.0050	3.86	0.59	141	123	32	1	34	2	22.7
Durango1-025	30	12	3.61	8.4	0.0309	7.2	0.0046	4.94	0.69	133	123	30	1	31	2	22.2
Durango1-026	21	11	3.77	10.7	0.0321	8.2	0.0048	6.00	0.73	144	132	31	2	32	3	21.2
Durango1-027	46	11	3.84	9.6	0.0340	7.4	0.0050	4.97	0.67	152	127	32	2	34	2	21.2
Durango1-028	28	12	3.76	8.9	0.0347	7.0	0.0051	4.48	0.64	155	125	33	1	35	2	21.2
Durango1-029	29	13	3.75	10.0	0.0325	7.8	0.0048	5.45	0.70	147	131	31	4	32	4	21.0
Durango1-030	28	10	3.83	12.5	0.0346	8.6	0.0051	5.58	0.65	156	152	33	2	35	3	21.0
Durango1-031	31	12	3.72	8.9	0.0346	8.4	0.0051	6.45	0.77	161	125	33	2	35	3	20.3
Durango1-032	38	12	3.75	10.1	0.0356	7.9	0.0052	5.61	0.71	166	130	34	2	35	3	20.2
Durango1-033	27	12	3.71	10.0	0.0333	8.4	0.0049	6.36	0.75	159	129	32	2	33	3	19.8
Durango1-034	29	12	3.71	10.1	0.0324	7.2	0.0048	4.67	0.64	156	130	31	1	32	2	19.8
Durango1-035	36	12	3.68	9.0	0.0341	6.6	0.0050	4.06	0.61	164	122	32	1	34	2	19.7
Durango1-036	39	13	3.71	10.6	0.0342	7.1	0.0050	4.55	0.64	171	127	32	1	34	2	18.8
Durango1-037	17	10	3.66	10.7	0.0354	8.7	0.0052	5.76	0.66	178	153	33	2	35	3	18.7
Durango1-038	18	12	3.90	9.7	0.0326	9.0	0.0048	7.08	0.79	170	128	31	2	33	3	18.1
Durango1-039	36	11	3.80	9.5	0.0312	7.1	0.0046	4.82	0.68	164	120	30	1	31	2	18.0
Durango1-040	37	12	3.72	11.2	0.0348	7.9	0.0051	5.54	0.70	182	133	33	2	35	3	17.9
Durango1-041	24	11	3.66	10.8	0.0339	9.1	0.0050	6.68	0.73	178	144	32	2	34	3	17.9
Durango1-042	34	12	3.69	11.8	0.0364	8.3	0.0053	5.85	0.71	192	135	34	2	36	3	17.6
Durango1-043	32	12	3.81	8.0	0.0338	6.7	0.0049	4.69	0.70	180	113	32	1	34	2	17.6
Durango1-044	34	13	3.64	10.1	0.0368	7.5	0.0053	5.18	0.69	195	128	34	2	37	3	17.6
Durango1-045	30	12	3.69	12.6	0.0349	9.2	0.0051	7.02	0.76	188	139	33	2	35	3	17.4
Durango1-046	30	10	3.43	10.1	0.0338	6.9	0.0049	4.48	0.65	183	122	32	1	34	2	17.3
Durango1-047	34	13	3.74	9.5	0.0363	7.2	0.0053	4.99	0.69	197	121	34	2	36	3	17.2
Durango1-048	65	11	3.71	12.0	0.0342	9.6	0.0050	7.67	0.80	189	134	32	2	34	3	16.9
Durango1-049	71	12	3.90	15.0	0.0374	9.6	0.0054	7.18	0.75	208	149	35	2	37	4	16.7
Durango1-050	37	13	3.72	9.8	0.0360	6.7	0.0052	4.37	0.65	200	118	33	1	36	2	16.7
Durango1-051	33	13	3.76	10.9	0.0369	8.4	0.0053	6.26	0.74	209	131	34	2	37	3	16.4

Durango1-052	40	13	3.83	10.1	0.0359	7.7	0.0052	5.33	0.70	204	128	33	2	36	3	16.4
Durango1-053	32	11	3.33	11.5	0.0345	7.7	0.0050	5.14	0.67	197	133	32	2	34	3	16.3
Durango1-054	27	12	3.77	9.8	0.0357	8.1	0.0052	5.93	0.73	204	127	33	2	36	3	16.2
Durango1-055	40	12	3.74	11.9	0.0359	6.8	0.0052	3.55	0.53	206	133	33	1	36	2	16.2
Durango1-056	34	13	3.56	11.8	0.0336	9.2	0.0049	7.18	0.78	197	133	31	2	34	3	16.0
Durango1-057	37	12	3.76	11.8	0.0346	7.3	0.0050	4.49	0.62	204	134	32	1	35	2	15.8
Durango1-058	48	12	3.87	11.1	0.0364	6.8	0.0052	4.15	0.61	217	126	34	1	36	2	15.5
Durango1-059	35	12	3.71	11.3	0.0370	7.1	0.0053	4.21	0.60	221	131	34	1	37	3	15.5
Durango1-060	39	11	3.95	15.5	0.0326	10.0	0.0047	7.71	0.77	202	146	30	2	33	3	15.0
Durango1-061	35	12	3.76	11.5	0.0334	7.5	0.0048	4.63	0.62	208	136	31	1	33	2	14.9
Durango1-062	33	12	3.72	10.2	0.0331	7.4	0.0048	4.95	0.67	209	128	31	2	33	2	14.7
Durango1-063	40	12	3.74	11.1	0.0342	7.4	0.0049	5.05	0.69	216	124	32	2	34	2	14.7
Durango1-064	21	10	3.77	9.8	0.0351	7.5	0.0050	5.56	0.74	221	117	32	2	35	3	14.6
Durango1-065	42	12	3.74	11.9	0.0350	7.4	0.0050	4.61	0.62	222	133	32	1	35	3	14.5
Durango1-066	207	11	3.76	11.5	0.0341	6.6	0.0049	2.06	0.31	221	145	31	1	34	2	14.2
Durango1-067	40	12	3.65	11.8	0.0331	7.7	0.0048	5.08	0.66	217	133	31	2	33	3	14.1
Durango1-068	41	12	3.76	11.8	0.0349	7.6	0.0050	5.15	0.68	228	130	32	2	35	3	14.1
Durango1-069	38	13	3.79	10.7	0.0327	7.4	0.0047	4.93	0.66	216	129	30	1	33	2	14.0
Durango1-070	28	12	3.76	12.6	0.0367	7.9	0.0052	5.32	0.67	240	135	34	2	37	3	14.0
Durango1-071	33	12	3.76	9.2	0.0327	6.9	0.0047	4.67	0.68	217	117	30	1	33	2	14.0
Durango1-072	29	13	3.85	10.2	0.0343	7.2	0.0049	4.64	0.64	226	128	32	1	34	2	13.9
Durango1-073	43	13	3.81	11.7	0.0364	8.1	0.0052	5.66	0.70	239	133	33	2	36	3	13.9
Durango1-074	153	11	3.80	13.0	0.0356	7.8	0.0051	5.22	0.67	236	135	33	2	35	3	13.8
Durango1-075	153	11	3.80	13.0	0.0356	7.8	0.0051	5.22	0.67	236	135	33	2	35	3	13.8
Durango1-076	38	13	3.68	12.9	0.0366	7.7	0.0052	4.82	0.62	242	139	33	2	36	3	13.8
Durango1-077	37	13	3.81	12.2	0.0371	7.9	0.0053	5.30	0.67	246	134	34	2	37	3	13.8
Durango1-078	40	13	3.82	11.4	0.0357	7.3	0.0051	4.56	0.63	238	131	33	1	36	3	13.7
Durango1-079	37	11	3.74	12.0	0.0342	9.3	0.0049	7.21	0.78	229	136	31	2	34	3	13.7

Durango1-080	164	13	3.76	12.2	0.0337	8.0	0.0048	5.06	0.63	227	142	31	2	34	3	13.7
Durango1-081	164	13	3.76	12.2	0.0337	8.0	0.0048	5.06	0.63	227	142	31	2	34	3	13.7
Durango1-082	44	11	3.69	10.4	0.0328	7.0	0.0047	3.47	0.50	223	140	30	1	33	2	13.6
Durango1-083	41	12	3.69	11.8	0.0361	6.5	0.0051	3.45	0.53	246	128	33	1	36	2	13.4
Durango1-084	60	11	3.86	14.6	0.0344	8.8	0.0049	6.29	0.71	236	142	32	2	34	3	13.4
Durango1-085	24	11	3.63	10.8	0.0340	8.0	0.0048	5.63	0.70	238	132	31	2	34	3	13.1
Durango1-086	38	13	3.71	11.2	0.0337	8.4	0.0048	6.02	0.72	236	134	31	2	34	3	13.1
Durango1-087	48	12	3.81	12.8	0.0351	7.2	0.0050	4.20	0.59	247	134	32	1	35	2	13.0
Durango1-088	59	12	3.87	10.5	0.0354	7.7	0.0050	5.35	0.70	249	126	32	2	35	3	13.0
Durango1-089	59	12	3.87	10.5	0.0354	7.7	0.0050	5.35	0.70	249	126	32	2	35	3	13.0
Durango1-090	33	11	3.55	5.9	0.0357	5.0	0.0051	2.11	0.42	252	104	32	1	36	2	12.9
Durango1-091	22	12	3.93	10.5	0.0368	7.3	0.0052	3.82	0.53	260	142	33	1	37	3	12.8
Durango1-092	44	11	3.66	19.4	0.0357	9.8	0.0050	6.41	0.65	254	171	32	2	36	3	12.8
Durango1-093	36	12	3.77	11.9	0.0348	7.3	0.0049	4.31	0.59	248	135	32	1	35	2	12.8
Durango1-094	169	11	3.84	14.4	0.0370	8.8	0.0052	5.43	0.62	265	158	33	2	37	3	12.6
Durango1-095	169	11	3.84	14.4	0.0370	8.8	0.0052	5.43	0.62	265	158	33	2	37	3	12.6
Durango1-096	40	12	3.66	11.3	0.0347	7.5	0.0049	4.80	0.64	252	131	32	2	35	3	12.5
Durango1-097	51	12	3.72	12.3	0.0363	6.8	0.0051	3.75	0.55	263	129	33	1	36	2	12.5
Durango1-098	30	15	3.73	14.6	0.0341	9.3	0.0048	6.93	0.74	250	143	31	2	34	3	12.5
Durango1-099	33	12	3.80	11.6	0.0356	7.3	0.0050	4.60	0.63	260	129	32	1	35	3	12.4
Durango1-100	240	11	3.66	13.7	0.0353	6.3	0.0050	2.26	0.36	260	136	32	1	35	2	12.3
Durango1-101	47	11	3.89	12.8	0.0337	8.1	0.0048	5.70	0.70	252	133	31	2	34	3	12.2
Durango1-102	31	10	3.93	13.6	0.0316	8.7	0.0045	6.20	0.71	241	141	29	2	32	3	12.0
Durango1-103	67	12	3.86	14.6	0.0354	7.0	0.0050	3.85	0.55	268	134	32	1	35	2	12.0
Durango1-104	34	11	3.73	11.6	0.0333	8.9	0.0047	6.79	0.76	255	132	30	2	33	3	11.9
Durango1-105	46	12	3.84	12.7	0.0373	7.5	0.0052	4.68	0.62	286	134	33	2	37	3	11.7
Durango1-106	43	13	3.74	12.8	0.0398	7.8	0.0055	5.08	0.65	306	135	35	2	40	3	11.6
Durango1-107	46	12	3.83	12.8	0.0352	7.1	0.0049	4.34	0.61	275	130	32	1	35	2	11.5

Durango1-108	36	16	3.73	17.1	0.0372	9.6	0.0052	7.15	0.75	289	145	33	2	37	3	11.5
Durango1-109	35	12	3.76	11.9	0.0366	7.9	0.0051	5.95	0.75	286	120	33	2	37	3	11.5
Durango1-110	47	12	3.76	13.7	0.0366	7.6	0.0051	4.95	0.65	286	132	33	2	37	3	11.5
Durango1-111	28	12	3.78	11.3	0.0338	8.4	0.0048	6.33	0.75	267	127	31	2	34	3	11.5
Durango1-112	57	11	3.76	11.5	0.0359	6.6	0.0050	3.26	0.49	285	131	32	1	36	2	11.3
Durango1-113	84	12	3.75	15.0	0.0358	8.4	0.0050	5.74	0.69	285	139	32	2	36	3	11.3
Durango1-114	47	12	3.76	13.5	0.0367	7.6	0.0051	4.81	0.63	292	134	33	2	37	3	11.2
Durango1-115	28	11	3.76	11.8	0.0359	10.0	0.0050	8.12	0.81	289	132	32	3	36	4	11.1
Durango1-116	47	13	3.74	13.1	0.0346	7.9	0.0048	5.64	0.71	279	128	31	2	35	3	11.1
Durango1-117	34	13	3.77	12.6	0.0340	9.1	0.0048	6.95	0.76	276	134	31	2	34	3	11.1
Durango1-118	47	11	3.84	12.6	0.0333	8.0	0.0047	5.50	0.69	271	134	30	2	33	3	11.1
Durango1-119	46	12	3.92	13.1	0.0330	7.6	0.0046	4.72	0.62	269	135	30	1	33	2	11.1
Durango1-120	43	12	3.81	13.4	0.0360	7.4	0.0050	4.41	0.60	292	135	32	1	36	3	11.0
Durango1-121	41	12	3.76	11.9	0.0351	7.5	0.0049	5.20	0.69	286	124	31	2	35	3	11.0
Durango1-122	50	13	3.74	13.6	0.0344	7.4	0.0048	4.67	0.63	281	131	31	1	34	2	11.0
Durango1-123	38	12	3.67	11.8	0.0370	6.9	0.0051	3.82	0.55	301	131	33	1	37	3	11.0
Durango1-124	42	10	3.94	20.3	0.0383	9.2	0.0053	5.97	0.65	312	161	34	2	38	3	10.9
Durango1-125	35	12	3.74	12.4	0.0346	7.2	0.0048	4.41	0.61	292	131	31	3	35	3	10.6
Durango1-126	26	16	3.65	12.2	0.0360	8.0	0.0050	5.43	0.68	303	134	32	2	36	3	10.5
Durango1-127	42	13	3.95	14.7	0.0363	8.0	0.0050	5.08	0.64	309	140	32	2	36	3	10.4
Durango1-128	93	12	3.75	16.3	0.0368	8.8	0.0051	6.05	0.69	313	145	33	2	37	3	10.4
Durango1-129	47	12	3.73	13.1	0.0338	7.9	0.0047	5.45	0.69	292	132	30	2	34	3	10.4
Durango1-130	54	11	3.54	9.0	0.0356	7.5	0.0049	5.26	0.71	306	121	32	2	35	3	10.3
Durango1-131	25	10	3.70	12.4	0.0332	9.5	0.0046	7.54	0.80	290	131	30	2	33	3	10.2
Durango1-132	32	11	3.37	14.0	0.0348	8.1	0.0048	5.61	0.69	304	135	31	2	35	3	10.2
Durango1-133	50	11	3.81	13.0	0.0342	6.7	0.0047	3.95	0.59	299	125	30	1	34	2	10.2
Durango1-134	60	12	3.77	8.7	0.0347	6.5	0.0048	3.67	0.56	305	123	31	1	35	2	10.1
Durango1-135	94	12	3.75	15.0	0.0374	9.7	0.0051	7.83	0.81	329	130	33	3	37	4	10.0

Durango1-136	40	14	3.74	15.1	0.0357	7.6	0.0049	4.34	0.57	316	143	32	1	36	3	10.0
Durango1-137	63	11	3.72	14.4	0.0347	7.8	0.0048	4.38	0.56	310	147	31	1	35	3	9.9
Durango1-138	98	12	3.75	16.3	0.0348	9.6	0.0048	7.37	0.77	314	140	31	2	35	3	9.8
Durango1-139	80	12	3.80	16.4	0.0363	7.2	0.0050	4.04	0.56	328	134	32	1	36	3	9.7
Durango1-140	48	12	3.71	15.2	0.0372	7.4	0.0051	4.10	0.55	335	140	33	1	37	3	9.7
Durango1-141	141	10	3.76	15.4	0.0333	7.8	0.0046	4.80	0.62	305	139	30	1	33	3	9.7
Durango1-142	68	11	3.80	14.1	0.0370	7.7	0.0050	5.12	0.67	334	129	32	2	37	3	9.7
Durango1-143	88	11	3.73	16.3	0.0365	8.2	0.0050	5.67	0.69	331	135	32	2	36	3	9.7
Durango1-144	24	13	3.75	15.6	0.0334	9.9	0.0046	7.62	0.77	306	145	30	2	33	3	9.7
Durango1-145	44	12	3.73	14.0	0.0364	7.8	0.0050	5.13	0.66	334	132	32	2	36	3	9.6
Durango1-146	30	11	3.66	13.5	0.0342	9.9	0.0047	8.04	0.81	319	133	30	2	34	3	9.5
Durango1-147	86	12	3.78	16.5	0.0362	8.3	0.0049	5.59	0.67	336	140	32	2	36	3	9.4
Durango1-148	35	12	3.69	12.8	0.0324	8.5	0.0045	6.36	0.75	308	127	29	2	32	3	9.3
Durango1-149	90	12	3.77	17.6	0.0358	8.8	0.0049	6.00	0.68	340	145	31	2	36	3	9.2
Durango1-150	56	11	3.66	15.0	0.0356	7.4	0.0049	4.34	0.59	339	135	31	1	36	3	9.2
Durango1-151	90	12	3.72	15.5	0.0342	8.1	0.0047	5.72	0.71	331	130	30	2	34	3	9.1
Durango1-152	82	11	3.85	18.2	0.0363	7.5	0.0049	3.97	0.53	353	144	32	1	36	3	9.0
Durango1-153	107	10	3.53	19.5	0.0338	9.9	0.0046	7.11	0.72	333	155	30	2	34	3	8.9
Durango1-154	100	12	3.76	17.7	0.0368	10.0	0.0050	7.77	0.78	365	141	32	2	37	4	8.7
Durango1-155	44	13	3.80	16.7	0.0353	9.5	0.0048	7.51	0.79	359	132	31	2	35	3	8.6
Durango1-156	27	11	3.65	17.5	0.0356	9.4	0.0048	6.46	0.69	361	154	31	2	35	3	8.5
Durango1-157	188	12	3.76	17.8	0.0366	8.2	0.0049	5.45	0.66	370	138	32	2	36	3	8.5
Durango1-158	103	13	3.73	16.9	0.0359	9.8	0.0048	7.67	0.78	367	138	31	2	36	3	8.5
Durango1-159	53	11	3.81	20.8	0.0375	8.8	0.0050	5.60	0.64	382	153	32	2	37	3	8.4
Durango1-160	97	12	3.78	17.8	0.0351	8.5	0.0047	5.79	0.68	361	140	30	2	35	3	8.4
Durango1-161	71	10	3.87	18.6	0.0377	7.7	0.0050	4.40	0.57	387	143	32	1	38	3	8.4
Durango1-162	32	16	3.85	15.1	0.0352	8.7	0.0047	6.15	0.71	370	139	30	2	35	3	8.2
Durango1-163	83	11	3.71	15.6	0.0349	9.7	0.0047	7.49	0.77	368	138	30	2	35	3	8.2

Durango 1-164	/18	11	4.00	18.6	0.0368	79	0.00/19	1 74	0.60	386	1/13	32	1	37	3	82
Durango 1 165	-10 63	12	2.99	14.0	0.0367	83	0.0049	5.06	0.00	386	120	32	2	37	3	8.2 8.2
Durango1-105	05	12	2.00	14.7	0.0307	0.5	0.0049	1.50	0.72	202	130	22	1	27	2	0.2
Durango1-166	80	12	3.74	16.2	0.0373	7.0	0.0050	4.55	0.60	392	130	32 20	1	57	3	8.1
Durango1-16/	32	11	3.79	15.4	0.0353	8.5	0.0047	6.03	0.71	3/5	136	30	2	35	3	8.1
Durango 1-168	102	12	3.72	18.3	0.0353	9.8	0.0047	7.50	0.77	377	141	30	2	35	3	8.1
Durango1-169	57	11	3.76	26.8	0.0366	10.4	0.0049	6.93	0.67	390	173	31	2	36	4	8.0
Durango1-170	53	14	3.69	10.6	0.0369	7.5	0.0049	5.49	0.74	394	114	32	2	37	3	8.0
Durango1-171	101	12	3.71	18.1	0.0352	9.8	0.0047	7.38	0.75	379	146	30	2	35	3	8.0
Durango1-172	216	12	3.75	20.2	0.0389	7.9	0.0051	4.83	0.61	416	139	33	2	39	3	7.9
Durango1-173	106	13	3.74	18.3	0.0354	9.8	0.0047	7.50	0.77	385	141	30	2	35	3	7.9
Durango1-174	100	13	3.81	20.8	0.0353	7.8	0.0047	4.46	0.57	387	145	30	1	35	3	7.8
Durango1-175	50	11	3.65	16.4	0.0357	9.8	0.0047	7.80	0.80	392	132	31	2	36	3	7.8
Durango1-176	169	11	3.77	17.3	0.0349	7.8	0.0047	4.71	0.60	387	140	30	1	35	3	7.7
Durango1-177	96	12	3.83	19.6	0.0344	8.7	0.0046	5.82	0.67	383	144	30	2	34	3	7.7
Durango1-178	60	12	3.76	17.3	0.0355	7.9	0.0047	4.93	0.63	396	138	30	1	35	3	7.7
Durango1-179	99	11	3.72	19.5	0.0366	10.0	0.0048	7.66	0.77	407	143	31	2	37	4	7.6
Durango1-180	38	9	3.78	14.9	0.0343	9.1	0.0046	6.73	0.74	389	137	29	2	34	3	7.6
Durango1-181	185	11	3.82	18.1	0.0358	7.7	0.0047	4.66	0.60	404	139	30	1	36	3	7.6
Durango1-182	26	12	3.76	16.1	0.0373	8.3	0.0049	5.90	0.71	420	132	32	2	37	3	7.5
Durango1-183	178	12	3.79	18.1	0.0351	7.8	0.0047	4.66	0.60	399	140	30	1	35	3	7.5
Durango1-184	189	12	3.81	18.8	0.0360	7.8	0.0047	4.49	0.57	414	144	31	1	36	3	7.4
Durango1-185	58	14	3.82	12.7	0.0368	8.1	0.0048	5.54	0.69	424	131	31	2	37	3	7.3
Durango1-186	44	13	3.72	19.8	0.0357	9.2	0.0047	6.70	0.73	415	140	30	2	36	3	7.3
Durango1-187	103	12	3.77	18.3	0.0340	9.9	0.0045	7.69	0.78	401	140	29	2	34	3	7.2
Durango1-188	49	11	3.97	19.2	0.0359	8.9	0.0047	6.28	0.70	425	142	30	2	36	3	7.1
Durango1-189	150	10	3.74	17.4	0.0339	8.0	0.0045	5.08	0.63	405	139	29	1	34	3	7.1

Durango1-190	335	12	3.75	17.8	0.0350	6.7	0.0046	2.47	0.37	424	140	30	1	35	2	7.0
Durango1-191	34	11	3.60	14.6	0.0357	8.9	0.0047	6.75	0.76	434	129	30	2	36	3	6.9
Durango1-192	212	12	3.77	20.8	0.0367	8.1	0.0047	4.64	0.58	462	146	30	1	37	3	6.6
Durango1-193	382	12	3.77	18.9	0.0372	6.8	0.0047	2.50	0.37	507	138	30	1	37	2	6.0
MÉDIA	41	12	3.76	12.39	0.0351		0.0049		0.68	255		32		35		12.5
SD					0.0016		0.0002			97		1		2		
% RSD					4.6		4.1			38.2		4.1		4.5		

					Resulta	dos LA	-MC-ICP-MS	- Apati	ita Dura	ngo (Alíquot	a 2)					
D	ep.Geol	ogia, UF	OP			Dado	os para o plot					Idades	5			
Identificação	²⁰⁷ Pb (cps)	U (ppm)	Th/U	²⁰⁶ Pb _C (%)	²⁰⁷ Pb/ ²³⁵ U	2s %	²⁰⁶ Pb/ ²³⁸ U	2s %	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s abs	²⁰⁶ Pb/ ²³⁸ U	2s abs	²⁰⁷ Pb/ ²³⁵ U	2s abs	% conc
Durango2-001	17	10	3.61	8.8	0.0331	9.27	0.0050	7.53	0.81	107	128	32	2	33	3	29.8
Durango2-002	123	8	4.01	10.4	0.0344	6.14	0.0051	2.46	0.40	127	132	33	1	34	2	26.0
Durango2-003	29	11	3.80	12.2	0.0334	8.91	0.0049	6.65	0.75	185	138	31	2	33	3	16.9
Durango2-004	24	5	3.90	14.3	0.0365	9.08	0.0053	6.88	0.76	204	137	34	2	36	3	16.6
Durango2-005	25	11	3.82	11.6	0.0345	8.08	0.0050	5.68	0.70	205	133	32	2	34	3	15.6
Durango2-006	46	7	4.22	14.0	0.0350	8.62	0.0050	6.16	0.72	218	139	32	2	35	3	14.9
Durango2-007	34	9	3.90	13.2	0.0343	8.55	0.0049	6.40	0.75	227	131	32	2	34	3	13.9
Durango2-008	29	9	3.54	14.7	0.0335	9.11	0.0047	6.77	0.74	258	140	30	2	34	3	11.8
Durango2-009	28	8	3.77	14.8	0.0382	8.38	0.0053	5.70	0.68	290	140	34	2	38	3	11.8
Durango2-010	37	6	4.02	13.5	0.0366	8.71	0.0050	6.24	0.72	318	138	32	2	36	3	10.2
Durango2-011	46	8	4.18	15.0	0.0352	7.98	0.0048	5.10	0.64	314	140	31	2	35	3	9.9
Durango2-012	36	10	3.78	16.0	0.0363	9.03	0.0050	6.36	0.70	324	146	32	2	36	3	9.9
Durango2-013	57	8	4.19	16.3	0.0368	9.09	0.0050	6.78	0.75	335	137	32	2	37	3	9.6
Durango2-014	43	6	4.00	15.2	0.0382	8.88	0.0052	6.40	0.72	347	139	33	2	38	3	9.6
Durango2-015	54	8	4.07	16.5	0.0379	9.26	0.0051	7.18	0.78	359	132	33	2	38	3	9.2
Durango2-016	45	9	3.94	17.4	0.0381	8.78	0.0051	6.39	0.73	371	136	33	2	38	3	8.9
Durango2-017	149	7	3.89	17.4	0.0403	8.27	0.0054	5.63	0.68	399	136	34	2	40	3	8.6
Durango2-018	149	7	3.89	17.4	0.0403	8.27	0.0054	5.63	0.68	399	136	34	2	40	3	8.6
Durango2-019	139	7	3.95	17.6	0.0375	8.38	0.0050	5.59	0.67	378	140	32	2	37	3	8.5
Durango2-020	139	7	3.95	17.6	0.0375	8.38	0.0050	5.59	0.67	378	140	32	2	37	3	8.5
Durango2-021	39	9	3.91	16.2	0.0375	8.77	0.0050	6.09	0.69	384	142	32	2	37	3	8.4
Durango2-022	58	8	4.17	18.7	0.0371	8.97	0.0050	6.06	0.68	383	149	32	2	37	3	8.3
Durango2-023	69	8	4.15	18.7	0.0392	8.27	0.0052	5.39	0.65	419	140	33	2	39	3	7.9
Durango2-024	61	9	4.12	18.7	0.0362	7.78	0.0048	4.31	0.55	395	145	31	1	36	3	7.8

Durango2-025	32	14	3.70	16.8	0.0409	9.80	0.0053	7.56	0.77	443	139	34	3	41	4	7.7	l
Durango2-026	65	8	4.23	19.8	0.0380	8.47	0.0050	5.50	0.65	423	144	32	2	38	3	7.6	
Durango2-027	89	8	4.05	22.1	0.0415	9.50	0.0054	6.90	0.73	456	145	34	2	41	4	7.6	
Durango2-028	29	14	3 56	16.5	0.0381	9.42	0.0050	7.00	0.74	437	140	32	2	38	4	73	
Durango2-029	37	8	4.00	16.3	0.0390	8.82	0.0051	6.51	0.74	447	132	33	2	39	3	73	
Durango2-030	11 11	7	3.70	20.7	0.0370	9.62	0.0053	7.21	0.74	/81	1/1	34	2	41	1	7.5	
Durango2 031	54	, 10	3.08	20.7	0.0417	0.11	0.0053	6.15	0.75	401	1/18	34	2	41	-	7.1 6.0	
Durango2-031	00	0	1.02	25.0	0.0412	0.19	0.0032	6.59	0.00	491	140	21	2	27	-	6.9	
Durango2-032	90 50	9	4.05	21.0	0.0300	9.10	0.0040	0.30	0.72	447 502	142	24	2	37	5	0.0	
Durango2-033	58	9	3.97	22.3	0.0421	8.85	0.0055	0.04	0.68	505	142	54	2	42	4	0.8	I
Durango2-034	48	11	4.03	22.0	0.0421	8.63	0.0053	5.34	0.62	508	149	34	2	42	4	6.7	Į
Durango2-035	49	6	4.06	17.6	0.0387	8.30	0.0050	5.85	0.70	477	130	32	2	39	3	6.7	ļ
Durango2-036	144	6	3.86	20.2	0.0380	8.72	0.0049	5.87	0.67	470	143	31	2	38	3	6.7	I
Durango2-037	144	6	3.86	20.2	0.0380	8.72	0.0049	5.87	0.67	470	143	31	2	38	3	6.7	I
Durango2-038	152	8	3.89	21.9	0.0394	8.41	0.0050	5.35	0.64	506	143	32	2	39	3	6.3	
Durango2-039	153	7	3.93	23.5	0.0380	8.47	0.0048	5.30	0.63	498	146	31	2	38	3	6.2	
Durango2-040	76	9	4.11	20.8	0.0386	8.73	0.0049	5.91	0.68	506	141	31	2	38	3	6.2	
Durango2-041	99	9	3.95	24.4	0.0402	8.97	0.0050	6.18	0.69	531	143	32	2	40	4	6.1	
Durango2-042	98	9	3.85	24.3	0.0430	9.56	0.0053	7.11	0.74	563	139	34	2	43	4	6.0	
Durango2-043	100	9	3.96	23.8	0.0401	9.10	0.0050	6.46	0.71	542	140	32	2	40	4	5.9	
Durango2-044	168	7	3.97	23.3	0.0389	8.28	0.0048	5.26	0.63	541	140	31	2	39	3	5.7	
Durango2-045	97	8	4.05	25.0	0.0399	9.15	0.0049	6.33	0.69	554	144	32	2	40	4	5.7	
MÉDIA	57	8	3.95	17.59	0.0380		0.0050		0.69	399		32		38		7.9	
SD					0.0025		0.0002			118		1		2			l
% RSD					6.5		3.6			29.5		3.6		6.3			

					Resultados	LA-MO	C-ICP-MS - A	patita N	Aadaga	scar (Alíquot	a 1)					
Dep	o.Geolog	gia, UFOI	2			Dado	os para o plot					Idade	8			
Identificação	²⁰⁷ Pb (cps)	U (ppm)	Th/U	²⁰⁶ Pb _C (%)	²⁰⁷ Pb/ ²³⁵ U	2s %	²⁰⁶ Pb/ ²³⁸ U	2s %	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s abs	²⁰⁶ Pb/ ²³⁸ U	2s abs	²⁰⁷ Pb/ ²³⁵ U	2s abs	% conc
Madagascar1-001	494	26	4.93	3.6	0.5904	3.90	0.0761	1.29	0.33	462	82	473	6	471	15	102.5
Madagascar1-002	670	68	4.30	1.9	0.5865	2.71	0.0757	0.85	0.31	460	57	470	4	469	10	102.2
Madagascar1-003	498	29	4.81	3.5	0.5984	3.82	0.0769	1.42	0.37	469	79	478	7	476	15	101.9
Madagascar1-004	636	31	4.86	4.6	0.5891	4.29	0.0759	1.23	0.29	463	91	472	6	470	16	101.8
Madagascar1-005	590	38	4.82	3.2	0.5963	3.55	0.0767	1.09	0.31	468	75	476	5	475	14	101.7
Madagascar1-006	678	28	5.04	5.1	0.5995	4.61	0.0770	1.07	0.23	470	99	478	5	477	18	101.7
Madagascar1-007	610	32	4.99	4.1	0.6006	3.92	0.0771	1.17	0.30	471	83	479	5	478	15	101.7
Madagascar1-008	617	34	4.80	3.4	0.6000	3.59	0.0771	1.03	0.29	471	76	479	5	477	14	101.7
Madagascar1-009	588	31	5.06	4.5	0.5946	4.18	0.0765	1.23	0.29	467	88	475	6	474	16	101.7
Madagascar1-010	601	38	4.74	3.0	0.6001	3.47	0.0771	1.17	0.34	471	72	479	5	477	13	101.6
Madagascar1-011	753	30	4.89	4.9	0.5912	4.54	0.0761	1.49	0.33	466	95	473	7	472	17	101.5
Madagascar1-012	545	37	4.71	2.7	0.6001	3.42	0.0771	1.22	0.36	471	71	478	6	477	13	101.5
Madagascar1-013	618	30	4.91	4.3	0.5903	4.86	0.0760	1.08	0.22	466	105	472	5	471	18	101.4
Madagascar1-014	563	35	4.81	3.3	0.5945	3.80	0.0764	1.30	0.34	469	79	475	6	474	14	101.3
Madagascar1-015	1823	22	5.11	1.6	0.5970	2.22	0.0767	0.77	0.35	470	46	476	4	475	8	101.3
Madagascar1-016	3179	22	5.06	4.9	0.5899	4.10	0.0759	0.62	0.15	466	90	472	3	471	16	101.2
Madagascar1-017	1927	22	5.15	1.6	0.5882	2.30	0.0757	0.92	0.40	465	47	471	4	470	9	101.2
Madagascar1-018	2011	23	5.04	1.7	0.5982	2.30	0.0768	0.72	0.31	472	48	477	3	476	9	101.1
Madagascar1-019	1784	20	5.16	1.7	0.5994	2.41	0.0769	0.77	0.32	473	51	478	4	477	9	100.9
Madagascar1-020	3188	21	5.19	5.3	0.5912	4.34	0.0760	0.73	0.17	468	95	472	3	472	17	100.9
Madagascar1-021	931	30	5.05	3.6	0.5923	3.06	0.0761	0.74	0.24	469	66	473	3	472	12	100.9
Madagascar1-022	1813	21	5.16	1.7	0.5884	2.30	0.0757	0.80	0.35	467	48	470	4	470	9	100.7
Madagascar1-023	607	21	4.98	5.4	0.6012	4.85	0.0771	1.53	0.32	475	102	479	7	478	19	100.7

																-	
Madagascar1-024	534	30	4.77	3.1	0.5954	3.49	0.0764	1.09	0.31	472	73	475	5	474	13	100.7	l
Madagascar1-025	743	24	4.93	5.3	0.5916	4.50	0.0760	1.13	0.25	470	96	472	5	472	17	100.5	
Madagascar1-026	517	31	4.88	3.7	0.5991	4.15	0.0768	1.32	0.32	475	87	477	6	477	16	100.4	
Madagascar1-027	744	30	4.96	4.7	0.5919	4.21	0.0760	1.27	0.30	470	89	472	6	472	16	100.4	
Madagascar1-028	508	34	4.68	3.0	0.5941	3.54	0.0763	1.30	0.37	472	73	474	6	473	14	100.4	
Madagascar1-029	774	73	4.27	2.2	0.5946	2.95	0.0763	0.96	0.33	473	62	474	4	474	11	100.3	
Madagascar1-030	1862	21	5.08	1.7	0.5949	2.35	0.0763	0.78	0.33	473	49	474	4	474	9	100.2	
Madagascar1-031	1904	21	5.15	1.8	0.5871	2.39	0.0755	0.79	0.33	468	50	469	4	469	9	100.2	
Madagascar1-032	729	22	4.96	4.2	0.5916	4.05	0.0760	1.36	0.34	471	84	472	6	472	15	100.2	
Madagascar1-033	601	35	4.53	2.9	0.5902	3.25	0.0758	0.89	0.27	470	69	471	4	471	12	100.2	
Madagascar1-034	552	30	4.72	3.4	0.5986	3.73	0.0767	1.24	0.33	476	78	476	6	476	14	100.1	
Madagascar1-035	512	35	4.68	3.0	0.5955	3.61	0.0764	1.10	0.31	474	76	474	5	474	14	100.1	
Madagascar1-036	517	33	4.73	3.4	0.5886	4.13	0.0756	1.91	0.46	470	81	470	9	470	16	100.1	
Madagascar1-037	732	65	4.33	2.9	0.5943	3.27	0.0762	0.81	0.25	473	70	474	4	474	12	100.0	
Madagascar1-038	3078	20	5.11	5.1	0.5914	4.21	0.0759	0.72	0.17	472	92	472	3	472	16	99.9	
Madagascar1-039	894	29	4.99	3.0	0.5990	2.82	0.0767	0.85	0.30	477	59	476	4	477	11	99.9	
Madagascar1-040	644	40	4.76	3.2	0.5960	3.48	0.0764	0.99	0.29	475	74	475	5	475	13	99.9	
Madagascar1-041	559	32	4.82	3.4	0.5949	3.66	0.0762	0.94	0.26	476	78	474	4	474	14	99.6	
Madagascar1-042	529	30	4.76	3.2	0.5907	3.61	0.0758	1.26	0.35	473	75	471	6	471	14	99.5	
Madagascar1-043	1930	22	5.17	1.4	0.6014	2.00	0.0769	0.74	0.37	480	41	478	3	478	8	99.5	
Madagascar1-044	653	32	4.78	3.0	0.5994	3.41	0.0767	0.93	0.27	479	72	476	4	477	13	99.5	
Madagascar1-045	544	31	4.74	3.2	0.5897	3.62	0.0757	1.38	0.38	473	74	470	6	471	14	99.5	
Madagascar1-046	574	20	4.97	5.0	0.6005	4.85	0.0768	0.93	0.19	480	105	477	4	478	19	99.5	
Madagascar1-047	794	30	5.02	5.3	0.5991	4.45	0.0767	1.09	0.25	479	95	476	5	477	17	99.4	
Madagascar1-048	880	30	4.84	2.1	0.6006	2.93	0.0768	0.86	0.29	480	62	477	4	478	11	99.3	
Madagascar1-049	709	29	5.06	4.6	0.5933	4.07	0.0760	1.20	0.29	476	86	472	5	473	16	99.3	
Madagascar1-050	1885	21	5.11	1.8	0.5989	2.41	0.0766	0.80	0.33	480	50	476	4	477	9	99.3	
Madagascar1-051	588	31	4.99	4.4	0.6029	4.22	0.0770	1.27	0.30	482	89	478	6	479	16	99.2	ļ

M 1 1.052	500	20	4 77	2.2	0 0000	0.70	0.0700	4 05	0.00	400	70	477		477	4.4	
Madagascar1-052	563	36	4.77	3.2	0.6002	3.70	0.0768	1.35	0.36	480	76	477	6	477	14	99.2
Madagascar1-053	2000	22	5.12	1.8	0.6028	2.43	0.0770	0.75	0.31	482	51	478	3	479	9	99.2
Madagascar1-054	604	33	4.77	3.0	0.5934	3.43	0.0760	1.10	0.32	477	72	472	5	473	13	99.1
Madagascar1-055	756	20	5.01	4.6	0.5897	4.00	0.0756	1.09	0.27	474	85	470	5	471	15	99.1
Madagascar1-056	605	31	5.01	4.4	0.5946	4.22	0.0761	1.33	0.32	477	89	473	6	474	16	99.1
Madagascar1-057	646	34	4.94	5.0	0.6015	4.47	0.0768	1.01	0.23	483	96	477	5	478	17	98.8
Madagascar1-058	769	21	5.16	4.6	0.5934	4.16	0.0760	1.01	0.24	478	89	472	5	473	16	98.8
Madagascar1-059	795	76	4.23	2.1	0.6001	2.72	0.0766	0.79	0.29	483	58	476	4	477	10	98.5
Madagascar1-060	542	33	4.91	3.4	0.5971	3.70	0.0763	1.07	0.29	482	78	474	5	475	14	98.3
Madagascar1-061	524	32	4.84	3.7	0.5933	4.13	0.0759	1.87	0.45	480	81	471	9	473	16	98.2
Madagascar1-062	579	34	4.94	3.9	0.5965	4.07	0.0762	1.46	0.36	483	84	473	7	475	16	98.1
Madagascar1-063	627	36	4.81	3.8	0.5899	3.82	0.0755	1.06	0.28	479	81	469	5	471	14	98.1
Madagascar1-064	392	20	4.84	4.4	0.5935	4.62	0.0759	1.75	0.38	481	94	471	8	473	18	97.9
Madagascar1-065	579	32	4.65	3.5	0.5924	3.56	0.0757	1.14	0.32	481	74	471	5	472	14	97.9
Madagascar1-066	606	36	4.81	3.6	0.6008	3.71	0.0766	1.11	0.30	486	78	476	5	478	14	97.8
Madagascar1-067	724	33	4.69	3.5	0.6037	3.62	0.0769	0.83	0.23	489	78	478	4	480	14	97.8
Madagascar1-068	787	20	5.11	5.1	0.5977	4.34	0.0763	1.28	0.29	485	92	474	6	476	17	97.7
Madagascar1-069	760	21	5.08	6.7	0.6055	5.14	0.0771	1.39	0.27	490	109	479	6	481	20	97.7
Madagascar1-070	575	34	4.80	3.8	0.6009	4.11	0.0766	1.74	0.42	488	82	476	8	478	16	97.6
MÉDIA	640	30	4.91	3.5	0.5951		0.0763		0.31	473		474		474		100.1
SD					0.0046		0.0005			7		3		3		
% RSD					0.8		0.6			1.4		0.6		0.6		

					Resultados	LA-MO	/ladaga	scar (Alíquot	a 2)							
Dep	o.Geolog	gia, UFOI	P			Dado	os para o plot					Idade	8			
Identificação	²⁰⁷ Pb (cps)	U (ppm)	Th/U	²⁰⁶ Pb _C (%)	²⁰⁷ Pb/ ²³⁵ U	2s %	²⁰⁶ Pb/ ²³⁸ U	2s %	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s abs	²⁰⁶ Pb/ ²³⁸ U	2s abs	²⁰⁷ Pb/ ²³⁵ U	2s abs	% conc
Madagascar2-001	1462	74	4.15	2.0	0.5905	2.64	0.0765	0.82	0.31	451	56	475	4	471	10	105.3
Madagascar2-002	1462	74	4.15	2.0	0.5905	2.64	0.0765	0.82	0.31	451	56	475	4	471	10	105.3
Madagascar2-003	403	53	3.67	2.0	0.5838	3.66	0.0756	1.89	0.52	452	70	470	9	467	14	104.1
Madagascar2-004	1385	68	4.07	2.0	0.5886	2.68	0.0761	0.72	0.27	455	57	473	3	470	10	103.9
Madagascar2-005	1385	68	4.07	2.0	0.5886	2.68	0.0761	0.72	0.27	455	57	473	3	470	10	103.9
Madagascar2-006	1489	68	4.16	2.7	0.5986	3.20	0.0771	0.88	0.27	464	68	479	4	476	12	103.1
Madagascar2-007	1489	68	4.16	2.7	0.5986	3.20	0.0771	0.88	0.27	464	68	479	4	476	12	103.1
Madagascar2-008	429	48	3.76	2.9	0.5869	3.84	0.0758	1.40	0.37	458	79	471	6	469	15	102.9
Madagascar2-009	1114	56	4.29	2.6	0.5835	3.21	0.0754	1.03	0.32	457	67	469	5	467	12	102.6
Madagascar2-010	1114	56	4.29	2.6	0.5835	3.21	0.0754	1.03	0.32	457	67	469	5	467	12	102.6
Madagascar2-011	667	42	4.75	4.3	0.5990	4.06	0.0770	1.35	0.33	469	85	478	6	477	16	101.9
Madagascar2-012	1386	69	4.25	2.4	0.5855	3.02	0.0755	0.83	0.27	461	64	469	4	468	11	101.9
Madagascar2-013	1386	69	4.25	2.4	0.5855	3.02	0.0755	0.83	0.27	461	64	469	4	468	11	101.9
Madagascar2-014	646	39	4.79	4.9	0.5913	4.21	0.0761	1.22	0.29	466	89	473	6	472	16	101.4
Madagascar2-015	1479	68	4.39	2.4	0.5864	2.99	0.0756	0.78	0.26	464	64	470	4	469	11	101.3
Madagascar2-016	1479	68	4.39	2.4	0.5864	2.99	0.0756	0.78	0.26	464	64	470	4	469	11	101.3
Madagascar2-017	665	39	4.84	5.3	0.5954	5.01	0.0765	2.46	0.49	470	97	475	11	474	19	101.1
Madagascar2-018	648	40	4.76	5.0	0.5931	4.29	0.0762	1.11	0.26	469	92	474	5	473	16	101.0
Madagascar2-019	1506	67	4.24	3.2	0.5927	3.68	0.0761	0.78	0.21	473	80	473	4	473	14	99.9
Madagascar2-020	1506	67	4.24	3.2	0.5927	3.68	0.0761	0.78	0.21	473	80	473	4	473	14	99.9
Madagascar2-021	655	40	4.81	4.9	0.5912	4.32	0.0758	1.26	0.29	474	91	471	6	472	16	99.3
Madagascar2-022	688	40	4.80	5.2	0.6053	4.40	0.0772	1.11	0.25	487	94	479	5	481	17	98.4
Madagascar2-023	721	41	4.81	5.5	0.5972	4.52	0.0763	1.29	0.28	482	96	474	6	475	17	98.4

Madagascar2-024	719	41	4.79	5.4	0.5962	4.46	0.0761	1.30	0.29	485	94	473	6	475	17	97.6
Madagascar2-025	606	71	4.30	1.7	0.5925	2.56	0.0757	0.82	0.32	482	54	470	4	472	10	97.5
Madagascar2-026	696	40	4.78	5.3	0.5981	4.38	0.0762	1.00	0.23	488	94	474	5	476	17	97.1
Madagascar2-027	602	78	4.36	2.1	0.5992	3.07	0.0762	1.62	0.53	492	57	474	7	477	12	96.3
Madagascar2-028	634	68	4.43	2.2	0.5937	2.95	0.0756	1.01	0.34	489	61	470	5	473	11	96.2
Madagascar2-029	702	40	4.68	5.2	0.6061	4.29	0.0769	1.00	0.23	497	92	478	5	481	17	96.0
Madagascar2-030	717	40	4.77	5.4	0.5990	4.40	0.0760	1.18	0.27	497	93	472	5	477	17	94.9
MÉDIA	720	62	4.33	2.65	0.5926		0.0761		0.28	468		473		473		101.3
SD					0.0062		0.0005			14		3		4		
% RSD					1.0		0.7			3.0		0.7		0.8		

]	Resultados L	A-MC-	ICP-MS - Apa	atita Mo	Clure N	/Iountain (Alí	quota 1	l)				
D	ep.Geol	ogia, UFO	OP			Dado	os para o plot					Idade	s			
Identificação	²⁰⁷ Pb (cps)	U (ppm)	Th/U	²⁰⁶ PbC (%)	²⁰⁷ Pb/ ²³⁵ U	2s %	²⁰⁶ Pb/ ²³⁸ U	2s %	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s abs	²⁰⁶ Pb/ ²³⁸ U	2s abs	²⁰⁷ Pb/ ²³⁵ U	2s abs	% conc
McClure1-001	553	20	0.47	9.4	0.6776	6.28	0.0853	1.90	0.30	516	131	528	10	525	26	102.3
McClure1-002	1199	94	0.31	0.9	0.6841	1.73	0.0858	0.88	0.51	522	33	531	5	529	7	101.7
McClure1-003	632	37	0.48	4.6	0.6649	4.43	0.0839	1.31	0.30	511	93	519	7	518	18	101.7
McClure1-004	1027	77	0.64	1.2	0.6703	2.17	0.0844	1.14	0.52	515	41	522	6	521	9	101.5
McClure1-005	1100	81	0.43	1.3	0.6874	2.27	0.0860	1.12	0.49	528	43	532	6	531	9	100.8
McClure1-006	806	24	0.61	7.4	0.6773	5.39	0.0849	1.26	0.23	525	115	525	6	525	22	100.0
McClure1-007	680	23	0.64	5.5	0.6849	4.90	0.0855	1.56	0.32	534	102	529	8	530	20	99.1
McClure1-008	1189	85	0.66	1.4	0.6751	2.32	0.0844	0.90	0.39	529	47	522	5	524	10	98.7
McClure1-009	966	22	0.73	6.7	0.6744	5.13	0.0843	1.14	0.22	529	110	522	6	523	21	98.6
McClure1-010	728	17	0.62	7.0	0.6743	5.44	0.0840	1.34	0.25	539	115	520	7	523	23	96.4
McClure1-011	382	15	0.30	4.3	0.6797	4.69	0.0845	2.34	0.50	542	89	523	12	527	19	96.4
MÉDIA	806	24	0.61	4.58	0.6773		0.0845		0.32	528		523		525		100.0
SD					0.0066		0.0007			10		4		4		
% RSD					1.0		0.9			1.9		0.8		0.8		

]	Resultados L	A-MC-I	ICP-MS - Apa	atita Mo	Clure N	Aountain (Alí	quota 2	2)				
De	ep.Geok	ogia, UFC	OP			Dado	os para o plot					Idades	5			
Identificação	²⁰⁷ Pb (cps)	U (ppm)	Th/U	²⁰⁶ PbC (%)	²⁰⁷ Pb/ ²³⁵ U	2s %	²⁰⁶ Pb/ ²³⁸ U	2s %	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s abs	²⁰⁶ Pb/ ²³⁸ U	2s abs	²⁰⁷ Pb/ ²³⁵ U	2s abs	% conc
McClure2-001	1126	70	0.58	1.8	0.6822	3.01	0.0862	0.65	0.22	506	65	533	3	528	12	105.5
McClure2-002	840	67	0.60	1.2	0.6732	2.18	0.0853	1.03	0.47	501	42	528	5	523	9	105.4
McClure2-003	3098	50	0.50	2.1	0.6661	4.22	0.0845	3.50	0.83	498	52	523	18	518	17	105.0
McClure2-004	647	26	0.68	6.9	0.6744	5.12	0.0853	1.44	0.28	504	108	528	7	523	21	104.7
McClure2-005	1007	57	0.53	2.6	0.6870	3.23	0.0862	0.87	0.27	523	68	533	4	531	13	101.9
McClure2-006	1497	33	0.56	9.0	0.6644	5.34	0.0837	1.24	0.23	512	114	518	6	517	22	101.2
McClure2-007	3459	41	0.40	4.2	0.6796	5.51	0.0850	3.50	0.64	529	93	526	18	527	23	99.5
McClure2-008	968	56	0.56	2.5	0.6885	4.48	0.0859	2.11	0.47	535	87	531	11	532	19	99.2
McClure2-009	930	52	0.54	2.5	0.6772	3.28	0.0846	1.48	0.45	531	64	524	7	525	14	98.6
McClure2-010	701	13	0.57	11.1	0.6895	5.91	0.0858	1.96	0.33	540	122	531	10	532	25	98.4
McClure2-011	4226	53	0.27	4.7	0.6716	5.62	0.0840	3.53	0.63	529	96	520	18	522	23	98.2
McClure2-012	579	19	0.41	10.7	0.6704	5.89	0.0837	2.27	0.39	534	119	518	11	521	24	97.0
McClure2-013	554	18	0.35	10.7	0.6809	5.89	0.0847	2.20	0.37	542	119	524	11	527	25	96.6
McClure2-014	934	43	0.42	6.5	0.6878	4.76	0.0851	1.18	0.25	552	101	527	6	531	20	95.5
MÉDIA	951	47	0.54	4.5	0.6784		0.0851		0.38	529		526		526		99.4
SD					0.0084		0.0009			17		5		5		
% RSD					1.2		1.0			3.2		1.0		1.0		